Intel® C++ Compiler User's Guide

Welcome to the Intel® C++ Compiler

Welcome to the Intel® C++ Compiler. Before you use the compiler, see System Requirements.

Most Linux* distributions include the GNU* C library, assembler, linker, and others. The Intel C++
Compiler includes the Dinkumware* C++ library. See Libraries Overview.

Please look at the individual sections within each main section of this User's Guide to gain an overview
of the topics presented. For the latest information, visit the Intel Web site: http://developer.intel.com/.

Disclaimer

This Intel® C++ Compiler User's Guide as well as the software described in it, is furnished under
license and may only be used or copied in accordance with the terms of the license. The information in
this manual is furnished for informational use only, is subject to change without notice, and should not
be construed as a commitment by Intel Corporation. Intel Corporation assumes no responsibility or
liability for any errors or inaccuracies that may appear in this document or any software that may be
provided in association with this document.

Except as permitted by such license, no part of this document may be reproduced,stored in a retrieval
system, or transmitted in any form or by any means without the express written consent of Intel
Corporation.

Information in this document is provided in connection with Intel products. No license, express or
implied, by estoppel or otherwise, to any intellectual property rights is granted by this document.

EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS,
INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR
IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING
LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT.

Intel products are not intended for use in medical, life saving, or life sustaining applications. Intel may
make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked
"reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility
whatsoever for conflicts or incompatibilities arising from future changes to them.

The Intel C++ Compiler may contain design defects or errors known as errata which may cause the
product to deviate from published specifications. Current characterized errata are available on request.

Copyright © Intel Corporation 1996-2003.

Celeron, Dialogic, i386, i486, iCOMP, Intel, Intel logo, Intel386, Intel486, Intel740, IntelDX2, IntelDX4,
IntelSX2, Intel Inside, Intel Inside logo, Intel NetBurst, Intel NetStructure, Intel Xeon, Intel XScale,
Itanium, MMX, MMX logo, Pentium, and VTune are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States and other countries.

* Other names and brands may be claimed as the property of others.

Page 1 of 431

Intel® C++ Compiler User's Guide

What's New in This Release

For a complete list of new features, see the Release Notes.

Features and Benefits

The Intel® C++ Compiler allows your software to perform best on computers based on the Intel
architecture. Using new compiler optimizations, such as profile-guided optimization, prefetch
instruction and support for Streaming SIMD Extensions (SSE) and Streaming SIMD Extensions 2
(SSE2), the Intel C++ Compiler provides high performance.

Feature

Benefit

High Performance

Achieve a significant performance gain by using optimizations

Support for Streaming
SIMD Extensions

Advantage of Intel microarchitecture

Automatic vectorizer

Advantage of SIMD parallelism in your code achieved automatically

OpenMP* Support

Shared memory parallel programming

Floating-point
optimizations

Improved floating-point performance

Data prefetching

Improved performance due to the accelerated data delivery

Interprocedural
optimizations

Larger application modules perform better

Profile-guided
optimization

Improved performance based on profiling frequently-used functions

Processor dispatch

Taking advantage of the latest Intel architecture features while maintaining
object code compatibility with previous generations of Intel® Pentium®
processors (for IA-32-based systems only).

Product Web Site and Support

For the latest information about Intel® C++ Compiler, visit http://developer.intel.com/software/products/

For specific details on the Itanium® architecture, visit the web site at
http://developer.intel.com/design/itanium/under_Inx.htm.

Page 2 of 431

Intel® C++ Compiler User's Guide

System Requirements

IA-32 Processor System Requirements

e A computer based on a Pentium® processor or subsequent IA-32 based processor (Pentium 4
processor recommended).

e 128 MB of RAM (256 MB recommended).

e 100 MB of disk space.

Itanium® Processor System Requirements

e A computer with an Itanium processor.
e 256 MB of RAM.
e 100 MB of disk space.

Software Requirements

For a complete list of system requirements, see the Release Notes.

FLEXIm* Electronic Licensing

The Intel® C++ Compiler uses GlobeTrotter FLEXIm* licensing technology. The compiler requires a
valid license file in the / | i censes directory in the installation path. The default directory
is/opt/intel/licenses. The license files have a. | i ¢ file extension.

If you require a counted license, see "Using the Intel® License Manager for
FLEXIm*" (f | ex_ug. pdf).

Page 3 of 431

Intel® C++ Compiler User's Guide

How to Use This Document

This User's Guide explains how you can use the Intel® C++ Compiler. It provides information on how
to get started with the Intel C++ Compiler, how this compiler operates and what capabilities it offers for
high performance. You learn how to use the standard and advanced compiler optimizations to gain
maximum performance for your application.

This documentation assumes that you are familiar with the C and C++ programming languages and
with the Intel processor architecture. You should also be familiar with the host computer's operating
system.

f/’ Note

This document explains how information and instructions apply differently to each targeted
architecture. If there is no specific indication to either architecture, the description is applicable to both
architectures.

Conventions

This documentation uses the following conventions:

This type style Indicates an element of syntax, reserved word, keyword, filename,
computer output, or part of a program example. The text appears in
lowercase unless uppercase is significant.

This type style Indicates the exact characters you type as input.

This type style Indicates a placeholder for an identifier, an expression, a string, a
symbol, or a value. Substitute one of these items for the
placeholder.

[itens] Indicates that the items enclosed in brackets are optional.

{ itemL | iten2 |... } |Indicates to elect one of the items listed between braces. A vertical

bar (|) separates the items. Some options, such as - ax
{Mi]| Kl M, permit the use of more than one i t em

(ellipses) Indicate that you can repeat the preceding item.

Page 4 of 431

Intel® C++ Compiler User's Guide

Naming Syntax for the Intrinsics

Most intrinsic names use a notational convention as follows:

_mm<intrin_op>_<suffix>

<i ntrin_op> | Indicates the intrinsics basic operation; for example, add for addition and sub for
subtraction.

<suf fix> Denotes the type of data operated on by the instruction. The first one or two letters
of each suffix denotes whether the data is packed (p), extended packed (ep), or
scalar (s). The remaining letters denote the type:

__s single-precision floating point
___d double-precision floating point
__ 1128 signed 128-bit integer
__i 64 signed 64-bit integer
___ub4 unsigned 64-bit integer
__i 32 signed 32-hit integer
___u32 unsigned 32-hit integer
__i 16 signed 16-hit integer
___ul6 unsigned 16-bit integer
__i 8 signed 8-hit integer

___u8 unsigned 8-bit integer

A number appended to a variable name indicates the element of a packed object. For example, r0 is
the lowest word of r. Some intrinsics are "composites" because they require more than one instruction
to implement them.

The packed values are represented in right-to-left order, with the lowest value being used for scalar
operations. Consider the following example operation:

double a[2] = {1.0, 2.0}; _ m28dt = _nmload _pd(a);

The result is the same as either of the following:

_ m28dt = mmset pd(2.0, 1.0); _ m28d t = mmsetr_pd(1.0, 2.0);
In other words, the xmmregister that holds the value t will look as follows:

137)
[0 J1.0]

The "scalar" element is 1.0. Due to the nature of the instruction, some intrinsics require their
arguments to be i rmedi at es (constant integer literals).

Page 5 of 431

Intel® C++ Compiler User's Guide

Naming Syntax for the Class Libraries

The name of each class denotes the data type, signedness, bit size, number of elements using the
following generic format:

<t ype><si gnedness><bi t s>vec<el enent s>

{F] 1} {s|] u}) {64 32| 16 | 8}y vec { 8| 4| 2| 1}
where
<type> Indicates floating point (F) or integer (|)

<si gnedness> | Indicates signed (s) or unsigned (u). For the | vec class, leaving this field blank
indicates an intermediate class. There are no unsigned Fvec classes, therefore
for the Fvec classes, this field is blank.

<bits> Specifies the number of bits per element

<el enent s> Specifies the number of elements

Page 6 of 431

Intel® C++ Compiler User's Guide

Related Publications

The following documents provide additional information relevant to the Intel® C++ Compiler:

e ISO/IEC 9989:1990, Programming Languages--C

e ISO/IEC 14882:1998, Programming Languages--C++.

e The Annotated C++ Reference Manual, 3rd edition, Ellis, Margaret; Stroustrup, Bjarne, Addison
Wesley, 1991. Provides information on the C++ programming language.

e The C++ Programming Language, 3rd edition, 1997: Addison-Wesley Publishing Company,
One Jacob Way, Reading, MA 01867.

e The C Programming Language, 2nd edition, Kernighan, Brian W.; Ritchie, Dennis W., Prentice
Hall, 1988. Provides information on the K & R definition of the C language.

e C: A Reference Manual, 3rd edition, Harbison, Samual P.; Steele, Guy L., Prentice Hall, 1991.
Provides information on the ANSI standard and extensions of the C language.

e Intel Architecture Software Developer's Manual, Volume 1: Basic Architecture, Intel Corporation,
doc. number 243190.

e Intel Architecture Software Developer's Manual, Volume 2: Instruction Set Reference Manual,
Intel Corporation, doc. number 243191.

e Intel Architecture Software Developer's Manual, Volume 3: System Programming, Intel
Corporation, doc. number 243192.

o Intel® Itanium® Assembler User's Guide.

e Intel® Itanium®-based Assembly Language Reference Manual.

e Itanium® Architecture Software Developer's Manual Vol. 1: Application Architecture, Intel
Corporation, doc. number 245317-001.

e Itanium® Architecture Software Developer's Manual Vol. 2: System Architecture, Intel
Corporation, doc. number 245318-001.

e Itanium® Architecture Software Developer's Manual Vol. 3: Instruction Set Reference, Intel
Corporation, doc. number 245319-001.

e Itanium® Architecture Software Developer's Manual Vol. 4: Itanium® Processor Programmer's
Guide, Intel Corporation, doc. number 245319-001.

¢ Intel Architecture Optimization Manual, Intel Corporation, doc. number 245127.

e Intel Processor Identification with the CPUID Instruction, Intel Corporation, doc. number
241618.

e Intel Architecture MMX(TM) Technology Programmer's Reference Manual, Intel Corporation,
doc. number 241618.

e Pentium® Pro Processor Developer's Manual (3-volume Set), Intel Corporation, doc. number
242693.

e Pentium® Il Processor Developer's Manual, Intel Corporation, doc. number 243502-001.

e Pentium® Processor Specification Update, Intel Corporation, doc. number 242480.

e Pentium® Processor Family Developer's Manual, Intel Corporation, doc. numbers 241428-005.

Most Intel documents are also available from the Intel Corporation Web site at http://www.intel.com.

Page 7 of 431

Intel® C++ Compiler User's Guide

Overview: Options Quick Reference Guides

Conventions Used in the Options Quick Guide Tables

Convention Definition

[-] If an option includes "[-] " as part of the definition, then the option can be
used to enable or disable the feature. For example, the - c99[-] option
can be used as - ¢99 (enable c99 support) or - c99- (disable c99 support).

[n] Indicates that the value n in [] can be omitted or have various values.
Values in {} with Are used for option's version; for example, option - i { 2| 4| 8} has these
vertical bars versions: -i 2,-i4,-i 8.

{n} Indicates that option must include one of the fixed values for n.

Words int hi s Indicate option's required argument(s). Arguments are separated by comma
st yl e following an if more than one are required.

option

Page 8 of 431

Intel® C++ Compiler User's Guide

New Options

e Options specific to IA-32 architecture
e Options specific to the Itanium® architecture (Itanium-based systems only)

All other options are supported on both IA-32 and Itanium-based systems.

Page 9 of 431

e penti unpro - Pentium® Pro and Pentium Il
processor instructions.

e pentiuni - MMX(TM) instructions.

e pentiuniii - Streaming SIMD extensions.

e penti un¥ - Pentium 4 instructions (default).

Option Description Default

-dM Output macro definitions in effect after OFF
preprocessing (use with - E).

-dynam c-|inkerfilename | Selects a dynamic linker (f i | ename) other than the | OFF
default.

-fno-rtti Disable RTTI support. OFF

-fnsplit[-] Enables [disables] function splitting. Default is ON OFF

Itanium-based with - pr of _use. To disable function splitting when

systems only you use - pr of _use, also specify - f nsplit-.

-fshort-enuns Allocate as many bytes as needed for enumerated OFF
types.

-fsyntax-only Same as - synt ax. OFF

- funsi gned- char Change default char type to unsi gned. OFF

-funsi gned-bitfields Change default bi t fi el d type to unsi gned. OFF

-idirafterdir Add directory (di r) to the second include file search | OFF
path (after - I).

- mar ch=cpu Generate code excusively for a given cpu. Values OFF

1A-32 only for cpu are:

Intel® C++ Compiler User's Guide

Page 10 of 431

- ncpu=cpu Optimize for a specific cpu. Values for cpu are: ON
e pent i um- Optimize for Pentium processor. pentium
e penti unpro - Optimize for Pentium Pro, on IA-32
Pentium Il and Pentium IIl processors.
e penti umi - Optimize for Pentium 4 i tani un
processor. on Itanium-
based
For Itanium-based Systems, cpu values are: Systems
e itani um- Optimize for ltanium processor.
e itani un? - Optimize for Itanium 2 processor
(Default).
-MD Preprocess and compile. Generate output file (. d OFF
extension) containing dependency information.
-MFfile Generate makefile dependency informationin fi | e. | OFF
Must specify - Mor - MM
- MG Similar to - M but treats missing header files as OFF
generated files.
-W Similar to - M but does not include system header OFF
files.
- M\VD Similar to - MD, but does not include system header | OFF
files.
- WX Generate dependency file (. 0. dep extension) OFF
containing information used for the Intel wb tool.
-nr el ax Pass - r el ax to the linker. ON
-mo-r el ax Do not pass - r el ax to the linker. OFF
-nmserialize-volatile Impose strict memory access ordering for volatile OFF
Itanium-based data object references.
systems only
- mo- seri al i ze-vol atil e | The compiler may suppress both run-time and OFF
Itanium-based compile-time memory access ordering for volatile
systems only data object references. Specifically, the . rel / . acq
completers will not be issued on referencing loads
and stores.
-nodefaul t1ibs Do not use standard libraries when linking. OFF

Intel® C++ Compiler User's Guide

- Gbn Controls the compiler's inline expansion. The ON
amount of inline expansion performed varies with
the value of n as follows:

e 0: Disables inlining.

e 1: Enables (default) inlining of functions
declared with the __i nl i ne keyword. Also
enables inlining according to the C++
language.

e 2: Enables inlining of any function. However,
the compiler decides which functions to inline.
Enables interprocedural optimizations and
has the same effect as - i p.

- opennp_st ubs Enables OpenMP* programs to compile in OFF
sequential mode. The OpenMP directives are
ignored and a stub OpenMP library is linked

sequentially.
-st d=c99 Enable C99 support for C programs. ON
1A-32 only
-tppl Target optimization to the Itanium processor. OFF
Itanium-based
systems only
-tpp2 Target optimization to Itanium® 2 processor. ON
Itanium-based Generated code is compatible with the Itanium
systems only processor.
-V Show driver tool commands and execute tools. OFF
-\al | Enable all warnings. OFF
-Werror Force warnings to be reported as errors. OFF

Page 11 of 431

Intel® C++ Compiler User's Guide

Compiler Options Quick Reference Guide

This topic provides you with a reference to all the compiler options and some linker control options.

e Options specific to I1A-32 architecture
e Options specific to the Itanium® architecture

All other options are supported on both IA-32 and Itanium-based systems.

Option Description Default
-0f check Avoids the incorrect decoding of OFF
1A-32 only certain Of instructions for code

targeted at older processors.
- A- Disables all predefined macros. OFF
-[nolalign Analyze and reorder memory layout OFF
1A-32 only for variables and arrays.
- Anane[(val ue)] Associates a symbol nane with the OFF

specified sequence of val ue.
Equivalent to an #assert
preprocessing directive.

- ansi Select strict ANSI C/C++ OFF
conformance dialect.

-ansi _alias[-] -ansi _al i as directs the compilerto | OFF
assume the following:

e Arrays are not accessed out of
bounds.

e Pointers are not cast to non-
pointer types, and vice-versa.

e References to objects of two
different scalar types cannot
alias. For example, an object of
type i nt cannot alias with an
object of type f | oat , or an
object of type f | oat cannot
alias with an object of type
doubl e.

If your program satisfies the above
conditions, setting the - ansi _al i as
flag will help the compiler better
optimize the program. However, if
your program does not satisfy one of
the above conditions, the -

ansi _al i as flag may lead the
compiler to generate incorrect code.

Page 12 of 431

Intel® C++ Compiler User's Guide

-ax{Mi| K W
1A-32 only

Generates specialized code for
processor-specific codes M i , K, W
while also generating generic 1A-32
code.

e M= Intel® Pentium® processors
with MMX(TM) technology

e i =Intel Pentium Pro and Intel
Pentium Il processors

e K= Intel Pentium Il processors

e W= Intel Pentium 4 processors,
Intel® Xeon(TM) processors, and
Intel® Pentium® M processors

OFF

Places comments in preprocessed
source output.

OFF

Stops the compilation process after
an object file has been generated.
The compiler generates an object file
for each C or C++ source file or
preprocessed source file. Also takes
an assembler file and invokes the
assembler to generate an object file.

OFF

-c99[-]

Enables [disables] C99 support for C
programs.

ON

-conplex_limted_range

This option causes the compiler to
use the highest performance
formulations of complex arithmetic
operations, which may not produce
acceptable results for input values
near the top or bottom of the legal
range. Without this option, the
compiler users a better formulation of
complex arithmetic operations which
produces acceptable results for the
full range of input values, at some loss
in performance.

OFF

-dM

Output macro definitions in effect after
preprocessing (use with - E).

OFF

- Dnane[=val ue]

Defines a macro nanme and associates
it with the specified val ue. Equivalent
to a #def i ne preprocessor directive.

OFF

-dryrun

Show driver tool commands but do
not execute tools.

OFF

-dynani c-li nker fil enane

Selects a dynamic linker (f i | enane)
other than the default.

OFF

-E

Page 13 of 431

Stops the compilation process after

the C or C++ source files have been
preprocessed, and writes the results
to stdout.

OFF

Intel® C++ Compiler User's Guide

Page 14 of 431

information in the object code for use
by source-level debuggers.

-EP Preprocess to stdout omitting #l i ne | OFF
directives.

-falias Assume aliasing in program. ON

-fcode-asm Produce assemblable file with optional | OFF
code annotations. Requires -S.

-fno-alias Assume no aliasing in program. OFF

-ffnalias Assume aliasing within functions ON

-fno-fnalias Assume no aliasing within functions, OFF
but assume aliasing across calls.

-fno-rtti Disable RTTI support. OFF

-f[no]verbose-asm Produce assemblable file with ON
compiler comments.

-fnsplit[-] Enables [disables] function splitting. OFF

Itanium-based Default is ON with - pr of _use. To

systems only disable function splitting when you use
- prof _use, also specify -fnsplit-

-fp Disable using the EBP register as OFF

IA-32 only general purpose register.

-fpic, -fPIC Generate position independent code. | OFF

-fp_port Round fp results at assignments and OFF

1A-32 only casts. Some speed impact.

-fr32 Use only lower 32 floating-point OFF

Itanium-based registers.

systems only

-fshort-enums Allocate as many bytes as needed for | OFF
enumerated types.

-fsource-asm Produce assemblable file with optional | OFF
code annotations. Requires -S.

-fsyntax-only Same as - synt ax. OFF

-ft 'z[-1 Flushes denormal results to zero. The | OFF

Itanium-based option is turned ON with - C3.

systems only

- funsi gned- char Change default char type to OFF
unsi gned.

-funsigned-bitfields Change default bitfield type to OFF
unsi gned.

-g Generates symbolic debugging OFF

Intel® C++ Compiler User's Guide

Page 15 of 431

(i po_out . o) that can be used in
further link steps.

-H Print "include"” file order and continue | OFF
compilation.
-hel p Prints compiler options summary. OFF
-idirafterdir Add directory (di r) to the second OFF
include file search path (after - 1).
-ldirectory Specifies an additional di r ect ory OFF
to search for include files.
-i _dynam ¢ Link Intel provided libraries OFF
dynamically.
-inline_debug_info Preserve the source position of inlined | OFF
code instead of assigning the call-site
source position to inlined code.
-ip Enables interprocedural optimizations | OFF
for single file compilation.
-1 PF_fma[-] Enable [disable] the combining of OFF
Itanium-based floating-point multiplies and
systems only add/subtract operations.
-1 PF_fltacc[-] Enable [disable] optimizations that OFF
Itanium-based affect floating-point accuracy.
systems only
-1 PF_flt_eval _nmet hodO Floating-point operands evaluated to | OFF
Itanium-based the precision indicated by the
systems only program.
-1 P_F_f p_specul ati onnode Enable floating-point speculations with | OFF
Itanium-based the following node conditions:
systems only
e fast - speculate floating-point
operations
e saf e - speculate only when
safe
e strict - same as off
e of f - disables speculation of
floating-point operations
-ip_no_inlining Disables inlining that would result OFF
from the - i p interprocedural
optimization, but has no effect on
other interprocedural optimizations.
-ip_no_pinlining Disable partial inlining. Requires -i p | OFF
1A-32 only or -i po.
-ipo Enables interprocedural optimizations | OFF
across files.
-ipo_c Generates a multifile object file OFF

Intel® C++ Compiler User's Guide

file types as C++ source files.

-i po_obj Forces the compiler to create real OFF
object files when used with - i po.

-ipo_S Generates a multifile assemblable file | OFF
named i po_out . s that can be used
in further link steps.

- v_dep_par al | el This option indicates there is OFF

Itanium-based absolutely no loop-carried memory

systems only dependency in the loop where IVDEP
directive is specified.

- Ke++ Compile all source or unrecognized ON

(fori cpcl/ecpc)

Page 16 of 431

e penti unpro - Pentium® Pro
and Pentium Il processor

instructions.

e pentiunmii - MMX(TM)
instructions.

e pentiumii - Streaming

SIMD extensions.
e penti un¥ - Pentium 4
instructions.

- Knopi ¢, - KNOPI C Don't generate position independent OFF
Itanium-based code.
systems only
-KPI C, - Kpi ¢ Generate position independent code. | OFF for I1A-32
ON for Itanium-
based systems
-Ldirectory Instruct linker to search di r ect ory OFF
for libraries.
-1 ong_doubl e Changes the default size of the long OFF
I1A-32 only double data type from 64 to 80 bits.
-M Generates makefile dependency lines | OFF
for each source file, based on the
#i ncl ude lines found in the source
file.
- mar ch=cpu Generate code excusively for a given | OFF
I1A-32 only cpu. Values for cpu are:

Intel® C++ Compiler User's Guide

Page 17 of 431

- ncpu=cpu Optimize for a specific cpu. ON
For IA-32, cpu values are: pentium
on IA-32
e penti um- Optimize for) .
Pentium processor. i tani un@
e penti unpr o - Optimize for on Itanium-based
Pentium Pro, Pentium Il and Systems
Pentium Ill processors.
e penti un¥ - Optimize for
Pentium 4 processor (Default).
For Itanium-based Systems, cpu
values are:
e itani um- Optimize for
Itanium processor.
e itani un? - Optimize for
Itanium 2 processor (Default).
- MD Preprocess and compile. Generate OFF
output file (. d extension) containing
dependency information.
-MFfile Generate makefile dependency OFF
information in f i | e. Must specify - M
or-wW
- MG Similar to - M but treats missing OFF
header files as generated files.
- MW Similar to - M but does not include OFF
system header files.
- MVD Similar to - MD, but does not include OFF
system header files.
- WX Generate dependency file (. 0. dep OFF
extension) containing information
used for the Intel wb tool.
-np Favors conformance to the ANSI C OFF
and IEEE 754 standards for floating-
point arithmetic.
-nmpl Improve floating-point precision OFF
(speed impact is less than - np).
-nr el ax Pass - r el ax to the linker. ON
- mo-r el ax Do not pass - r el ax to the linker. OFF
-mserialize-volatile Impose strict memory access ordering | OFF
Itanium-based for volatile data object references.
systems only

Intel® C++ Compiler User's Guide

Page 18 of 431

optimizations that may increase the
compilation time. Impact on
performance is application dependent,
some applications may not see a
performance improvement.

-mmo-serial i ze-vol atile The compiler may suppress both run- | OFF

Itanium-based time and compile-time memory

systems only access ordering for volatile data
object references. Specifically,
the . rel /. acq completers will not be
issued on referencing loads and
stores.

-nobss_init Places variables that are initialized OFF
with zeroes in the DATA section.
Disables placement of zero-initialized
variables in BSS (use DATA).

-no_cpprt Do not link in C++ run-time libraries. OFF

-nodefaul tlibs Do not use standard libraries when
linking.

-nolib_inline Disables inline expansion of standard | OFF
library functions.

-nostartfiles Do not use standard startup files OFF
when linking.

-nostdlib Do not use standard libraries and OFF
startup files when linking.

-0 Same as - OL on IA-32. Same as - Q2 | OFF
on Itanium-based systems.

-0 Disables optimizations. OFF

-1 Enable optimizations. Optimizes for ON
speed. For Itanium compiler, - OL
turns off software pipelining to reduce
code size.

-2 Same as - OL on IA-32. Same as - O | OFF
on Itanium-based systems.

-3 Enable - @2 plus more aggressive OFF

Intel® C++ Compiler User's Guide

- Cbn

Controls the compiler's inline
expansion. The amount of inline
expansion performed varies with the
value of n as follows:

e 0: Disables inlining.

e 1: Enables (default) inlining of
functions declared with the
__inline keyword. Also
enables inlining according to
the C++ language.

e 2: Enables inlining of any
function. However, the compiler
decides which functions to
inline. Enables interprocedural
optimizations and has the
same effectas -i p.

ON

-ofile

Name outputfil e.

OFF

- opennp

Enables the parallelizer to generate
multi-threaded code based on the
OpenMP* directives. The - opennp
option only works at an optimization
level of - 2 (the default) or higher.

OFF

-opennp_report{0]| 1] 2}

Controls the OpenMP parallelizer's
diagnostic levels.

ON

opennp_reportl

- opennp_st ubs

Enables OpenMP programs to
compile in sequential mode. The
OpenMP directives are ignored and a
stub OpenMP library is linked
sequentially.

OFF

-opt _report

Generates an optimization report
directed to stderr, unless -
opt _report_fil e is specified.

OFF

-opt_report _filefilenane

Specifies the f i | enane for the
optimization report. It is not necessary
to invoke - opt _report when this
option is specified.

OFF

-opt _report_|evel |l evel

Page 19 of 431

Specifies the verbosity | evel of the
output. Valid | evel arguments:

e mn
e ned
e Max

If al evel is not specified, m n is
used by default.

OFF

Intel® C++ Compiler User's Guide

-opt _report_phasenamne

Specifies the compilation name for
which reports are generated. The
option can be used multiple times in
the same compilation to get output
from multiple phases.

Valid nane arguments:

i po: Interprocedural Optimizer

e hl o: High Level Optimizer

e il o0: Intermediate Language
Scalar Optimizer

e ecg: Code Generator

e onp: OpenMP*

e al |l : All phases

OFF

-opt_report_routinesubstring

Specifies a routine substri ng.
Reports from all routines with names
that include subst ri ng as part of the
name are generated. By default,
reports for all routines are generated.

OFF

-opt _report_help

Displays all possible settings for -
opt _report _phase. No compilation
is performed.

OFF

Stops the compilation process after C
or C++ source files have been
preprocessed and writes the results to
files named according to the
compiler's default file-naming
conventions.

OFF

-parall el

Detects parallel loops capable of
being executed safely in parallel and
automatically generates multithreaded
code for these loops.

OFF

-par _report{0]| 1] 2| 3}

Page 20 of 431

Controls the auto-parallelizer's
diagnostic levels 0, 1, 2, or 3 as
follows:

e -par_report0: no diagnostic
information is displayed.

e -par _report1:indicates
loops successfully auto-
parallelized (default).

e -par _report2:loops
successfully and unsccessfully
auto-parallelized.

e -par_report 3: same as 2
plus additional information
about any proven or assumed
dependences inhibiting auto-
parallelization.

OFF

Intel® C++ Compiler User's Guide

- par _t hreshol d[n]

Sets a threshold for the auto-
parallelization of loops based on the
probability of profitable execution of
the loop in parallel, n=0 to 100. This
option is used for loops whose
computation work volume cannot be
determined at compile time.

e -par _threshol dO: loops get
auto-parallelized regardless of
computation work volume.

e -par _threshol d100: loops
get auto-parallelized only if
profitable parallel execution is
almost certain.

OFF

-pc32
1A-32 only

Set internal FPU precision to 24-bit
significand.

OFF

- pc64
1A-32 only

Set internal FPU precision to 53-bit
significand.

OFF

- pc80
1A-32 only

Set internal FPU precision to 64-bit
significand.

ON

-prec _div
1A-32 only

Disables the floating point division-to-
multiplication optimization. Improves
precision of floating-point divides.

OFF

-prof _dir dirnane

Specify the directory (di r nane) to
hold profile information (*. dyn,

* dpi).

OFF

-prof _file filenane

Specify the f i | enamne for profiling
summary file.

OFF

-prof _gen[x]

Instruments the program to prepare
for instrumented execution and also
creates a new static profile
information file (. spi). With the x

qualifier, extra information is gathered.

OFF

-prof _use

Uses dynamic feedback information.

OFF

-Qnstall dir

Sets di r as root of compiler
installation.

OFF

-Q ocation,tool, path

Sets pat h as the location of the tool
specified by tool .

OFF

-Qoption,tool,list

Passes an argument | i st to another
t ool in the compilation sequence,
such as the assembler or linker.

OFF

-ap,-p

Page 21 of 431

Compile and link for function profiling
with UNIX* pr of t ool

OFF

Intel® C++ Compiler User's Guide

Itanium-based
systems only

Page 22 of 431

-rcd Disables changing of the FPU OFF
I1A-32 only rounding control. Enables fast float-to-
int conversions.
-[no]restrict Enables/disables pointer OFF
disambiguation with the
restrict qualifier.
-S Generates assemblable files with . s OFF
suffix, then stops the compilation.
-shared Produce a shared object. OFF
-size_ | p64 Assume 64-bit size for long and OFF
Itanium-based pointer types.
systems only
-sox[-] Enables [disables] the saving of - SOX-
IA-32 only compiler options and version
information in the executable file.
-static Prevents linking with shared libraries. | OFF
-std=c99 Enable C99 support for C programs. ON
- synt ax Checks the syntax of a program and OFF
stops the compilation process after
the C or C++ source files and
preprocessed source files have been
parsed. Generates no code and
produces no output files. Warnings
and messages appear on stderr.
-tppl Target optimization to the Itanium OFF
Itanium-based processor.
systems only
-tpp2 Target optimization to the Itanium® 2 | ON
Itanium-based processor. Generated code is
systems only compatible with the Itanium
processor.
-t pp5 Targets the optimizations to the OFF
1A-32 only Pentium processor.
-t pp6 Targets the optimizations to the OFF
1A-32 only Pentium Pro, Pentium Il and Pentium
Il processors.
-t pp7 Tunes code to favor the Pentium 4 ON
1A-32 only and Intel® Xeon(TM) processor.
- Unane Suppresses any definition of a macro | OFF
nane. Equivalent to a #undef
preprocessing directive.
-unrol 10 Disable loop unrolling. OFF

Intel® C++ Compiler User's Guide

1A-32 only

diagnostic information.

n = 0 no diagnostic information

n = 1 indicates vectorized loops

(DEFAULT)

e n = 2 indicates vectorized/non-
vectorized loops

e n = 3 indicates vectorized/non-
vectorized loops and prohibiting
data dependence information

e n =4 indicates non-vectorized
loops

e n =5 indicates non-vectorized

loops and prohibiting data

-unrol | [n] Set maximum number of times to OFF
1A-32 only unroll loops. Omit n to use default

heuristics. Use n =0 to disable loop

unroller.
-use_asm Produce objects through assembler. OFF
-use_nsasm Accept the Microsoft* MASM-style OFF
1A-32 only inlined assembly format instead of

GNU-style.
-u synbol Pretend the synbol is undefined. OFF
-V Display compiler version information. | OFF
-V Show driver tool commands and

execute tools.
-vec_report[n] Controls the amount of vectorizer ON

-vec_reportl

-W

Disable all warnings.

OFF

-Val |

Enable all warnings.

OFF

Control diagnostics.

e n =0 displays errors (same as
- W)

e n =1 displays warnings and
errors (DEFAULT)

e n = 2 displays remarks,
warnings, and errors

ON

~wdLl[, L2, ...]

Disables diagnostics L1 through LN.

OFF

-well[, L2, ...]

Changes severity of diagnostics L1
through LN to error.

OFF

-Werror

Force warnings to be reported as
errors.

OFF

Page 23 of 431

Limits the number of errors displayed
prior to aborting compilation to n.

ON
-wnl1l00

Intel® C++ Compiler User's Guide

-wrL1[, L2, ...]

Changes the severity of diagnostics
L1 through LNto remark.

OFF

-wall[, L2, ...]

Changes severity of diagnostics L1
through LN to warning.

OFF

-W,o0l[,02,...]

Pass options 01, 02, etc. to the linker
for processing.

OFF

- xtype

All source files found subsequent to -
xt ype will be recognized as one of
the following t ypes:

¢ - C source file

c++ - C++ source file

c- header - C header file

cpp- out put - C preprocessed

file

e assenbl er - assemblable file

e assenbler-with-cpp -
Assemblable file that needs to
be preprocessed.

e none - Disable recognition and

revert to file extension.

OFF

Removes the standard directories
from the list of directories to be
searched for include files.

OFF

- Xa

Select extended ANSI C dialect.

ON

- Xc

Select strict ANSI conformance
dialect.

OFF

-x{Mi|K W
1A-32 only

Generates specialized code for
processor-specific codes M i , K, W

e M= Intel® Pentium® processors
with MMX(TM) technology

e i =Intel Pentium Pro and Intel
Pentium Il processors

e K= Intel Pentium Il processors

e W= Intel Pentium 4 processors,
Intel Xeon processors, and Intel
Pentium M processors

OFF

-Xl i nker val

Pass val directly to the linker for
processing.

OFF

-Zp{ 1] 2| 4| 8| 16}

Specifies the strictest alignment
constraint for structure and union
types as one of the following: 1, 2, 4,
8, or 16 bytes.

ON
-Zp16

Page 24 of 431

Intel® C++ Compiler User's Guide

Alternate Tools and Locations

Option

Description

-Q ocation,tool, path

Allows you to specify the path for tools such as the assembler, linker,
preprocessor, and compiler.

-Qoption,tool,optlist

Passes an option specified by opt | i st to at ool , where opt | i st
is a comma-separated list of options.

Preprocessing Options

Option

Description

- Anane[(val ues, ..

]

Associates a symbol nane with the specified sequence of val ues .
Equivalent to an #assert preprocessing directive.

- A

Causes all predefined macros and assertions to be inactive.

-C

Preserves comments in preprocessed source output.

- Dnane[(val ue)]

Defines the macro nane and associates it with the specified val ue .
The default (- Dnanme) defines a macro with a val ue of 1.

-E Directs the preprocessor to expand your source module and write the
result to standard output.

-EP Directs the preprocessor to expand your source module and write the
result to standard output. Does not include #| i ne directives in the
output.

-P Directs the preprocessor to expand your source module and store the
resultina. i file in the current directory.

- Unane Suppresses any automatic definition for the specified macro nane .

Page 25 of 431

Intel® C++ Compiler User's Guide

Controlling Compilation Flow

Option Description

-C Stops the compilation process after an object file has been generated. The
compiler generates an object file for each C or C++ source file or preprocessed
source file. Also takes an assembler file and invokes the assembler to generate
an object file.

-Kpic,-KPIC Generate position-independent code.

- | name Link with a library indicated in name.

-nobss_init Places variables that are initialized with zeroes in the DATA section.

-P, -F Stops the compilation process after C or C++ source files have been
preprocessed and writes the results to files named according to the compiler's
default file-naming conventions.

-S Generates assemblable file with . s suffix, then stops the compilation.

-sox[-] Enables [disables] the saving of compiler options and version information in the

(IA-32 only) executable file. Default is - sox- .

-Zp Specifies the strictest alignment constraint for structure and union types as one

{1] 2| 4] 8] 16} | of the following: 1, 2, 4, 8, or 16 bytes.

- 0f _check Avoids the incorrect decoding of certain Of instructions for code targeted at older

(IA-32 only) processors.

Page 26 of 431

Intel® C++ Compiler User's Guide

Controlling Compilation Output

Option Description

-Ldirectory |Instruct linker to search di r ect or y for libraries.

- onane Produces an executable output file with the specified file nane , or the default file
name if file name is not specified.

-S Generates assemblable file with . s suffix, then stops the compilation.

Debugging Options

Option(s) Result

-g Debugging information produced, - Q0 enabled, - f p enabled for 1A-32-targeted
compilations.

-g -O1 Debugging information produced, - Ol optimizations enabled.

-g -2 Debugging information produced, - Q2 optimizations enabled.

-g -G Debugging information produced, - O3 optimizations enabled.

-g -3 -fp | Debugging information produced, - O3 optimizations enabled, - f p enabled for 1A-32-
targeted compilations.

Conformance Options

Option Description

- ansi Enables assumption of the program's ANSI conformance.

-ansi _alias[-] |-ansi_ali as directs the compiler to assume the following:

e Arrays are not accessed out of bounds.

e Pointers are not cast to non-pointer types, and vice-versa.

e References to objects of two different scalar types cannot alias. For
example, an object of type i nt cannot alias with an object of type
f | oat, or an object of type f | oat cannot alias with an object of type
doubl e.

If your program satisfies the above conditions, setting the - ansi _al i as flag
will help the compiler better optimize the program. However, if your program
does not satisfy one of the above conditions, the - ansi _al i as flag may lead
the compiler to generate incorrect code.

-np Favors conformance to the ANSI C and IEEE 754 standards for floating-point
arithmetic. Behavior for NaN comparisons does not conform.

Page 27 of 431

Intel® C++ Compiler User's Guide

Optimization-level Options

Option | Description

-0 Disables optimizations.

-01 Enables optimizations. Optimizes for speed. - Ol disables inline expansion of library
functions. For Itanium® compiler, - Ol turns off software pipelining to reduce code size.

-2 Equivalent to option - OL.

-3 Builds on - OL and - @2 by enabling high-level optimization. This level does not guarantee
higher performance unless loop and memory access transformation take place. In
conjunction with - axK/- xK, this switch causes the compiler to perform more aggressive
data dependency analysis than for - Q2. This may result in longer compilation times.

Processor Optimizations

Processor Optimization for IA-32 only

The -t pp{ 5| 6| 7} options optimize your application's performance for a specific Intel processor. The
resulting binary will also run on the other processors listed in the table below. The Intel® C++ Compiler
includes gcc*-compatible versions of the - t pp options. These options are listed in the gcc* Version
column.

Option | gcc* Version Optimizes for

-tpp5 |- ncpu=pentium Intel® Pentium® processors

-t pp6 |- ncpu=penti unpro | Intel Pentium Pro, Intel Pentium II, and Intel Pentium Il processors

-t pp7 |-ntpu=pentiumi Intel Pentium 4 processors

Z-) Note

The -t pp7 option is ON by default when you invokei cc ori cpc.

Example

The invocations listed below all result in a compiled binary optimized for Pentium 4 and Intel® Xeon(TM)
processors. The same binary will also run on Pentium, Pentium Pro, Pentium II, and Pentium Ill
processors.

pronpt >i cc prog.c
prompt >i cc -tpp7 prog.c
pronpt >i cc -nctpu=penti umd prog.c

Processor Optimization (ltanium®-based Systems only)

Page 28 of 431

Intel® C++ Compiler User's Guide

The -t pp{ 1| 2} options optimize your application's performance for a specific Intel® Itanium®
processor. The resulting binary will also run on the processors listed in the table below. The Intel® C++
Compiler includes gcc*-compatible versions of the -t pp options. These options are listed in the gcc*
Version column.

Option | gcc* Version Optimizes for

-tppl | -ncpu=itani um | |tanium® processors

-tpp2 | -ncpu=itani un? | tanium® 2 processors

f/’ Note

The -t pp2 option is ON by default when you invoke ecc or ecpc.

Example

The invocations listed below all result in a compiled binary optimized for the Intel ltanium 2 processor.
The same binary will also run on Intel Itanium processors.

pronpt >ecc prog.c
pronpt >ecc -tpp2 prog.c

pronpt >ecc -ntpu=itani un2 prog.c

Page 29 of 431

Intel® C++ Compiler User's Guide

Interprocedural Optimizations

Option

Description

_|p

Enables interprocedural optimizations for single file compilation.

-ip_no_inlining

Disables inlining that would result from the - i p interprocedural
optimization, but has no effect on other interprocedural optimizations.

-ipo Enables interprocedural optimizations across files.

-ipo_c Generates a multifile object file that can be used in further link steps.
-i po_obj Forces the compiler to create real object files when used with - i po.
-ipo_S Generates a multifile assemblable file named ipo_out.asm that can be

used in further link steps.

-inline_debug_i nfo | Preserve the source position of inlined code instead of assigning the call-

site source position to inlined code.

-nolib_inline

Disables inline expansion of standard library functions.

Profile-guided Optimizations

Option

Description

-prof _gen[x]

Instructs the compiler to produce instrumented code in your object files in
preparation for instrumented execution. NOTE: The dynamic information files
are produced in phase 2 when you run the instrumented executable.

-prof _use Instructs the compiler to produce a profile-optimized executable and merges
available dynamic information (.dyn) files into a pgopti.dpi file. If you perform
multiple executions of the instrumented program, - pr of _use merges the
dynamic information files again and overwrites the previous pgopti.dpi file.

-prof _dirdir Specifies the directory (dir) to hold profile information in the profiling output files,

.dynand. dpi .

prof filefile

Specifies f i | e name for profiling summary file.

Page 30 of 431

Intel® C++ Compiler User's Guide

High-level Language Optimizations

Option

Description

- opennp

Enables the parallelizer to generate multi-threaded code based on the
OpenMP* directives.
Enables parallel execution on both uni- and multiprocessor systems.

-opennp_report{0| 1] 2}

Controls the OpenMP* parallelizer's diagnostic levels 0, 1, or 2:

e 0 - no information
e 1 -loops, regions, and sections parallelized (default)
e 2 -same as 1 plus master construct, single construct, etc.

-unrol I [n]

Set maximum number (n) of times to unroll loops. Omit n to use
default heuristics. Use n =0 to disable loop unrolling. For Itanium®-
based applications, - unr ol | [0] used only for compatibility.

Optimization Reports

Option Description
-opt _report Generates optimizations report and directs to st derr .
-opt _report_filefilenanme Specifies the f i | enane for the optimizations report.

-opt _report_|evel
{m n| med| max}

Specifies the detail level of the optimizations report.
Default: - opt _report _level mn

- opt _report_phasephase

Specifies the optimization to generate the report for. Can be
specified multiple times on the command line for multiple
optimizations.

-opt _report_help

Prints to the screen all available phases for
-opt _report_phase.

-opt _report_routinesubstring | Generates reports from all routines with names containing

the subst ri ng as part of their name. If not specified,
reports from all routines are generated.

Page 31 of 431

Intel® C++ Compiler User's Guide

Compiler Options Cross Reference

Page 32 of 431

Linux* Windows* Description Linux
Default
- Of -Q of Enable/disable the patch for | OFF
the Pentium® Of erratum.
- A - QA- Remove all predefined OFF
macros.
- Anane[(val)] - QAnane[(val)] Create an assertion name OFF
having value val .
- ansi -Za Enable/disable assumption ON
of ANSI conformance.
-ax{Mi| KW -Qx{Mi| K W Generates specialized code | OFF
for processor-specific codes
M i, K, Wwhile also
generating generic I1A-32
code.
e M= Intel® Pentium®
processors with MMX
(TM) technology
e i =Intel Pentium Pro and
Intel Pentium 1l
processors
e K= Intel Pentium Il
processors
e W= Intel Pentium 4
processors, Intel® Xeon
(TM) processors, and
Intel® Pentium® M
processors
-C -C Don't strip comments. OFF
-C -C Compile to object (. 0) only, | OFF
do not link.
- Dnane[=val ue] - Dnane[=val ue] Define macro. OFF
-E -E Preprocess to stdout. OFF
-fp -Oy- Use EBP-based stack frame | OFF
for all functions.
-g -Zi Produce symbolic debug OFF
information in object file.
-H -CH Print include file order. OFF
-hel p -hel p Print help message listing. OFF

Intel® C++ Compiler User's Guide

Page 33 of 431

-ldirectory -ldirectory Add directory to include file OFF
search path.

-inline_debug info |-Qnline_debug info Preserve the source position | OFF
of inlined code instead of
assigning the call-site source
position to inlined code.

-ip -Qp Enable single-file IP OFF
optimizations (within files).

-ip_no_inlining -Q p_no_inlining Optimize the behavior of IP: | OFF
disable full and partial
inlining (requires - i p or -

i po).

-ipo -Q po Enable multifile IP OFF
optimizations (between files).

- i po_obj - Q po_obj Optimize the behavior of IP: | OFF
force generation of real
object files (requires - i po).

-KPI C NA Generate position OFF
independent code (same as
- Kpi ¢).

- Kpi ¢ NA Generate position OFF
independent code (same as
- KPI).

-1 ong_doubl e -Q ong_doubl e Enable 80-bit long double. OFF

-m NA Instruct linker to produce OFF
map file.

-M -QV Generate makefile OFF
dependency information.

-np -Op[-] Maintain floating-point OFF
precision (disables some
optimizations).

-nmpl - Qprec Improve floating-point OFF
precision (speed impact is
less than - np).

-nobss_init -@obss_init Disable placement of zero- OFF
initialized variables in BSS
(use DATA).

-nolib_inline -0 [-] Disable inline expansion of OFF
intrinsic functions.

-0 -2 OFF

-ofile -Fefileor-Fofile Name output file. OFF

-Q0 - Disable optimizations. OFF

-0 -0 Optimizes for speed. OFF

Intel® C++ Compiler User's Guide

Page 34 of 431

-2 -2 ON

-P -EP Preprocess to file. OFF

- pc32 -Qoc 32 Set internal FPU precision to | OFF
24-bit significand.

- pc64 -Qoc 64 Set internal FPU precision to | OFF
53-bit significand.

- pc80 -Qpc 80 Set internal FPU precision to | ON
64-bit significand.

-prec_div -Qorec_div Improve precision of floating- | OFF
point divides (some speed
impact).

-prof _dir directory |-Qorof_dir directory Specify directory for profiling | OFF
output files (*. dyn and
* dpi).

-prof _file filenane |-Qorof _filefilename Specify file name for profiling | OFF
summary file.

-prof _gen[x] - Qpr of _genx Instrument program for OFF
profiling; with the x qualifier,
extra information is
gathered.

- prof _use - Qor of _use Enable use of profiling OFF
information during
optimization.

-Qnstall dir NA Set di r as root of compiler | OFF
installation.

-Qocation,str,dir |-Qocation, tool, path |Setdir asthelocationof | OFF
tool specified by st r .

-Qoption,str,opts -Qoption, tool, list Pass options opts to tool OFF
specified by str.

-gp,-p NA Compile and link for function | OFF
profiling with UNIX* gprof
tool.

-rcd -Qcd Enable fast floating-point-to- | OFF
integer conversions.

-restrict -Qestrict Enable the restrict keyword | OFF
for disambiguating pointers.

-S -S Generates assemblable files | OFF
with . s suffix, then stops the
compilation.

-sox[-] - sox Enable [disable] saving of - SOX-
compiler options and version
in the executable.

- synt ax -Zs Perform syntax check only. OFF

Intel® C++ Compiler User's Guide

-t pp5

Optimize for Pentium
processor.

OFF

-t pp6

Optimize for Pentium Pro,
Pentium Il and Pentium Ill
processors.

OFF

-t pp7

-Gr7

Optimize for Pentium 4
processor.

OFF

- Uname

- Uname

Remove predefined macro.

OFF

-unrol I [n]

-Qunrolln

Set maximum number of
times to unroll loops. Omit n
to use default heuristics. Use
n=0 to disable loop unroller.

OFF

Display compiler version
information.

OFF

Display errors.

OFF

Enable remarks, warnings
and errors.

Control diagnostics. Display
errors (n=0). Display
warnings and errors (n=1).
Display remarks, warnings,
and errors (n=2).

OFF

~wdL1[, L2, ...

-Qmd[t ag]

Disable diagnostics L1
through LN.

OFF

-well[, L2, ...

-Que[t ag]

Change severity of
diagnostics L1 through LN to
error.

OFF

-Qwn[t ag]

Print a maximum of n
errors.

OFF

-wrL1[, L2, ...

-Qwr [tag]

Change severity of
diagnostics L1 through LN to
remark.

OFF

~wall[, L2, ...

-Qwyf t ag]

Change severity of
diagnostics L1 through LN to
warning.

OFF

Page 35 of 431

Remove standard directories
from include file search path.

OFF

Intel® C++ Compiler User's Guide

-x{Mi|K'W

-Q{Mi| KW

Generates specialized code
for processor-specific codes
Mi,K W

e M= Intel® Pentium®
processors with MMX
(TM) technology

e i =Intel Pentium Pro and
Intel Pentium I
processors

e K=Intel Pentium IlI
processors

e W= Intel Pentium 4
processors, Intel® Xeon
(TM) processors, and
Intel® Pentium® M
processors

OFF

- Xa

-Ze

Select extended ANSI C
dialect.

OFF

- Xc

-Za

Select strict ANSI
conformance dialect.

OFF

-Zp{ 1] 2| 4] 8| 16}

-Zp[n]

Specify, in bytes, alignment
constraint for structures (n
=1,2,4,8,16). Default n =8.
This option overrides the
default alignment of code.

OFF

Page 36 of 431

Intel® C++ Compiler User's Guide

Invoking the Compiler

The ways to invoke Intel® C++ Compiler are as follows:

e Invoke directly: Running Compiler from the Command Line
e Use system make file: Running from the Command Line with make

Invoking the Compiler from the Command Line

There are two necessary steps to invoke the Intel® C++ Compiler from the command line:

1. Setthe environment variables.
2. Invoke the compiler with i cc or ecc.

f) Note

You can also invoke the compiler with i cpc and ecpc for C++ source files on 1A-32 and Itanium®-
based systems respectively. The i cc and ecc compiler examples in this documentation apply to C
and C++ source files.

Set the Environment Variables

Before you can operate the compiler, you must set the environment variables to specify locations for
the various components. The Intel C++ Compiler installation includes shell scripts that you can use to
set environment variables. From the command line, execute the shell script that corresponds to your
installation. With the default compiler installation, these scripts are located at:

e |A-32 Systems:/opt/intel/conpiler70/ia32/bin/iccvars.sh
e ltanium®-based Systems: /opt/intel /conpil er70/i a64/ bi n/ eccvars. sh

Running the Shell Scripts
Torunthe i ccvars. sh script on IA-32, enter the following on the command line:
pronpt >source /opt/intel/conpiler70/ia32/bin/iccvars.sh

If you want the i ccvar s. sh to run automatically when you start Linux*, edit your startup file and add
the same line to the end of your file:

set up environment for Intel conpiler icc
source /opt/intel/conpiler70/ia32/bin/iccvars.sh

The procedure is similar for running the eccvar s. sh shell script on Itanium-based systems.

Page 37 of 431

Intel® C++ Compiler User's Guide

Invoke the Compiler

Once the environment variables are set, you can invoke the compiler as follows:

e |A-32 Systems: pronpt >icc [options] filel [file2 . . .]
e ltanium®-based Systems: pronpt >ecc [options] filel [file2 . . .]
Syntax Description
opti ons Indicates one or more command-line options. The compiler recognizes

one or more letters preceded by a hyphen (-).

filel,

file2 .

Indicates one or more files to be processed by the compilation system.
You can specify more than one file. Use a space as a delimiter for
multiple files.

i nker _options

Indicates options directed to the linker.

Page 38 of

431

Intel® C++ Compiler User's Guide

Invoking the Compiler from the Command Line with
make

To run from the command line using Intel® C++ Compiler, make sure that / usr/ bi n is your path. If
you use a C shell, you can edit your. cshr c file and add

setenv PATH /usr/bin:<full path to Intel conpiler>

Z-) Note

To use the Intel compiler, your makefile must include the setting CC=i cc. Use the same setting on the
command line to instruct the makefile to use the Intel compiler. If your makefile is written for gcc, the
GNU* C compiler, you will need to change those command line options not recognized by the Intel
compiler.

Then you can compile:

prompt >make -f nmy_makefile

Compiler Input Files

By default, the compiler recognizes . cpp and . cxx files as C++ files and . c files as C language
source files. Examples in this documentation use the . ¢ extension. The Intel® C++ Compilers, i cpc
and ecpc, compile . c files as C++ files. Also, the Intel C++ Compiler recognizes the default file name
extensions listed in the table below:

Filename Interpretation Action
filename.a | Object library Passed to linker
filename.i | C or C++ source preprocessed and expanded by the C++ Passed to
preprocessor compiler
filename. o | Compiled object module Passed to linker

filename.s | Assemblable file

filenane. so | Shared object file

filenanme. S | Assemblable file that requires preprocessing

Page 39 of 431

Intel® C++ Compiler User's Guide

Default Compiler Options

e Options specific to 1A-32 architecture
e Options specific to the Itanium® architecture

All other options are supported on both IA-32 and Itanium-based systems.

Option Description

-c99 Enables C99 support for C programs
-falias Assume aliasing in program.
-ffnalias Assume aliasing within functions

-fverbose-asm Produce assemblable file with compiler components.

-KPI C, - Kpi ¢ Generate position independent code.

-ncpu=pentiumd | Optimizes for Pentium® 4 processor (IA-32 systems only).

-ncpu=itani un? | Optimizes for Itanium 2 processor (Itanium-based systems only)

-1 Enable optimizations. Optimizes for speed. For Itanium compiler, - OL turns
off software pipelining to reduce code size.

-2 Same as - Ol on IA-32. Same as - Oon Itanium-based systems.

-l Enables inlining of functions declared with the __i nl i ne keyword. Also

enables inlining according to the C++ language.

-opennp reportl | Controls the OpenMP parallelizer's diagnostic levels.

- pc80 Set internal FPU precision to 64-bit significand.

1A-32 only

- SOX- Disables the saving of compiler options and version information in the
1A-32 only executable file.

-std=c99 Enable C99 support for C programs.

-tpp2 Target optimization to the Itanium® 2 processor. Generated code is
Itanium-based compatible with the Itanium processor.

systems only

-t pp7 Tunes code to favor the Pentium 4 and Intel® Xeon(TM) processor.
1A-32 only

-vec_reportl Controls the amount of vectorizer diagnostic information to indicate vectorized
1A-32 only loops.

-wil Control diagnostics. Displays warnings and errors.

-Zpl6 Specifies 16-byte alignment constraint for struct and union types.

Page 40 of 431

Intel® C++ Compiler User's Guide

Default Behavior of the Compiler

If you do not specify any options when you invoke the Intel® C++ Compiler, the compiler uses the
following default settings:

e Produces executable output with filename a. o.

Invokes options specified in a configuration file first. See Configuration Files.

e Searches for library files in directories specified by the LD LI BRARY_PATH variable, if they are
not found in the current directory.

e Sets 8 bytes as the strictest alignment constraint for structures.

Displays error and warning messages.

e Performs standard optimizations using the default - O2 option. See Setting Optimization Levels.

If the compiler does not recognize a command-line option, that option is ignored and a warning is
displayed. See Diagnostic Messages for detailed descriptions about system messages.

Page 41 of 431

Intel® C++ Compiler User's Guide

Compilation Phases

To produce an executable file, the compiler performs by default the compile and link phases. When
invoked, the compiler driver determines which compilation phases to perform based on the file name
extension and the compilation options specified in the command line.

The compiler passes object files and any unrecognized file name to the linker. The linker then
determines whether the file is an object file (. 0) or a library (. a). The compiler driver handles all types
of input files correctly, thus it can be used to invoke any phase of compilation.

The relationship of the compiler to system-specific programming support tools is presented in the
diagram below:

Application Development Cycle

- .
Tt Editor
Source
Phase |
Transkticn
Compiler
e
.
Cibject
Code
] ==r
Phaze I
Linking =, ik
M
.
Phase I
Execution

DM0aTig

Page 42 of 431

Intel® C++ Compiler User's Guide

Customizing the Compilation Environment

For IA-32 and the Intel® Itanium® architecture, you will need to set a compilation environment. To
customize the environment used during compilation, you can specify:

e Environment Variables -- the paths where the compiler and other tools can search for specific
files.

e Configuration Files -- the options to use with each compilation.

e Response Files -- the options and files to use for individual projects.

e Include Files -- the names and locations of source header files.

Environment Variables

You can customize your environment by specifying paths where the compiler can search for special
files such as libraries and include files.

LD LI BRARY_PATH specifies the location for all Intel-provided libraries.

PATH specifies the directories the system searches for binary executable files.

I CCCFG specifies the configuration file for customizing compilations with the i cc compiler.

I CPCCFG specifies the configuration file for customizing compilations with the i cpc compiler.

ECCCFG specifies the configuration file for customizing compilations with the ecc compiler.

ECPCCFG specifies the configuration file for customizing compilations with the ecpc compiler.

TMP specifies the directory to store temporary files. If the directory specified by TMP does not

exist, the compiler places the temporary files in the current directory.

e | A32ROOT (IA32-based systems) points to the directory containing the bi n, 1 i b, i ncl ude and
substitute header directories.

e | A64ROOT (ltanium®-based systems) points to the directory containing the bi n, I i b, i ncl ude

and substitute header directories.

Compilation Environment Options

The Intel® C++ Compiler installation includes shell scripts that you can use to set environment
variables. From the command line, execute the shell script appropriate to your installation. You can
find these scripts in the following locations (assuming you installed to the default directories):

Bash Shell Environment

e |A-32 Systems: /opt/intel/conpiler70/ia32/bin/iccvars. sh
e Itanium®-based Systems: /opt/intel/conpil er70/i a64/ bi n/ eccvars. sh

Torun the i ccvars. sh script, enter the following on the command line:
pronpt >source /opt/intel/conpiler70/ia32/bin/iccvars. sh

If you want the i ccvar s. sh to run automatically when you start Linux, edit your startup script
(. bash_profi | e for a bash shell) and add the same line to the end of your file:

set up environnment for icc
source /opt/intel/conpiler70/ia32/bin/iccvars.sh

Page 43 of 431

Intel® C++ Compiler User's Guide

Configuration Files

You can decrease the time you spend entering command-line options and ensure consistency by using
the configuration file to automate often-used command-line entries. You can insert any valid
command-line option into the configuration file. The compiler processes options in the configuration file
in the order they appear followed by the command-line options that you specify when you invoke the
compiler.

E/J Note

Options in the configuration file will be executed every time you run the compiler. If you have varying
option requirements for different projects, see Response Files.

How to Use Configuration Files

The following example illustrates a basic configuration file. After you have written the . cf g file, simply
ensure it is in the same directory as the compiler's executable file when you run the compiler. The text
following the pound (#) character is recognized as a comment. For IA-32 compilations, the
configuration file is i cc. cf g. For compilations targeted for ltanium®-based systems, the configuration
file is ecc. cf g.

Sanpl e configuration file.

Deflne preprocessor macro MY _PRQIECT.

- DMY_PRQIECT

Additional directories to be searched
for INCLUDE files, before the default.
-1 /project/include

Page 44 of 431

Intel® C++ Compiler User's Guide

Response Files

Use response files to specify options used during particular compilations, and to save this information
in individual files. Response files are invoked as an option in the command line. Options in a response
file are inserted in the command line at the point where the response file is invoked.

Response files are used to decrease the time spent entering command-line options, and to ensure
consistency by automating command-line entries. Use individual response files to maintain options for
specific projects to avoid editing the configuration file when changing projects.

Any number of options or file names can be placed on a line in the response file. Several response
files can be referenced in the same command line. Use the pound character(#) to treat the rest of the
line as a comment.

The syntax for using response files is as follows:

e |A-32 Systems: pronpt >i cc @esponse_file fil enanes
e |tanium®-based Systems: pronpt >ecc @ esponse_file fil enanmes

f) Note

An "at" sign (@ must precede the name of the response file on the command line.

Include Files

Include directories are searched in the default system areas and whatever is specified by the -
| di rect ory option. For multiple search directories, multiple - 1 di r ect ory commands must be
used. The compiler searches directories for include files in the following order:

e Directory of the source file that contains the include
e Directories specified by the - | option

How to Remove Include Directories

Use the - X option to prevent the compiler from searching the default system areas. You can use the -
X option with the - | option to prevent the compiler from searching the default path for include files and
direct it to use an alternate path.

For example, to direct the compiler to search the path / al t /i ncl ude instead of the default path, do
the following:

e |A-32 Systems: pronpt >icc -X -I1/alt/include prog.c
e |tanium®-based Systems: pronpt >ecc -X -1/alt/include prog.c

Page 45 of 431

Intel® C++ Compiler User's Guide

Overview: Customizing Compilation Process

This section describes options that customize the compilation process:

Preprocessing
Compiling
Linking
Debugging

Page 46 of 431

Intel® C++ Compiler User's Guide

Specifying Alternate Tools and Paths

You can direct the compiler to specify alternate tools for preprocessing, compilation, assembly, and
linking. Further, you can invoke options specific to your alternate tools on the command line. The
following sections explain how to use - Q ocat i on and - Qopt i on to do this.

How to Specify an Alternate Component

Use - Q ocat i on to specify an alternate path for a tool. This option accepts two arguments using the
following syntax:

-Q ocation,tool, path

tool | Description

cpp | Specifies the compiler front-end preprocessor.

c Specifies the C++ compiler.

asm | Specifies the assembler.

Id Specifies the linker.

pat h is the complete path to the tool.
How to Pass Options to Other Programs

Use - Qopt i on to pass an option specified by opt | i st to at ool , where optli st isacomma-
separated list of options. The syntax for this command is the following:

-Qoption,tool,optlist

tool | Description

cpp | Specifies the compiler front-end preprocessor.

c Specifies the C++ compiler.

asm | Specifies the assembler.

[d Specifies the linker.

opt | i st Indicates one or more valid argument strings for the designated program. If the argument is
a command-line option, you must include the hyphen. If the argument contains a space or tab
character, you must enclose the entire argument in quotation characters (""). You must separate
multiple arguments with commas. The following example directs the linker to create a memory map
when the compiler produces the executable file from the source.

e |A-32 Systems: pronpt >i cc - Qoption,link,-map, proto. map proto.c
e lItanium®-based Systems: pronpt >ecc - Qoption, | i nk, - map, proto. map proto.c

Page 47 of 431

Intel® C++ Compiler User's Guide

The - Qopti on, | i nk option in the preceding example is passing the - map option to the linker. This is
an explicit way to pass arguments to other tools in the compilation process. Also, you can use the -
Xl'i nker val to pass values (val) to the linker.

Page 48 of 431

Intel® C++ Compiler User's Guide

Overview: Preprocessing

This section describes the options you can use to direct the operations of the preprocessor.
Preprocessing performs such tasks as macro substitution, conditional compilation, and file inclusion.

Preprocessor Options

Option Description

- Anane[(val ue)] | Associates a symbol name with the specified val ue. Equivalent to an
#assert preprocessing directive.

- A Causes all predefined macros and assertions to be inactive.

-C Preserves comments in preprocessed source output.

- Dnane[=t ext] Defines the macro nane and associates it with the specified t ext . The
default (- Dnane) defines a macro with where t ext = 1.

-E Directs the preprocessor to expand your source module and write the result to
st dout . Output includes #1 i ne directives.

-EP Directs the preprocessor to expand your source module and write the result to
standard output. The output does not include #l i ne directives.

-P Directs the preprocessor to expand your source module and store the result in
a . i file in the current directory. Output does not include #1 i ne directives.

- Unane Suppresses any automatic definition for the specified macro nare.

-X Remove standard directories from include file search path.

-H Outputs the full path names of all included files to st dout in order.
Indentation is used to designate the #i ncl ude dependencies.

-M Generate makefile dependency information.

-MD Preprocess and compile. Generate output file (. d extension) containing
dependency information.

-MFfile Generate makefile dependency information in f i | e. Must specify - Mor - MM

- MG Similar to - M but treats missing header files as generated files.

- MW Similar to - M but does not include system header files.

- MVD Similar to - MD, but does not include system header files.

- WX Generate dependency file (. 0. dep extension) containing information used for
the Intel wb tool.

-dM Output macro definitions in effect after preprocessing (use with - E).

- MD Preprocess and compile. Generate output file (. d extension) containing
dependency information.

-ldirectory Specifies an additional di r ect ory to search for include files.

Page 49 of 431

Intel® C++ Compiler User's Guide

Preprocessing Only

Use the - E, - P or - EP option to preprocess your source files without compiling them. When using
these options, only the preprocessing phase of compilation is activated.

Using -E

When you specify the - E option, the compiler's preprocessor expands your source module and writes

the result to st dout . The preprocessed source contains #| i ne directives, which the compiler uses to
determine the source file and line number. For example, to preprocess two source files and write them
to st dout , enter the following command:

e |A-32 Systems: pronpt >icc -E progl.c prog2.c
e Itanium®-based Systems: pronpt >ecc -E progl.c prog2.c

Using -P

When you specify the - P option, the preprocessor expands your source module and directs the output
toa.i file instead of st dout . Unlike the - E option, the output from - P does not include #1 i ne
number directives. By default, the preprocessor creates the name of the output file using the prefix of
the source file name with a . i extension. You can change this by using the - of i | e option. For
example, the following command creates two files named progl.i and prog2. i, which you can use
as input to another compilation:

e |A-32 Systems: pronpt >i cc -P progl.c prog2.c
e ltanium®-based Systems: pr onpt >ecc -P progl.c prog2.c

.& Caution

When you use the - P option, any existing files with the same name and extension are overwritten.
Using -EP

Using the - EP option directs the preprocessor to not include #1 i ne directives in the output. - EP is
equivalentto- E - P.

e |A-32 Systems: pronpt >i cc - EP progl.c prog2.c
e Itanium®-based Systems: pr onpt >ecc - EP progl.c prog2.c

Preserving Comments in Preprocessed Source Output

Use the - C option to preserve comments in your preprocessed source output. Comments following
preprocessing directives, however, are not preserved.

Page 50 of 431

Intel® C++ Compiler User's Guide

Preprocessing Directive Equivalents

You can use the - A, - D, and - U options as equivalents to preprocessing directives:

e - Ais equivalent to a #assert preprocessing directive
e - Dis equivalent to a #def i ne preprocessing directive
e - Uis equivalent to a #undef preprocessing directive

Using -A

Use the - A option to make an assertion. Syntax: - Anane[(val ue)] .

Argument | Description

name Indicates an identifier for the assertion

val ue Indicates a val ue for the assertion. If a val ue is specified, it should be quoted, along
with the parentheses delimiting it.

For example, to make an assertion for the identifier f r ui t with the associated values or ange and
banana use the following command:

e |A-32 Systems: pronpt >i cc - A'fruit(orange, banana)" progl.c
e Itanium®-based Systems: pronpt >ecc - A"fruit (orange, banana)" progl.c

Using -D

Use the - D option to define a macro. Syntax: - Dnane[=val ue] .

Argument | Description

nane The name of the macro to define.

val ue Indicates a value to be substituted for name. If you do not enter a value, name is set to
1. The value should be quoted if it contains non-alphanumerics.

For example, to define a macro called SI ZE with the value 100 use the following command:

e |A-32 Systems: pronpt >i cc - DSI ZE=100 progl.c
e Itanium®-based Systems: pr onpt >ecc - DSI ZE=100 progl.c

The - D option can also be used to define functions. For example, i cc - D'f (x)=x" progl.c.

Page 51 of 431

Intel® C++ Compiler User's Guide

Using -U

Use the - U option to remove (undefine) a pre-defined macro. Syntax: - Unane.

Argument | Description

nane The name of the macro to undefine.

f/’ Note

If you use - Dand - U in the same compilation, the compiler processes the - D option before - U, rather
than processing them in the order they appear on the command line.

Page 52 of 431

Intel® C++ Compiler User's Guide

Predefined Macros

Intel-specific predefined macros are described in the table below. The Default column indicates
whether the macro is enabled (ON) or disabled (OFF) by default. The Architecture column indicates
which Intel architecture supports the predefined macro. Predefined macros specified by the ISO/ANSI
standard are not listed in the table. For a list of all macro definitions in effect, use the - E - dMoptions.

For example:

e |A-32 Systems: pronpt >i cc -E -dM progl.c

e Itanium®-based Systems: pr onpt >ecc -E -dM progl.c

Predefined Macros

Page 53 of 431

Macro Name Default Architecture | Description / When Used
__ECC=n n=700 Itanium Enables the Intel® C++
architecture | Compiler. Assigned value
only refers to version of the
compiler (e.g., 700 is 7.00).
Supported for legacy
reasons. Use
__I NTEL_COWPI LER
instead.
__EDG _ ON Both Defined to have the value 1.
__ELF ON Both
__GXX_ABI _VERSI ON=100 Both
__ 1386 ON IA-32
1386 ON IA-32
i 386 ON IA-32
__iab4 ON Itanium
architecture
only
__ia64__ ON Itanium
architecture
only
i a64 ON Itanium
architecture
only
__ICC=n ON IA-32 only Enables the Intel C++
n=700 Compiler. Assigned value

refers to version of the
compiler (e.g., 700 is 7.00).
Supported for legacy
reasons. Use

I NTEL_COWPI LER
instead.

Intel® C++ Compiler User's Guide

I NTEL_COWPI LER=n ON Both Defines the compiler
n=700 version. Defined as 700 for
the Intel C++ Compiler 7.1.
_I NTEGRAL_MAX BI TS=n | n=64 [tanium Indicates support for the
architecture | __i nt 64 type.
only
__linux ON Both
__linux__ ON Both
['i nux ON Both
__LONG_MAX=n n=9223372036854775807L | ltanium
architecture
only
__LP64 ON [tanium
architecture
only
| p64 ON [tanium
architecture
only
__LP64__ ON [tanium
architecture
only
_M 1 A64=n n=64100 [tanium Indicates the value for the
architecture | preprocessor identifier to
only reflect the Itanium®
architecture.
__OPTIM ZE__ ON Both Not enabled if all
optimizations are turned off.
_PGO_INSTRUMENT OFF Both Defined when compile with
either - pr of _gen or -
prof _genx.
__PTRDI FF_TYPE__ ON Both For 1A-32,
__PTRDI FF_TYPE__ =int
For Itanium architecture,
__PTRDI FF_TYPE__ =long
__SIZE_TYPE__ ON Both For IA-32,
__SIZE_TYPE__ =unsignec
For Itanium architecture,
__SIZE_TYPE__ =unsignec
long
_unix ON Both
_unix__ ON Both
uni x ON Both
__USER LABEL_PREFI X__ | ON Both

Page 54 of 431

Intel® C++ Compiler User's Guide

Suppress Macro Definition

Use the - Unane option to suppress any macro definition currently in effect for the specified nare. The
- U option performs the same function as an #undef preprocessor directive.

Page 55 of 431

Intel® C++ Compiler User's Guide

Overview: Compilation

This section describes the Intel® C++ Compiler options that determine the compilation process and
output. By default, the compiler converts source code directly to an executable file. Appropriate options
allow you to control the process by directing the compiler to produce:

Preprocessed files (. i) with the - P option.
Assemblable files (. s) with the - S option.
Object files (. 0) with the - ¢ option.
Executable files (. out) by default.

You can also name the output file or designate a set of options that are passed to the linker. If you
specify a phase-limiting option, the compiler produces a separate output file representing the output of
the last phase that completes for each primary input file.

Controlling Compilation

If no errors occur during processing, you can use the output files from a particular phase as input to a
subsequent compiler invocation. The table below describes the options to control the output:

Last Phase Option Compiler Input Compiler Output
Completed

Preprocessing -E -P,or e Source files Preprocessed files (. i files)
-EP

Compile only -C e Source files Compile to object only (. 0), do not link.
e Preprocessed
files

-S e Source files Generate assemblable files with . s suffix
e Preprocessed and stops the compilation process.
files

Syntax checking -synt ax e Source files Diagnostic list
e Preprocessed
files

Linking (Default) e Source files Executable file (. out files)

e Preprocessed
files

e Assemblable
files

e Object files

e Libraries

Page 56 of 431

Intel® C++ Compiler User's Guide

Monitoring Data Settings

The options described below provide monitoring of Intel compiler-generated code.

Specifying Structure Tag Alignments
You can specify an alignment constraint for structures and unions in two ways:

e Place a pack pragma in your source file, or
e Enter the alignment option on the command line

Both specifications change structure tag alignment constraints.

Use the - Zp option to determine the alignment constraint for structure declarations. Generally, smaller
constraints result in smaller data sections while larger constraints support faster execution.

The form of the - Zp option is - Zpn.

The alignment constraint is indicated by one of the following values:

n=1 |1 byte.
n=2 | 2 bytes.
n=4 | 4 bytes.
n=8 | 8 bytes
n=16 | 16 bytes.

For example, to specify 2 bytes as the alignment constraint for all structures and unions in the file
pr og. c, use the following command:

e |A-32 Systems: pronpt >i cc -Zp2 prog.c
e [tanium®-based Systems: pr onpt >ecc -Zp2 prog.c

f) Note

Changing the alignment may cause problems if you are using system libraries compiled with the
default alignment.

Flushing Denormal Values to Zero for Itanium-based Systems Only

Option - f t z flushes denormal results to zero when the application is in the gradual underflow mode.
Use this option if the denormal values are not critical to application behavior. Flushing the denormal
values to zero with - f t z may improve performance of your application. The default status of -ftz is
OFF. By default, the compiler lets results gradually underflow.

The - f t z switch only needs to be used on the source containing function nmai n() . The effect of the -
ft z switch is to turn on FTZ mode for the process started by nai n() . The initial thread and any
threads subsequently created by that process will operate in FTZ mode.

Page 57 of 431

Intel® C++ Compiler User's Guide

f) Note

The - 3 option turns - ft z ON. Use - f t z- to disable flushing denormal results to zero.

Allocation of Zero-initialized Variables

By default, variables explicitly initialized with zeros are placed in the BSS section. But using the -
nobss_i nit option, you can place any variables that are explicitly initialized with zeros in the DATA
section if required.

Avoiding Incorrect Decoding of Certain Instructions (IA-32 Only)

Some instructions have 2-byte opcodes in which the first byte contains Of . In rare cases, the
Pentium® processor can decode these instructions incorrectly. Specify the - Of _check option to avoid
the incorrect decoding of these instructions.

Page 58 of 431

Intel® C++ Compiler User's Guide

Linking

This topic describes the options that let you control and customize the linking with tools and libraries
and define the output of the | d linker. See the | d man page for more information on the linker.

Option

Description

-Ldirectory

Instruct the linker to search di r ect or y for libraries.

-Qoption,tool,list

Passes an argument list to another program in the compilation sequence,
such as the assembler or linker.

-shar ed

Instructs the compiler to build a Dynamic Shared Object (DSO) instead of
an executable.

-shared-1i bcxa

-shar ed- | i bcxa has the opposite effect of - st ati c-1i bcxa. When
it is used, the Intel-provided | i bcxa C++ library is linked in dynamically,
allowing the user to override the static linking behavior when the -

stati c option is used.

-i _dynam c

Specifies that all Intel-provided libraries should be linked dynamically.

-static

Causes the executable to link all libraries statically, as opposed to
dynamically.

-static-1ibcxa

By default, the Intel-provided | i bcxa C++ library is linked in dynamically.
Use -static-1ibcxa onthe command line to link | i bcxa statically,
while still allowing the standard libraries to be linked in by the default
behavior.

-Bstatic

This option is placed in the linker command line corresponding to its
location on the user command line. This option is used to control the
linking behavior of any library being passed in via the command line.

When - Bst at i ¢ is not used:

e /lib/ld-1inux.so.2islinkedin
e libmlibcxa,andlibc are linked dynamically
e all other libs are linked statically

When - Bst ati ¢ is used:

e /lib/ld-linux.so.2isnotlinked in
e all other libs are linked statically

- Bdynami c

This option is placed in the linker command line corresponding to its
location on the user command line. This option is used to control the
linking behavior of any library being passed in via the command line.

Page 59 of 431

Intel® C++ Compiler User's Guide

Suppressing Linking

Use the - ¢ option to suppress linking. For example, entering the following command produces the
objectfilesfilel.oandfil e2. o:

<conpiler> -c filel.c file2.c

f) Note

The preceding command does not link these files to produce an executable file.

Page 60 of 431

Intel® C++ Compiler User's Guide

Overview: Debugging Options

Use the - g option to produce debug information. When you specify - g, the compiler disables
optimizations by invoking - Q0. Specifying the - g or - Q0 option automatically enables the - f p option
(IA-32 only). The - f p option disables using the EBP register as general purpose register.

If you specify - g with - OL, - O2, or - 33, then - f p is disabled and allows the compiler to use the EBP
register as a general purpose register in optimizations. However, most debuggers expect EBP to be
used as a stack frame pointer, and cannot produce a stack backtrace unless this is so. Using the - f p
option can result in slightly less efficient code.

Option(s) Result

-g Debugging information produced, - Q0 enabled, - f p enabled for 1A-32-targeted
compilations.
-g -a1 Debugging information produced, - OL optimizations enabled, - f p disabled for 1A-

32-targeted compilations.

-g - Debugging information produced, - Q2 optimizations enabled, - f p disabled for 1A-
32-targeted compilations.

-g -3 Debugging information produced, - 3 optimizations enabled, - f p disabled for 1A-
32-targeted compilations.

-g - @B -fp | Debugging information produced, - O3 optimizations enabled, - f p enabled for IA-32-
targeted compilations.

-ip Symbols and line numbers produced for debugging.

-i po Symbols and line numbers produced for debugging.

Page 61 of 431

Intel® C++ Compiler User's Guide

Preparing for Debugging
Use the - g option to direct the compiler to generate code to support symbolic debugging. For example:

e |A-32 Systems: pronpt>icc -g prog.c
e Itanium®-based Systems: pronpt >ecc -g prog.c

The compiler does not support the generation of debugging information in assemblable files. If you
specify the - g option, the resulting object file will contain debugging information, but the assemblable
file will not.

Support for Symbolic Debugging

The compiler lets you generate code to support symbolic debugging while the - OL, - @2, or - O3
optimization options are specified on the command line along with - g. However, you can receive these
unexpected results:

e If you specify the - O1, - @2, or - O3 options with the - g option, some of the debugging
information returned may be inaccurate as a side-effect of optimization.
e If you specify the - O1, - @2, or - O3 options, the - f p option (IA-32 only) will be disabled.

Parsing for Syntax and Semantics Only

Use the - synt ax option to stop processing source files after they have been parsed for C++ language
errors. This option provides a method to quickly check whether sources are syntactically and
semantically correct. The compiler creates no output file. In the following example, the compiler checks
pr og. c. and displays diagnostic information to the standard error output:

e |A-32 Systems: pronpt >i cc -syntax prog.c
e Itanium®-based Systems: pronpt >ecc -syntax prog.c

Page 62 of 431

Intel® C++ Compiler User's Guide

Conformance to the C Standard

You can set the Intel® C++ Compiler to accept either

e strict ANSI conformance dialect using the - Xc or - ansi option, or
e extended ANSI C dialect using the - Xa option

The compiler is set by default to accept extensions and not be limited to the ANSI/ISO standard.

Understanding the ANSI/ISO Standard C Dialect

The Intel C++ Compiler provides conformance to the ANSI/ISO standard for C language compilation
(ISO/IEC 9899:1990). This standard requires that conforming C compilers accept minimum translation
limits. This compiler exceeds all of the ANSI/ISO requirements for minimum translation limits.

Macros Included with the Compiler

The ANSI/ISO standard for C language requires that certain predefined macros be supplied with
conforming compilers. The following table lists the macros that the Intel C++ Compiler supplies in
accordance with this standard:

The compiler provides predefined macros in addition to the predefined macros required by the
standard.

Macro Description

__cplusplus | The name __cpl uspl us is defined when compiling a C++ translation unit.
_ DATE__ The date of compilation as a string literal in the form Mrm dd yyyy.
__FILE__ A string literal representing the name of the file being compiled.

__LINE__ The current line number as a decimal constant.

__STDC The name __STDC__ is defined when compiling a C translation unit.
__TIME__ The time of compilation. As a string literal in the form hh: nm ss.

Page 63 of 431

Intel® C++ Compiler User's Guide

C99 Support

The following C99 features are supported in this version of the Intel C++ Compiler when using the -
c99[-] option:

Restricted pointers (restri ct keyword, available with-restri ct). See Note below.
Variable-length Arrays

Flexible array members

Complex number support (_Conpl ex keyword)
Hexadecimal floating-point constants
Compound literals

Designated initializers

Mixed declarations and code

Macros with a variable number of arguments
Inline functions (i nl i ne keyword)

Boolean type (_Bool keyword)

f) Note

The -restri ct option enables the recognition of the restri ct keyword as defined by the ANSI
standard. By qualifying a pointer with ther est ri ct keyword, the user asserts that an object
accessed via the pointer is only accessed via that pointer in the given scope. It is the user’s
responsibility to use the r est ri ct keyword only when this assertion is true. In these cases, the use
of restri ct will have no effect on program correctness, but may allow better optimization.

These features are not supported:

#pragma STDC FP_CONTRACT
#pragma STDC FENV_ACCESS
#pragma STDC CX_LI M TED_RANGE
| ong doubl e (128-bit representations)

Conformance to the C++ Standard

The Intel® C++ Compiler conforms to the ANSI/ISO standard (ISO/IEC 14882:1998) for the C++
language, however, the export keyword for templates is not implemented.

Page 64 of 431

Intel® C++ Compiler User's Guide

Overview: Optimization Levels

The table below shows the optimizations that the Intel® C++ Compiler applies when you invoke the -
Q1, - @2, or - O3 options.

Optimization

Constant propagation

Copy propagation

Dead-code elimination

Global register allocation

Instruction scheduling

Loop unrolling (- G2, - G3 only)

Loop-invariant code movement

Partial redundancy elimination

Strength reduction/induction
variable simplification

Variable renaming

Exception handling optimizations

Tail recursions

Peephole optimizations

Structure assignment lowering and optimizations

Dead store elimination

Page 65 of 431

Intel® C++ Compiler User's Guide

Setting Optimization Levels

Depending on the Intel architecture, optimization can have different effects. To specify optimizations
for your target architecture, refer to the tables below.

Itanium® Compiler

Option | Effect

-1 Optimizes for code size by turning off software pipelining. Enables the same optimizations
as - Oexcept for loop unrolling and software pipelining. - Oand - Q2 turn on software
pipelining. Generally, - Oor - O2 are recommended over - OL.

IA-32 Compiler

Option | Effect

-0 Optimize for speed. Disable option - f p. The - O2 option is ON by default. Intrinsic

- Q1, recognition is disabled.

-2

-3 Enables - Q2 option with more aggressive optimization. Optimizes for maximum speed, but

does not guarantee higher performance unless loop and memory access transformation
take place. In conjunction with - axK and - xK options (IA-32 only), this option causes the
compiler to perform more aggressive data dependency analysis than for - Q2. This may
result in longer compilation times.

Page 66 of 431

Intel® C++ Compiler User's Guide

IA-32 and Itanium Compilers

Option

Effect

-2

ON by default. - G2 turns ON intrinsics inlining. Enables the following capabilities for
performance gain:

Constant propagation

Copy propagation

Dead-code elimination

Global register allocation

Global instruction scheduling and control speculation
Loop unrolling

Optimized code selection

Partial redundancy elimination

Strength reduction/induction variable simplification
Variable renaming

Exception handling optimizations

Tail recursions

Peephole optimizations

Structure assignment lowering and optimizations
Dead store elimination

Enables - Q2 option with more aggressive optimization, for example, prefetching, scalar
replacement, and loop transformations. Optimizes for maximum speed, but does not
guarantee higher performance unless loop and memory access transformation take place.
To time your application, see Timing Your Application.

Page 67 of 431

Intel® C++ Compiler User's Guide

Restricting Optimizations

The following options restrict or preclude the compiler's ability to optimize your program:

Option Description

-0 Disables all optimizations.

-mpl Improve floating-point precision. Speed impact is less than with
- rrp'

-fp Disable using the EBP register as a general purpose register.

1A-32 only

-prec_div Disables the floating point division-to-multiplication optimization.

1A-32 only

-fp_port Round fp results at assignments and casts (some speed

1A-32 only impact).

-ftz[-] Enable [disable] flush denormal results to zero. The - f t z option

Itanium-based
systems only

is OFF by default, but turned ON with - G3.

-1 PF_fma[-]
Itanium-based
systems only

Enable [disable] the combining of floating point multiplies and
add/subtract operations.

-1 PF_fltacc[-]

Itanium-based
systems only

Enable [disable] optimizations that affect floating point accuracy.

-IPF_flt_eval nmethodO

Itanium-based
systems only

Floating-point operands evaluated to the precision indicated by
program.

-1 PF_f p_specul ati on<node>

Itanium-based
systems only

Enable floating point speculations with the following <node>
conditions:

f ast - speculate floating point operations

saf e - speculate only when safe

strict - same as off

of f - disables speculation of floating-point operations

Page 68 of 431

Intel® C++ Compiler User's Guide

E/] Note

You can turn off all optimizations for specific functions by using #pr agnma opti m ze. In the following
example, all optimization is turned off for function f oo() :

#pragma optinm ze("", off)
foo()({

Valid second arguments for #pr agma opti m ze are "on" or "of f ." With the "on" argument, f oo()
is compiled with the same optimization as the rest of the program. The compiler ignores first argument
values.

Page 69 of 431

Intel® C++ Compiler User's Guide

Floating-point Arithmetic Precision

Options for 1A-32 and Itanium®-based Systems
-mp Option

The - np option restricts optimization to maintain declared precision and to ensure that floating-point
arithmetic conforms more closely to the ANSI and IEEE standards. For most programs, specifying this
option adversely affects performance. If you are not sure whether your application needs this option,
try compiling and running your program both with and without it to evaluate the effects on both
performance and precision. Specifying the - np option has the following effects on program
compilation:

e User variables declared as floating-point types are not assigned to registers.

e Whenever an expression is spilled (moved from a register to memory), it is spilled as 80 bits
(extended precision), not 64 bits (double precision).

e Floating-point arithmetic comparisons conform to the IEEE 754 specification except for NaN
behavior.

e The exact operations specified in the code are performed. For example, division is never
changed to multiplication by the reciprocal.

e The compiler performs floating-point operations in the order specified without reassociation.

e The compiler does not perform the constant-folding optimization on floating-point values.
Constant folding also eliminates any multiplication by 1, division by 1, and addition or subtraction
of 0. For example, code that adds 0.0 to a number is executed exactly as written. Compile-time
floating-point arithmetic is not performed to ensure that floating-point exceptions are also
maintained.

e Floating-point operations conform to ANSI C. When assignments to type f | oat and doubl e
are made, the precision is rounded from 80 bits (extended) down to 32 bits (float) or 64 bits
(double). When you do not specify - np, the extra bits of precision are not always rounded
before the variable is reused.

e Setsthe - noli b_i nl i ne option, which disables inline functions expansion.

Note: The - nol i b_i nl i ne and - np options are active by default when you choose the - Xc (strict
ANSI C conformance) option.

-mpl Option

Use the - np1 option to improve floating-point precision. - np1 disables fewer optimizations and has
less impact on performance than - np.

Options for 1A-32 Only

.& Caution

A change of the default precision control or rounding mode (for example, by using the - pc32 flag or by
user intervention) may affect the results returned by some of the mathematical functions.

Page 70 of 431

Intel® C++ Compiler User's Guide

-long_double Option

Use - | ong_doubl e to change the size of the long double type to 80 bits. The Intel compiler's default
| ong doubl e type is 64 bits in size, the same as the doubl e type. This option introduces a number
of incompatibilities with other files compiled without this option and with calls to library routines.
Therefore, Intel recommends that the use of | ong doubl e variables be local to a single file when you
compile with this option.

-prec_div Option

With some optimizations, such as - xK and - xW the Intel® C++ Compiler changes floating-point
division computations into multiplication by the reciprocal of the denominator. For example, A/B is
computed as A x (1/B) to improve the speed of the computation. However, for values of B greater than
2126 the value of 1/B is "flushed" (changed) to 0. When it is important to maintain the value of 1/B, use
- pr ec_di v to disable the floating-point division-to-multiplication optimization. The result of -

pr ec_di v is greater accuracy with some loss of performance.

-pcn Option

Use the - pcn option to enable floating-point significand precision control. Some floating-point
algorithms are sensitive to the accuracy of the significand or fractional part of the floating-point value.
For example, iterative operations like division and finding the square root can run faster if you lower the
precision with the - pcn option. Set n to one of the following values to round the significand to the
indicated number of bits:

e -pc32: 24 bits (single precision) -- See Caution statement above.
e - pc64: 53 hits (single precision)
e -pc80: 64 hits (single precision) -- Default

The default value for n is 80, indicating double precision. This option allows full optimization. Using this
option does not have the negative performance impact of using the - Op option because only the
fractional part of the floating-point value is affected. The range of the exponent is not affected. The -
pcn option causes the compiler to change the floating point precision control when the nmai n()
function is compiled. The program that uses - pch must use rai n() as its entry point, and the file
containing mai n() must be compiled with - pcn.

-rcd Option

The Intel compiler uses the - r cd option to improve the performance of code that requires floating-
point-to-integer conversions. The optimization is obtained by controlling the change of the rounding
mode. The system default floating point rounding mode is round-to-nearest. This means that values
are rounded during floating point calculations. However, the C language requires floating point values
to be truncated when a conversion to an integer is involved. To do this, the compiler must change the
rounding mode to truncation before each floating-point-to-integer conversion and change it back
afterwards. The - r cd option disables the change to truncation of the rounding mode for all floating
point calculations, including floating point-to-integer conversions. Turning on this option can improve
performance, but floating point conversions to integer will not conform to C semantics.

-fp_port Option

The - f p_port option rounds floating-point results at assignments and casts. An impact on speed
may result.

Page 71 of 431

Intel® C++ Compiler User's Guide

Floating-point Arithmetic Options for Itanium(R)-
based Systems

The following options enable you to control the compiler optimizations for floating-point computations
on ltanium®-based systems:

-ftz[-]

-1 PF_frma[-]

-1 PF_fp_specul ati onnode
-IPF_flt_eval et hodO

-1 PF_fltacc[-] (Default:-1 PF_fltacc-)

Flush Denormal Results to Zero

Use the - f t z option to flush denormal results to zero.

Contraction of FP Multiply and Add/Subtract Operations

-1 PF_frma[-] enables [disables] the contraction of floating-point multiply and add/subtract operations
into a single operation. Unless - np is specified, the compiler contracts these operations whenever
possible. The - mp option disables the contractions. - | PF_f ma and - | PF_f na- can be used to
override the default compiler behavior. For example, a combination of - mp and - | PF_f na enables the
compiler to contract operations:

prompt >ecc -nmp -1 PF_fma prog.c

FP Speculation

-1 PF_f p_specul at i onnode sets the compiler to speculate on floating-point operations in one of the
following modes:

f ast : sets the compiler to speculate on floating-point operations

saf e: enables the compiler to speculate on floating-point operations only when it is safe
stri ct: disables the speculation of floating-point operations.

of f : disables the speculation on floating-point operations.

FP Operations Evaluation

-1 PF_flt_eval net hodO directs the compiler to evaluate the expressions involving floating-point
operands in the precision indicated by the variable types declared in the program.

Controlling Accuracy of the FP Results

-1 PF_fltacc[-] enables [disables] optimizations that affect floating-point accuracy. By default (-

| PF_fltacc-)the compiler may apply optimizations that reduce floating-point accuracy. You may use
-1 PF_fltacc or - np to improve floating-point accuracy, but at the cost of disabling some
optimizations.

Page 72 of 431

Intel® C++ Compiler User's Guide

Processor Optimization

Processor Optimization for IA-32 only

The -t pp{ 5| 6] 7} options optimize your application's performance for a specific Intel processor. The
resulting binary will also run on the other processors listed in the table below. The Intel® C++ Compiler
includes gcc*-compatible versions of the - t pp options. These options are listed in the gcc* Version
column.

Option | gcc* Version Optimizes for

-t pp5 |- ncpu=pentium Intel® Pentium® processors

-t pp6 |- ncpu=penti unmpro | Intel Pentium Pro, Intel Pentium II, and Intel Pentium Il processors

-tpp7 |- ncpu=penti und Intel Pentium 4 processors

E/J Note

The -t pp7 option is ON by default when you invokei cc ori cpc.

Example

The invocations listed below all result in a compiled binary optimized for Pentium 4 and Intel® Xeon(TM)
processors. The same binary will also run on Pentium, Pentium Pro, Pentium II, and Pentium Ill
processors.

pronpt >i cc prog.c

pronpt >i cc -tpp7 prog.c

pronpt >i cc -ncpu=pentiumd prog.c

Processor Optimization (ltanium®-based Systems only)

The -t pp{ 1| 2} options optimize your application's performance for a specific Intel® Itanium®
processor. The resulting binary will also run on the processors listed in the table below. The Intel® C++
Compiler includes gcc*-compatible versions of the -t pp options. These options are listed in the gcc*
Version column.

Option | gcc* Version Optimizes for

-tppl |-ncpu=itani um | |tanium® processors

-tpp2 | -ncpu=itani un? | tanium® 2 processors

Page 73 of 431

Intel® C++ Compiler User's Guide

f) Note

The -t pp2 option is ON by default when you invoke ecc or ecpc.
Example

The invocations listed below all result in a compiled binary optimized for the Intel Iltanium 2 processor.
The same binary will also run on Intel Itanium processors.

pronpt >ecc prog.c
pronmpt >ecc -tpp2 prog.c

pronpt >ecc -ntpu=itani un2 prog.c

Page 74 of 431

Intel® C++ Compiler User's Guide

Processor-specific Optimization (IA-32 only)

The -x{M i | K| W options target your program to run on a specific IA-32 processor by specifying the
minimum set of processor instructions required for the processor that executes your program. The
resulting code can contain unconditional use of the specified processor instructions. The Intel® C++
Compiler includes gcc*-compatible versions of the - x{i | M K| W options. These options are listed in
the "gcc Version" column.

Option | gcc* Version Specific Optimization for...

-xM -mar ch=penti umi i Intel® Pentium® processors with MMX(TM) technology

- Xi - mar ch=pent i unpr o | Intel Pentium Pro and Intel Pentium 1l processors

- xK -march=pentiuniii |Intel Pentium Il processors

- xW - mar ch=pent i umt Intel Pentium 4 processors, Intel® Xeon(TM) processors, and
Intel® Pentium® M processors

To execute the program on x86 processors not provided by Intel Corporation, do not specify the - x

{Mi| K| W option.
Example

The invocation below compiles pr og. ¢ for processors that support the K set of instructions. The
optimized binary will require a Pentium Ill, Pentium 4, Intel Xeon processor, or Intel Pentium M
processor to execute correctly. The resulting binary may not execute correctly on a Pentium, Pentium
Pro, Pentium II, Pentium with MMX technology processors, or on x86 processors not provided by Intel
Corporation.

prompt >icc -xK prog.c

.& Caution

If a program compiled with - x{ M i | K| W is executed on a processor that lacks the specified set of
instructions, it can fail with an illegal instruction exception, or display other unexpected behavior.

Page 75 of 431

Intel® C++ Compiler User's Guide

Auto CPU Dispatch (IA-32 only)

The -ax{M i | K| W options direct the compiler to find opportunities to generate separate versions of
functions that use instructions supported on the specified processors (see table below). If the compiler
finds such an opportunity, it first checks whether generating a processor-specific version of a function
results in a performance gain. If this is the case, the compiler generates both a processor-specific
version of a function and a generic version of the function. The generic version will run on any 1A-32
processor.

At run time, one of the two versions is chosen to execute, depending on the processor the program is
currently running on. In this way, the program can benefit from performance gains on more advanced
processors, while still working properly on older processors.

The disadvantages of using - ax{ M i | K| W are:

e The size of the compiled binary increases because it contains both a processor-specific version
and a generic version of the code.
e Performance is affected by the run-time checks to determine which code to run.

f/’ Note

Programs that you compile with this option will execute on any IA-32 processor. Such compilations are,
however, subject to any exclusive specialized code restrictions you impose during compilation with the
- X option.

Option | Optimizes for...

-axM | Intel® Pentium® processors with MMX(TM) technology

- axi Intel Pentium Pro and Intel Pentium Il processors

-axK | Intel Pentium 1l processors. Implies i and Minstructions.

-axW | Intel Pentium 4 processors, Intel® Xeon(TM) processors, and Intel® Pentium® M
processors. Implies M i , and K instructions.

Example
The compilation below will generate a single executable that includes:

e A generic version for use on any x86-compatible processor.

e A version optimized for Intel Pentium 1lI, as long as there is a performance benefit.

e A version optimized for Intel Pentium 4 processors, Intel Xeon processors, and Intel Pentium M
processors, as long as there is a performance benefit.

pronpt >i cc -axKW prog.c

Page 76 of 431

Intel® C++ Compiler User's Guide

Combining Processor Optimization and Auto CPU
Dispatch (IA-32 only)

The following table shows how to combine processor target and dispatch options to compile programs
with different optimizations and exclusions. See Processor Legend below table.

Optimize ...without excluding...

exclusively

for... A B C D E F

A -tppS | -tpps -tppS -tppS -tppS -tppS

B N-A -tpp5 -xM| -t pp5 -tpp5 -xM |-tpp5 -xM |-tpp5 -xM
C N-A N-A -tpp6 -xi |-tpp6 -xi -tpp6 -Xxi -t pp6 - Xi
D N-A N-A N-A -tpp6 -xi M|-tpp6 -xi M|-tpp6 -xi M
E N-A N-A N-A N-A -tpp6 -xK |-tpp6 -xK
F N-A N-A N-A N-A N-A -tpp7 -xW

Processor Legend

A - Intel® Pentium® processors

B - Intel Pentium processors with MMX(TM) technology

C - Intel Pentium Pro processors

D - Intel Pentium Il processors

E - Intel Pentium Il processors

F - Intel Pentium 4 processors, Intel® Xeon(TM) processors, and Intel® Pentium® M processors

Example
If you wanted your program to

e Always require the MMX(TM) technology extensions
e Use Pentium Pro processor extensions when the processor it is run on offers it
e Not use them when it does not

use the following command line options:
prompt >i cc -xM -axi prog.c

In this example, - xMrestricts the application to running on Pentium processors with MMX(TM)
technology or later processors. If you wanted the program to run on earlier generations of 1A-32
processors as well, you would use the following command line:

pronpt >i cc -axi M prog.c

This compilation generates optimized code for processors that support both the i and Mextensions,
but the compiled program will run on any IA-32 processor.

Page 77 of 431

Intel® C++ Compiler User's Guide

Interprocedural Optimizations

Use - i p and - i po to enable interprocedural optimizations (IPO), which allow the compiler to analyze
your code to determine where to apply the optimizations listed in tables that follow.

IA-32 and Itanium®-based Applications

Optimization Affected Aspect of Program

Inline function expansion Calls, jumps, branches, and loops

Interprocedural constant propagation Arguments, global variables, and return values

Monitoring module-level static variables | Further optimizations, loop invariant code

Dead code elimination Code size

Propagation of function characteristics | Call deletion and call movement

Multifile optimization Affects the same aspects as - i p, but across multiple files

IA-32 applications only

Optimization Affected Aspect of Program

Passing arguments in registers | Calls, register usage

Loop-invariant code motion Further optimizations, loop invariant code

Inline function expansion is one of the main optimizations performed by the interprocedural optimizer.
For function calls that the compiler believes are frequently executed, the compiler might decide to
replace the instructions of the call with code for the function itself (inline the call).

With - i p, the compiler performs inline function expansion for calls to functions defined within the
current source file. However, when you use - i po to specify multifile IPO, the compiler performs inline
function expansion for calls to functions defined in separate files. For this reason, it is important to
compile the entire application or multiple, related source files together when you specify - i po.

The IPO optimizations are disabled by default.

Page 78 of 431

Intel® C++ Compiler User's Guide

Overview: Multifile IPO

Multifile IPO obtains potential optimization information from individual program modules of a multifile
program. Using the information, the compiler performs optimizations across modules.

Building a program is divided into two phases -- compilation and linkage. Multifile IPO performs
different work depending on whether the compilation, linkage, or both are performed.

Compilation Phase

As each source file is compiled, multifile IPO stores an intermediate representation (IR) of the source
code in the object file, which includes summary information used for optimization.

By default, the compiler produces "mock" object files during the compilation phase of multifile IPO.
Generating mock files instead of real object files reduces the time spent in the multifile IPO compilation
phase. Each mock object file contains the IR for its corresponding source file, but no real code or data.
These mock objects must be linked using the -i po option and i cc, or using the xi | d tool.

f) Note

Failure to link "mock" objects with i cc, - i po, or xi | d will result in linkage errors. There are situations
where mock object files cannot be used. See Compilation with Real Object Files for more information.

Linkage Phase

When you specify - i po, the compiler is invoked a final time before the linker. The compiler performs
multifile IPO across all object files that have an IR.

f) Note

The compiler does not support multifile IPO for static libraries (. a files). See Compilation with Real
Object Files for more information.

- i po enables the driver and compiler to attempt detecting a whole program automatically. If a whole
program is detected, the interprocedural constant propagation, stack frame alignment, data layout and
padding of common blocks optimizations perform more efficiently, while more dead functions get
deleted. This option is safe.

Page 79 of 431

Intel® C++ Compiler User's Guide

Compilation with Real Object Files

In certain situations you might need to generate real object files with - i po. To force the compiler to
produce real object files instead of "mock” ones with IPO, you must specify -i po_obj in addition to -

i po.
Use of - i po_obj is necessary under the following conditions:

e The objects produced by the compilation phase of - i po will be placed in a static library without
theuseof xildorxild -Iib. The compiler does not support multifile IPO for static libraries,
so all static libraries are passed to the linker. Linking with a static library that contains "mock"
object files will result in linkage errors because the objects do not contain real code or data.
Specifying - i po_obj causes the compiler to generate object files that can be used in static
libraries.

e Alternatively, if you create the static library usingxi | d orxi | d -1 i b, then the resulting static
library will work as a normal library.

e The objects produced by the compilation phase of - i po might be linked without the - i po
option and without the use of xi | d.

e You want to generate an assemblable file for each source file (using - S) while compiling with -
i po. If you use -i po with - S, but without - i po_obj , the compiler issues a warning and an
empty assemblable file is produced for each compiled source file.

Page 80 of 431

Intel® C++ Compiler User's Guide

Creating a Multifile IPO Executable

This topic describes how to create a multifile IPO executable for compilations targeted for I1A-32 and
Itanium®-based systems.

Procedure for I1A-32 Systems

If you separately compile and link your source modules with - i po:

1. Compile your modules with - i po as follows:
prompt>icc -ipo -c a.c b.c c.c

2. Use the - ¢ option to stop compilation after generating . o files. Each object file has the IR for
the corresponding source file. With preceding results, you can now optimize interprocedurally:
prompt>icc -ipo a.o0 b.o c.o

Multifile IPO is applied only to modules that have an IR, otherwise the object file passes to the link
stage. For efficiency, combine steps 1 and 2:

pronmpt>icc -ipo a.c b.c c.c

Procedure for Itanium®-based Systems

If you separately compile and link your source modules with - i po:

1. Compile your modules with - i po as follows:
pronpt>ecc -ipo -c a.c b.c c.c

2. Use - c to stop compilation after generating . o files. Each object file has the IR for the
corresponding source file. With preceding results, you can now optimize interprocedurally:
pronpt>ecc -ipo a.o b.o c.o

Multifile IPO is applied only to modules that have an IR, otherwise the object file passes to link stage.
For efficiency, combine steps 1 and 2:

pronpt >ecc -ipo a.c b.c c.c

See Using Profile-Guided Optimization: An Example for a description of how to use multifile IPO with
profile information for further optimization.

Page 81 of 431

Intel® C++ Compiler User's Guide

Creating a Multifile IPO Executable with xild

The Intel linker, xi | d, performs the following steps:

e Invokes the Intel compiler to perform multifile IPO if objects containing | R are found.
e Invokes the GNU linker, | d, to link the application.

The command-line syntax for xi | d is:
pronmpt >xi l d [<options>] <LINK commandli ne>
where:

e [<options>] (optional) may include any gcc linker options or options supported only by
xild.
e <LI NK _comandl i ne> is the linker command line containing a set of valid arguments to | d.

To place the multifile IPO executable in i po_fi | e, use the option - of i | enamne, for example:
prompt>xild oipo_file a.o b.o c.o

xi | d calls Intel compiler to perform IPO for objects containing IR and creates a new list of object(s) to
be linked. Then xi | d calls | d to link the object files that are specified in the new list and produce
i po_fil e executable specified by the - of i | ename option.

f) Note

The - i po option can reorder object files and linker arguments on the command line. Therefore, if your
program relies on a precise order of arguments on the command line, - i po can affect the behavior of
your program.

Usage Rules

You must use the Intel linker xi | d to link your application if:

e Your source files were compiled with multifile IPO enabled. Multifile IPO is enabled by specifying
the - i po command-line option
e You normally would invoke | d to link your application.

Page 82 of 431

Intel® C++ Compiler User's Guide

The xild Options

The additional options supported by xi | d may be used to examine the results of multifile IPO. These
options are described in the following table.

Option Description

-ipo_o[file.s] Produces assemblable files for the multifile IPO compilation. You may
specify an optional name for the listing file, or a directory (with the
backslash) in which to place the file. The default listing name is

i po_out.s.

-ipo_o[file.o0] Produces object file for the multifile IPO compilation. You may specify an
optional name for the object file, or a directory (with the backslash) in which
to place the file. The default object file name is i po_out . o.

-i po_f code-asm Add code bytes to assemblable files

-i po_f source-asm | Add high-level source code to assemblable files

-i po_fverbose- Enable and disable, respectively, inserting comments containing version
asm and options used in the assemblable file for xi | d

-i po_fnoverbose-

asm

Creating a Library from IPO Objects

Normally, libraries are created using a library manager such as ar . Given a list of objects, the library
manager will insert the objects into a named library to be used in subsequent link steps.

prompt >xi ar cru user.a a.o b.o
A library named user . a will be created containing a. o and b. o.

If, however, the objects have been created using - i po - ¢, then the objects will not contain a valid
object but only the intermediate representation (IR) for that object file. For example:

prompt>icc -ipo -c a.c b.c

will produce a. o and b. o that only contains IR to be used in a link time compilation. The library
manager will not allow these to be inserted in a library.

In this case you must use the Intel library driver xi | d - ar . This program will invoke the compiler on
the IR saved in the object file and generate a valid object that can be inserted in a library.

prompt>xild -lib cru user.a a.o b.o

See Creating a Multifile IPO Executable Using xi | d.

Page 83 of 431

Intel® C++ Compiler User's Guide

Analyzing the Effects of Multifile IPO

The -i po_c and -i po_S options are useful for analyzing the effects of multifile IPO, or when
experimenting with multifile IPO between modules that do not make up a complete program.

Use the - i po_c option to optimize across files and produce an object file. This option performs
optimizations as described for - i po, but stops prior to the final link stage, leaving an optimized object
file. The default name for this file is i po_out . o.

Use the - i po_S option to optimize across files and produce an assemblable file. This option performs
optimizations as described for - i po, but stops prior to the final link stage, leaving an optimized
assemblable file. The default name for this file is i po_out . s.

See Inline Expansion of Functions.

Page 84 of 431

Intel® C++ Compiler User's Guide

Using -ip or -ipo with -Qoption Specifiers

Use - Qopt i on with the applicable keywords to select particular inline expansions and loop
optimizations. The option must be entered with a - i p or - i po specification, as follows:

prompt>icc -ip -Qoption, tool

,opts

where t ool is C++ (c) and opt s are - Qopt i on specifiers (see below).

-option Specifiers

If you specify -i p or -i po without any - Qopt i on qualification, the compiler

Expands functions in line

Passes arguments in registers

Propagates constant arguments

Monitors module-level static variables.

You can refine interprocedural optimizations by using the following - Qopt i on specifiers. To have an
effect, the - Qopt i on option must be entered with either - i p or - i po also specified, as in this

example:

pronmpt>icc -ip -Qoption,c,ip_specifier

where i p_speci fi er is one of the specifiers described in the table below:

Specifer

Description

-ip_args_in_regs=0

Disables the passing of arguments in registers. By default,
external functions can pass arguments in registers when called
locally. Normally, only static functions can pass arguments in
registers, provided the address of the function is not taken and
the function does not use a variable number of arguments.

-ip_ninl _max_stats=n

Sets the valid max number of intermediate language
statements for a function that is expanded in line. The number
n is a positive integer. The number of intermediate language
statements usually exceeds the actual number of source
language statements. The default value for n is 230. The
compiler uses a larger limit for user inline functions.

-ip_ninl _mn_stats=n

Page 85 of 431

Sets the valid m n number of intermediate language
statements for a function that is expanded in line. The number
n is a positive integer. The default value for
ip_ninl_mn_stats is:

e IA-32 compiler:ip_ninl_mn_stats =7
e Itanium® compiler:i p_ninl _mn_stats =15

Intel® C++ Compiler User's Guide

-i p_ni nl _max_t ot al _st at s=n | Sets the maximum increase in size of a function, measured in
intermediate language statements, due to inlining. nis a
positive integer whose default value is 2000.

The following command activates procedural and interprocedural optimizations on sour ce. ¢ and sets
the maximum increase in the number of intermediate language statements to 5 for each function:

prompt>icc -ip -Qoption,c,-ip_ninl_max_stats=5 source.c

Page 86 of 431

Intel® C++ Compiler User's Guide

Controlling Inline Expansion of User Functions

The compiler enables you to control the amount of inline function expansion, with the options shown in
the following summary:

-i p_no_inlini ng | This option is only useful if - i p is also specified. In this case, -

i p_no_i nli ni ng disables inlining that would result from the - i p
interprocedural optimizations, but has no effect on other interprocedural
optimizations.

i p_no_pi nlining | Disables partial inlining; can be used if -i p or - i po is also specified.

Criteria for Inline Function Expansion

Once the criteria are met, the compiler picks the routines whose inline expansion will provide the
greatest benefit to program performance. The inlining heuristics used by the compiler differ, based on
whether or not you use profile-guided optimizations (- pr of _use). When you use profile-guided
optimizations with - i p or - i po, the compiler uses the following heuristics:

e The default heuristic focuses on the most frequently executed call sites, based on the profile
information gathered for the program.
e By default, the compiler will not inline functions with more than 230 intermediate statements.
You can change this value by specifying the option - Qopti on, c, -
i p_ni nl _max_st at s=new_val ue. Note: there is a higher limit for functions declared by the
userasinlineor__inline.
e The default inline heuristic will stop inlining when direct recursion is detected.
e The default heuristic will always inline very small functions that meet the minimum inline criteria.
o Default for Itanium®-based applications: i p_ni nl _m n_st at s=15.
o Default for IA-32 applications: i p_ni nl _m n_st at s=7. This limit can be modified with
the option - Qopti on, ¢, -i p_ninl _m n_st at s=new _val ue.

If you do not use profile-guided optimizations with - i p or - i po, the compiler uses less aggressive
inlining heuristics:

e Inline a function if the inline expansion will not increase the size of the final program.
e Inline a function if it is declared with the i nl i ne or __i nl i ne keywords.

Page 87 of 431

Intel® C++ Compiler User's Guide

Overview: Profile-guided Optimizations

Profile-guided optimizations (PGO) tell the compiler which areas of an application are most frequently
executed. By knowing these areas, the compiler is able to use feedback from a previous compilation to
be more selective in optimizing the application. For example, the use of PGO often enables the
compiler to make better decisions about function inlining, thereby increasing the effectiveness of
interprocedural optimizations.

Instrumented Program

Profile-guided optimization creates an instrumented program from your source code and special code
from the compiler. Each time this instrumented code is executed, the instrumented program generates
a dynamic information file. When you compile a second time, the dynamic information files are merged
into a summary file. Using the profile information in this file, the compiler attempts to optimize the
execution of the most heavily travelled paths in the program.

Unlike other optimizations, such as those used strictly for size or speed, the results of IPO and PGO
vary. This is due to each program having a different profile and different opportunities for optimizations.
The guidelines provided here help you determine if you can benefit by using IPO and PGO.

Added Performance with PGO

Beginning with version 6.0 of the Intel® C++ Compiler, PGO is improved in the following ways:

e Register allocation uses the profile information to optimize the location of spill code.

e For direct function calls, branch prediction is improved by identifying the most likely targets.
With the Pentium® 4 processor's longer pipeline, improved branch prediction translates to
higher performance gains.

e The compiler detects and does not vectorize loops that execute only a small number of
iterations, reducing the run time overhead that vectorization might otherwise add.

Profile-guided Optimizations Methodology

PGO works best for code with many frequently executed branches that are difficult to predict at
compile time. An example is code that is heavy with error-checking in which the error conditions are
false most of the time. The "cold" error-handling code can be placed such that the branch is rarely
mispredicted. Eliminating the interleaving of "hot" and "cold" code improves instruction cache behavior.
For example, the use of PGO often enables the compiler to make better decisions about function
inlining, thereby increasing the effectiveness of interprocedural optimizations.

PGO Phases

The PGO methodology requires three phases:

e Phase 1: Instrumentation compilation and linking with - pr of _gen[x]
e Phase 2: Instrumented execution by running the executable
e Phase 3: Feedback compilation with - pr of _use

A key factor in deciding whether you want to use PGO lies in knowing which sections of your code are
the most heavily used. If the data set provided to your program is very consistent and it elicits a similar

Page 88 of 431

Intel® C++ Compiler User's Guide

behavior on every execution, then PGO can probably help optimize your program execution. However,
different data sets can elicit different algorithms to be called. This can cause the behavior of your
program to vary from one execution to the next.

In cases where your code behavior differs greatly between executions, PGO may not provide
noticeable benefits. You have to ensure that the benefit of the profile information is worth the effort
required to maintain up-to-date profiles.

Basic PGO Options

Option Description

-prof _gen[x] Instructs the compiler to produce instrumented code in your object files in
preparation for instrumented execution.

- prof _use Instructs the compiler to produce a profile-optimized executable and merges
available dynamic information (. dyn) files into a pgopt i . dpi file.

In cases where your code behavior differs greatly between executions, you have to ensure that the
benefit of the profile information is worth the effort required to maintain up-to-date profiles. In the basic
profile-guided optimization, the following options are used in the phases of the PGO:

Generating Instrumented Code

The - prof _gen[x] option instruments the program for profiling to get the execution count of each
basic block. It is used in Phase 1 of the PGO to instruct the compiler to produce instrumented code in
your object files in preparation for instrumented execution. Parallel make is automatically supported for
- pr of _genx compilations.

Generating a Profile-optimized Executable

The - pr of _use option is used in Phase 3 of the PGO to instruct the compiler to produce a profile-
optimized executable and merges available dynamic-information (. dyn) files into a pgopt i . dpi file.

E/J Note

The dynamic-information files are produced in Phase 2 when you run the instrumented executable.

If you perform multiple executions of the instrumented program, - pr of _use merges the dynamic-
information files again and overwrites the previous pgopti . dpi file.

Page 89 of 431

Intel® C++ Compiler User's Guide

Disabling Function Splitting (Itanium® Compiler only)

-fnsplit- disables function splitting. Function splitting is enabled by - pr of _use in Phase 3 to
improve code locality by splitting routines into different sections: one section to contain the cold or very
infrequently executed code and one section to contain the rest of the code (hot code).

You can use - fnsplit- to disable function splitting for the following reasons:

e Most importantly, to get improved debugging capability. In the debug symbol table, it is difficult
to represent a split routine, that is, a routine with some of its code in the hot code section and
some of its code in the cold code section.

e The -fnsplit- option disables the splitting within a routine but enables function grouping, an
optimization in which entire routines are placed either in the cold code section or the hot code
section. Function grouping does not degrade debugging capability.

e Another reason can arise when the profile data does not represent the actual program behavior,
that is, when the routine is actually used frequently rather than infrequently.

f) Note

For Itanium®-based applications, if you intend to use the - pr of _use option with optimizations at the -
(3 level, the - O3 option must be on. If you intend to use the - pr of _use option with optimizations at
the - Q2 level or lower, you can generate the profile data with the default options.

Page 90 of 431

Intel® C++ Compiler User's Guide

Example of Profile-guided Optimization

The three basic phases of PGO are:

e Instrumentation Compilation and Linking
e Instrumented Execution
e Feedback Compilation

Instrumentation Compilation and Linking

Use - pr of _gen to produce an executable with instrumented information. Use also the - prof _dir
option as recommended for most programs, especially if the application includes the source files
located in multiple directories. - pr of _di r ensures that the profile information is generated in one
consistent place. For example:

IA-32 Systems

prompt >i cc -prof _gen -prof_dirc:\profdata -c al.c a2.c a3.c
pronpt>icc al.o a2.0 a3.0

ltanium®-based Systems

prompt >ecc -prof _gen -prof_dirc:\profdata -c al.c a2.c a3.c
pronpt >ecc al.o a2.0 a3.0

In place of the second command, you could use the linker directly to produce the instrumented
program.

Instrumented Execution
Run your instrumented program with a representative set of data to create a dynamic information file.
pronpt>./a.o

The resulting dynamic information file has a unique name and . dyn suffix every time you run a. o. The
instrumented file helps predict how the program runs with a particular set of data. You can run the
program more than once with different input data.

Page 91 of 431

Intel® C++ Compiler User's Guide

Feedback Compilation

Compile and link the source files with - pr of _use to use the dynamic information to optimize your
program according to its profile:

IA-32 Systems:

prompt >i cc -prof _use -ipo al.c a2.c a3.c
ltanium®-based Systems:

prompt >ecc -prof _use -ipo al.c a2.c a3.c

Besides the optimization, the compiler produces a pgopti . dpi file. You typically specify the default
optimizations (- Q2) for phase 1, and specify more advanced optimizations with - i po for phase 3. This
example used - Q2 in phase 1 and - @2 -i po in phase 3.

E/J Note

The compiler ignores the - i po options with - pr of _gen[x] . With the x qualifier, extra information is
gathered.

PGO Environment Variables

The table below describes environment values to determine the directory to store dynamic information
files or whether to overwrite pgopt i . dpi . Refer to your operating system documentation for
instructions on how to specify environment values.

Profile-guided Optimization Environment Variables

Variable Description

PROF DI R Specifies the directory in which dynamic information files are created. This
variable applies to all three phases of the profiling process.

PROF_NO _CLOBBER | Alters the feedback compilation phase slightly. By default, during the
feedback compilation phase, the compiler merges the data from all dynamic
information files and creates a new pgopti . dpi file if . dyn files are newer
than an existing pgopt i . dpi file. When this variable is set, the compiler
does not overwrite the existing pgopti . dpi file. Instead, the compiler issues
a warning and you must remove the pgopti . dpi file if you want to use
additional dynamic information files.

Page 92 of 431

Intel® C++ Compiler User's Guide

Using profmerge to Relocate the Source Files

The compiler uses the full path to the source file to look up profile summary information. By default,
this prevents you from:

e Using the profile summary file (. dpi) if you move your application sources.
e Sharing the profile summary file with another user who is building identical application sources
that are located in a different directory.

Source Relocation

To enable the movement of application sources, as well as the sharing of profile summary files, use
pr of mer ge with the - src_ol d and - sr c_new options. For example:

IA-32 Systems: pronpt >prof merge -prof _dir <pl> -src_old <p2> -src_new <p3>

ltanium®-based Systems: pronpt >prof nerge -em -p64 -prof _dir <pl> -src_old <p2>
-src_new <p3>

where:

e <pl>is the full path to dynamic information file (. dpi).
e <p2>is the old full path to source files.
e <p3>is the new full path to source files.

The above command will read the pgopt i . dpi file. For each function represented in the
pgopti . dpi file, whose source path begins with the <p2> prefix, pr of mer ge replaces that prefix
with <p3>. The pgopti . dpi file is updated with the new source path information.

f) Notes

e You can execute pr of ner ge more than once on a given pgopti . dpi file. You may need to
do this if the source files are located in multiple directories. For example:

profnerge -prof _dir -src_old /src/prog 1 -src_new /src/prog 2
profrmerge -prof _dir -src_old /proj_1 -src_new /proj_2

e In the values specified for - src_ol d and - sr c_new, uppercase and lowercase characters are
treated as identical. Likewise, forward slash (/) and backward slash (\) characters are treated
as identical.

e Because the source relocation feature of pr of mer ge modifies the pgopti . dpi file, you may
wish to make a backup copy of the file prior to performing the source relocation.

Page 93 of 431

Intel® C++ Compiler User's Guide

PGO API Support Overview

Profile Information Generation Support lets you control of the generation of profile information during
the instrumented execution phase of profile-guided optimizations. Normally, profile information is
generated by an instrumented application when it terminates by calling the standard exi t () function.
The functions described in this section may be necessary in assuring that profile information is
generated in the following situations:

e When the instrumented application exits using a non-standard exit routine
e When instrumented application is a non-terminating application where exi t () is never called
e When you want control of when the profile information is generated

This section includes descriptions of the functions and environment variable that comprise Profile
Information Generation Support. The functions are available by inserting #i ncl ude <pgouser . h>
at the top of any source file where the functions may be used.

The compiler sets a def i ne for _PGO_INSTRUMENT when you compile with either - pr of _gen or -
pr of _genx.

Dumping Profile Information
voi d _PGOPTI _Prof _Dunp(void);
Description

This function dumps the profile information collected by the instrumented application. The profile
information is recorded in a . dyn file.

Recommended Usage

Insert a single call to this function in the body of the function which terminates your application.
Normally, _PGOPTI _Pr of _Dunp should be called just once. It is also possible to use this function in
conjunction with _PGOPTI _Pr of _Reset () to generate multiple . dyn files (presumably from multiple

sets of input data).

Example

/1 Selectively collect profile information for the portion
/1 of the application involved in processing input data.

i nput _data = get _input_data();
whi | e(i nput _dat a)
_PGOPTI _Prof _Reset();
process_data(i nput _data);

_PGOPTI _Prof _Dunp();
i nput _data = get _input_data();

Page 94 of 431

Intel® C++ Compiler User's Guide

Resetting the Dynamic Profile Counters
voi d _PGOPTI _Prof Reset (void);

Description

This function resets the dynamic profile counters.

Recommended Usage

Use this function to clear the profile counters prior to collecting profile information on a section of the
instrumented application. See the example under PGOPTI _Pr of _Dunp() .

Dumping and Resetting Profile Information
voi d _PGOPTI _Prof _Dunp_And_Reset (voi d);
Description

This function may be called more than once. Each call will dump the profile information to a new . dyn
file. The dynamic profile counters are then reset, and execution of the instrumented application
continues.

Recommended Usage

Periodic calls to this function allow a non-terminating application to generate one or more profile
information files. These files are merged during the feedback phase of profile-guided optimization.
The direct use of this function allows your application to control precisely when the profile information
is generated.

Page 95 of 431

Intel® C++ Compiler User's Guide

Interval Profile Dumping
void _PGOPTI _Set Interval Prof _Dunp(int interval);

Description

This function activates Interval Profile Dumping and sets the approximate frequency at which dumps
will occur. The i nt erval parameter is measured in milliseconds and specifies the time interval at
which profile dumping will occur. For example, if i nt er val is set to 5000, then a profile dump and
reset will occur approximately every 5 seconds. The interval is approximate because the time check
controlling the dump and reset is only performed upon entry to any instrumented function in your
application.

f) Note

e Setting i nt er val to zero or a negative number will disable interval profile dumping.

e Settingi nt erval to avery small value may cause the instrumented application to spend
nearly all of its time dumping profile information. Be sure to set i nt er val to a large enough
value so that the application can perform actual work and collect substantial profile information.

Recommended Usage

Call this function at the start of a non-terminating application to initiate Interval Profile Dumping. Note
that an alternative method of initiating Interval Profile Dumping is by setting the environment variable,
PROF_DUMP_| NTERVAL, to the desired i nt er val value prior to starting the application. The intention
of Interval Profile Dumping is to allow a non-terminating application to be profiled with minimal changes
to the application source code.

Environment Variable
PROF_DUMP_| NTERVAL

This environment variable may be used to initiate Interval Profile Dumping in an instrumented
application. See the Recommended Usage of PGOPTI _Set I nterval Prof Dunp for more
information.

Page 96 of 431

Intel® C++ Compiler User's Guide

HLO Overview

High-level optimizations (HLO) exploit the properties of source code constructs, such as loops and
arrays, in the applications developed in high-level programming languages, such as C++. They include
loop interchange, loop fusion, loop unrolling, loop distribution, unroll-and-jam, blocking, data prefetch,
scalar replacement, data layout optimizations, and others. The option that turns on the high-level
optimizations is - 3.

IA-32 and Itanium®-based applications

- 3B | Enable - O2 option plus more aggressive optimizations, for example, loop transformation and
prefetching. - O3 optimizes for maximum speed, but may not improve performance for some
programs.

IA-32 applications

- 3B | In addition, in conjunction with the vectorization options, - ax{ M K| W and - x{ M K| W , - O3
causes the compiler to perform more aggressive data dependency analysis than for - Q2. This
may result in longer compilation times.

Loop Transformations

All these transformations are supported by data dependence. These techniques also include induction
variable elimination, constant propagation, copy propagation, forward substitution, and dead code
elimination. The loop transformation techniques include:

Loop normalization

Loop reversal

Loop interchange and permutation
Loop skewing

Loop distribution

Loop fusion

Scalar replacement

In addition to the loop transformations listed for both 1A-32 and Itanium® architectures above, the
Itanium architecture allows collapsing techniques.

Page 97 of 431

Intel® C++ Compiler User's Guide

Loop Unrolling

You can unroll loops and specify the maximum number of times you want the compiler to do so.

How to Enable Loop Unrolling

You use the - unr ol | [n] option to unroll loops. n determines the maximum number of times for the
unrolling operation. This applies only to loops that the compiler determines should be unrolled. Omit n
to let the compiler decide whether to perform unrolling or not.

The following example unrolls a loop at most four times:
IA-32 Systems: pronpt >icc -unroll 4 a.c

When specifying high values to unroll loops, be aware that your application may exhaust certain
resources, such as registers, that can slow program performance. You should consider timing your
application (see Timing Your Application) if you specify high values to unroll loops.

How to Disable Loop Unrolling
Disable loop unrolling by setting n to 0. The following example disables loop unrolling:

IA-32 Systems: pronpt >icc -unroll0 a.c

Page 98 of 431

Intel® C++ Compiler User's Guide

Absence of Loop-carried Memory Dependency with
IVDEP Directive

For Itanium®-based applications, the - i vdep_par al | el option indicates there is absolutely no loop-
carried memory dependency in the loop where | VDEP directive is specified. This technique is useful
for some sparse matrix applications. For example, the following loop requires -i vdep_paral | el in
addition to the directive | VDEP to indicate there is no loop-carried dependencies.

Example

#pragma i vdep
for(i=1; i<n; i++)

e[ix[2][i]]+1.0
e[ix[3][i]]+2.0;

[ix[2][i]]
[ix[3][i]]

The following example shows that using this option and the | VDEP directive ensures there is no loop-
carried dependency for the store into a() .

Example

#pragma ivdep

for(j=0; j<n; j++)

{
?[b[i]]=a[b[i]]+1:

Page 99 of 431

Intel® C++ Compiler User's Guide

Overview: Parallelization Options

For parallel programming, the Intel® C++ Compiler supports both the OpenMP* 2.0 API and an
automatic parallelization capability. The following table lists the options that perform OpenMP and

auto-parallelization support.

Option

Description

- opennp

Enables the parallelizer to generate multithreaded code based on the
OpenMP directives. Default: OFF.

- opennp_report{0]| 1] 2}

Controls the OpenMP parallelizer's diagnostic levels. Default: -
opennp_reportl.

- opennp_st ubs

Enables compilation of OpenMP programs in sequential mode. The
OpenMP directives are ignored and a stub OpenMP library is linked.
Default: OFF.

-parallel

Enables the auto-parallelizer to generate multithreaded code for loops
that can be safely executed in parallel. Default; OFF.

- par _t hreshol d{n}

Sets a threshold for the auto-parallelization of loops based on the
probability of profitable execution of the loop in parallel, n=0 to 100.
n=0 implies "always." Default; - par _t hr eshol d75.

- par_report{0]| 1] 2| 3}

Controls the auto-parallelizer's diagnostic levels.
Default: - par _report1

Z-) Note

When both - opennp and - par al | el are specified on the command line, the - paral | el option is
honored only in routines that do not contain OpenMP directives. For routines that contain OpenMP
directives, only the - opennp option is honored.

Page 100 of 431

Intel® C++ Compiler User's Guide

Overview: Parallelization with OpenMP*

The Intel® C++ Compiler supports the OpenMP* C++ version 2.0 API specification. OpenMP provides
symmetric multiprocessing (SMP) with the following major features:

e Relieves the user from having to deal with the low-level details of iteration space partitioning,
data sharing, and thread scheduling and synchronization.

e Provides the benefit of the performance available from shared memory, multiprocessor
systems.

The Intel C++ Compiler performs transformations to generate multithreaded code based on the user's
placement of OpenMP directives in the source program making it easy to add threading to existing
software. The Intel compiler supports all of the current industry-standard OpenMP directives, except
WORKSHARE, and compiles parallel programs annotated with OpenMP directives. In addition, the Intel
C++ Compiler provides Intel-specific extensions to the OpenMP C++ version 2.0 specification including
run-time library routines and environment variables.

f) Note

As with many advanced features of compilers, you must properly understand the functionality of the
OpenMP directives in order to use them effectively and avoid unwanted program behavior.

See parallelization options summary for all of the options of the OpenMP feature in the Intel C++
Compiler.

For complete information on the OpenMP standard, visit the OpenMP Web site at
http://www.openmp.org. For OpenMP* C++ version 2.0 API specifications, see
http://www.openmp.org/specs/.

Parallel Processing with OpenMP

To compile with OpenMP, you need to prepare your program by annotating the code with OpenMP
directives. The Intel C++ Compiler first processes the application and produces a multithreaded
version of the code which is then compiled. The output is a executable program with the parallelism
implemented by threads that execute parallel regions or constructs.

Performance Analysis

For performance analysis of your program, you can use the Intel® VTune™ Performance Analyzer to
show performance information. You can obtain detailed information about which portions of the code
require the largest amount of time to execute and where parallel performance problems are located.

Page 101 of 431

Intel® C++ Compiler User's Guide

Parallel Processing Thread Model

This topic explains the processing of the parallelized program and adds more definitions of the terms
used in parallel programming.

The Execution Flow

As previously mentioned, a program containing OpenMP* C++ API compiler directives begins
execution as a single process, called the master thread of execution. The master thread executes
sequentially until the first parallel construct is encountered.

In the OpenMP C++ API, the #pragma onp par al | el directive defines the parallel construct. When
the master thread encounters a parallel construct, it creates a team of threads, with the master thread
becoming the master of the team. The program statements enclosed by the parallel construct are
executed in parallel by each thread in the team. These statements include routines called from within
the enclosed statements.

The statements enclosed lexically within a construct define the static extent of the construct. The
dynamic extent includes the static extent as well as the routines called from within the construct.
When the #pragnma onp par al | el directive reaches completion, the threads in the team
synchronize, the team is dissolved, and only the master thread continues execution. The other threads
in the team enter a wait state. You can specify any number of parallel constructs in a single program.
As a result, thread teams can be created and dissolved many times during program execution.

Page 102 of 431

Intel® C++ Compiler User's Guide

Using Orphaned Directives

In routines called from within parallel constructs, you can also use directives. Directives that are not in
the lexical extent of the parallel construct, but are in the dynamic extent, are called orphaned
directives. Orphaned directives allow you to execute major portions of your program in parallel with
only minimal changes to the sequential version of the program. Using this functionality, you can code
parallel constructs at the top levels of your program and use directives to control execution in any of
the called routines. For example:

{
}

i nt mai n(void)

#'p.ragrra onp parall el
phasel();

voi d phasel(void)
{

#pragma onp for private(i) shared(n)
for(i=0; i < n; i++)

some_wor k(i) ;

This is an orphaned directive because the parallel region is not lexically present.

Data Environment Directive

A data environment directive controls the data environment during the execution of parallel constructs.
You can control the data environment within parallel and worksharing constructs. Using directives and
data environment clauses on directives, you can:

e Privatize scope variables by using the THREADPRI VATE directive
e Control data scope attributes by using the THREADPRI VATE directive's clauses. The data
scope attribute clauses are:

e}

O O0O0O0OO0O0

COPYIN
DEFAULT
PRIVATE
FIRSTPRIVATE
LASTPRIVATE
REDUCTION
SHARED

You can use several directive clauses to control the data scope attributes of variables for the duration
of the construct in which you specify them. If you do not specify a data scope attribute clause on a
directive, the default is SHARED for those variables affected by the directive.

Page 103 of 431

Intel® C++ Compiler User's Guide

Pseudo Code of the Parallel Processing Model

A sample pseudo program using some of the more common OpenMP directives is shown in the code
example that follows. This example also indicates the difference between serial regions and parallel

regions.

mai n() {

#pragma onp parall el
{

#pragma onp sections

{

#pragma onp section

{...}
#pragma onp section

(...}

#pragma onp for nowait

for(...) {

#pragma onp critical

{

Page 104 of 431

/1
11
/1
/11
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
11
/1

Begi n serial execution

Only the master thread executes
Begin a Parallel Construct, form
a team This is Replicated Code
(each team nenber executes

the sane code)

Begi n a Workshari ng Construct

One unit of work

Anot her unit of work

Wait until both units of work conplete
More Replicated Code

Begi n a Worksharing Construct;

each iteration is unit of work

Work is distributed anong the team nenbers

End of Worksharing Construct;
nowait was specified, so

t hreads proceed

Begin a Critical Section

Repli cated Code, but only one
thread can execute it at a
given time

More Replicated Code

Intel® C++ Compiler User's Guide

/1

#pragma onp barrier /1 Wait for all team nenbers to arrive
/1l More Replicated Code
/1

} /1 End of Parallel Construct;

// di sband team and conti nue

/'l serial execution

/1
/1 Possibly nore Parallel constructs
/1

} /1 End serial execution

Page 105 of 431

Intel® C++ Compiler User's Guide

Compiling with OpenMP, Directive Format, and
Diagnostics

To run the Intel® C++ Compiler in OpenMP* mode, invoke the compiler with the - opennp option:
IA-32 applications: i cc -opennp input _file
ltanium®-based applications: ecc -opennp input file

Before you run the multithreaded code, you can set the number of desired threads in the OpenMP
environment variable, OVP_NUM THREADS. See OpenMP Environment Variables for further
information.

-openmp Option

The - opennp option enables the parallelizer to generate multithreaded code based on the OpenMP
directives. The code can be executed in parallel on both uniprocessor and multiprocessor systems.
The - opennp option works with both - Q0 (no optimization) and any optimization level of - OL, - Q2
(default) and - G3. Specifying - Q0 with - opennp helps to debug OpenMP applications.

OpenMP Directive Format and Syntax

An OpenMP directive has the form:

#pragnma onp directive-nane [clause, ...] newine
where:

e #pragma onp -- Required for all OpenMP directives.

e directive-nane -- A valid OpenMP directive. Must appear after the pr agna and before any
clauses.

e cl ause -- Optional. Clauses can be in any order, and repeated as necessary unless otherwise
restricted.

e new i ne -- Required. Proceeds the structured block which is enclosed by this directive.

OpenMP Diagnostics

The - opennp_report{0| 1| 2} option controls the OpenMP parallelizer's diagnostic levels 0, 1, or 2
as follows:

e -opennp_report 0 = no diagnostic information is displayed.

e -opennp_report 1 =display diagnostics indicating loops, regions, and sections successfully
parallelized.

e -opennp_report2 =same as - opennp_report 1 plus diagnostics indicating MASTER
constructs, SI NGLE constructs, CRI Tl CAL constructs, ORDERED constructs, ATOM C directives,
etc. are successfully handled.

The default is -opennp_report 1.

Page 106 of 431

Intel® C++ Compiler User's Guide

OpenMP* Directives and Clauses

OpenMP Directives

Directive Name

Description

paral | el Defines a parallel region.

for Identifies an iterative work-sharing construct that specifies a region in which the
iterations of the associated loop should be executed in parallel.

sections Identifies a non-iterative work-sharing construct that specifies a set of
constructs that are to be divided among threads in a team.

single Identifies a construct that specifies that the associated structured block is
executed by only one thread in the team.

paral l el for A shortcut for a par al | el region that contains a single f or directive.
E} Note
The paral | el orfor OpenMP directive must be immediately followed by a
f or statement. If you place other statement or an OpenMP directive between
the paral | el orfor directive and the f or statement, the Intel C++ Compiler
issues a syntax error.

paral | el Provides a shortcut form for specifying a parallel region containing a single

sections sect i ons directive.

mast er Identifies a construct that specifies a structured block that is executed by the

master thread of the team.

critical [l ock]

Identifies a construct that restricts execution of the associated structured block
to a single thread at a time.

barrier Synchronizes all the threads in a team.

atom c Ensures that a specific memory location is updated atomically.

flush Specifies a "cross-thread" sequence point at which the implementation is
required to ensure that all the threads in a team have a consistent view of
certain objects in memory.

or der ed The structured block following an or der ed directive is executed in the order in

which iterations would be executed in a sequential loop.

t hreadpri vate

Makes the named file-scope or namespace-scope variables specified private to
a thread but file-scope visible within the thread.

Page 107 of 431

Intel® C++ Compiler User's Guide

OpenMP Clauses

Clause Description

private Declares variables to be pri vat e to each thread in a team.

firstprivate | Provides a superset of the functionality provided by the pri vat e clause.

| astprivate | Provides a superset of the functionality provided by the pri vat e clause.

shared Shares variables among all the threads in a team.

def aul t Enables you to affect the data-scope attributes of variables.

reduction Performs a reduction on scalar variables.

or der ed The structured block following an or der ed directive is executed in the order in
which iterations would be executed in a sequential loop.

if Ifthei f (scal ar _| ogi cal _expressi on) clause is present, the enclosed
code block is executed in parallel only if the scal ar _| ogi cal _expressi on
evaluates to TRUE. Otherwise the code block is serialized.

schedul e Specifies how iterations of the f or loop are divided among the threads of the
team.

copyin Provides a mechanism to assign the same name to t hr eadpri vat e variables
for each thread in the team executing the parallel region.

Page 108 of 431

Intel® C++ Compiler User's Guide

OpenMP* Support Libraries

The Intel® C++ Compiler with OpenMP* support provides a production support library, | i bgui de. a.
This library enables you to run an application under different execution modes. It is used for normal or
performance-critical runs on applications that have already been tuned.

Execution modes

The Intel compiler with OpenMP enables you to run an application under different execution modes
that can be specified at run time. The libraries support the serial, turnaround, and throughput modes.
These modes are selected by using the KMP_LI BRARY environment variable at run time.

Serial
The serial mode forces parallel applications to run on a single processor.
Turnaround

In a dedicated (batch or single user) parallel environment where all processors are exclusively
allocated to the program for its entire run, it is most important to effectively utilize all of the processors
all of the time. The turnaround mode is designed to keep active all of the processors involved in the
parallel computation in order to minimize the execution time of a single job. In this mode, the worker
threads actively wait for more parallel work, without yielding to other threads.

f) Note

Avoid over-allocating system resources. This occurs if either too many threads have been specified, or
if too few processors are available at run time. If system resources are over-allocated, this mode will
cause poor performance. The throughput mode should be used instead if this occurs.

Throughput

In a multi-user environment where the load on the parallel machine is not constant or where the job
stream is not predictable, it may be better to design and tune for throughput. This minimizes the total
time to run multiple jobs simultaneously. In this mode, the worker threads will yield to other threads
while waiting for more parallel work.

The throughput mode is designed to make the program aware of its environment (that is, the system
load) and to adjust its resource usage to produce efficient execution in a dynamic environment.
Throughput mode is the default.

Page 109 of 431

Intel® C++ Compiler User's Guide

OpenMP* Environment Variables

This topic describes the OpenMP* environment variables (with the OVP__ prefix) and Intel-specific
environment variables (with the KMP_ prefix).

Standard Environment Variables

Variable

Description

Default

OVP_SCHEDULE

Sets the runtime schedule type and chunk size.

STATI C (no chunk
size specified)

OVP_NUM THREADS

Sets the number of threads to use during execution.

Number of processors

OVP_DYNAM C Enables (TRUE) or disables (FALSE) the dynamic FALSE
adjustment of the number of threads.
OVP_NESTED Enables (TRUE) or disables (FALSE) nested FALSE
parallelism.
Intel Extension Environment Variables
Environment Variable | Description Default

KMP_LI BRARY

Selects the OpenMP run-time library throughput.
The options for the variable value are: seri al ,
t ur nar ound, or t hr oughput indicating the
execution mode. The default value of

t hr oughput is used if this variable is not
specified.

t hr oughput
(execution mode)

KMP_STACKSI ZE

Sets the number of bytes to allocate for each
parallel thread to use as its private stack. Use the
optional suffix b, k, m g, or t , to specify bytes,
kilobytes, megabytes, gigabytes, or terabytes.

IA-32: 2m
[tanium® compiler: 4m

Page 110 of 431

Intel® C++ Compiler User's Guide

OpenMP* Run-time Library Routines

OpenMP* provides several run-time library functions to assist you in managing your program in parallel
mode. Many of these functions have corresponding environment variables that can be set as defaults.
The run-time library functions enable you to dynamically change these factors to assist in controlling
your program. In all cases, a call to a run-time library function overrides any corresponding
environment variable.

The following table specifies the interfaces to these routines. The names for the routines are in user
name space. The onp. h and onp_I i b. h header files are provided in the | NCLUDE directory of your
compiler installation.

There are definitions for two different locks, onp_| ock_ki nd and onp_nest | ock_ki nd, which are
used by the functions in the table that follows:

Function Description

Execution Environment Routines

onp_set _num t hr eads(nt hr eads) Sets the number of threads to use for subsequent
parallel regions.

onp_get _num t hreads() Returns the number of threads that are being used in
the current parallel region.

onp_get _max_t hreads() Returns the maximum number of threads that are
available for parallel execution.

onp_get _t hread_nun() Returns the unique thread number of the thread
currently executing this section of code.

onp_get _num procs() Returns the number of processors available to the
program.

onp_in_parallel() Returns TRUE if called within the dynamic extent of a
parallel region executing in parallel; otherwise returns
FALSE.

onp_set _dynamni c(dynami c_t hreads) | Enables or disables dynamic adjustment of the
number of threads used to execute a parallel region. If
dynami c_t hr eads is TRUE, dynamic threads are
enabled. If dynani ¢_t hr eads is FALSE, dynamic
threads are disabled. Dynamics threads are disabled
by default.

onp_get _dynami c() Returns TRUE if dynamic thread adjustment is
enabled, otherwise returns FALSE.

onp_set _nest ed(nest ed) Enables or disables nested parallelism. If nest ed is
TRUE, nested parallelism is enabled. If nest ed is
FALSE, nested parallelism is disabled. Nested
parallelism is disabled by default.

onp_get _nested() Returns TRUE if nested parallelism is enabled,
otherwise returns FALSE.

Page 111 of 431

Intel® C++ Compiler User's Guide

Lock Routines

onp_init_I|ock(lock)

Initializes the lock associated with | ock for use in
subsequent calls.

onp_destroy_| ock(| ock)

Causes the lock associated with | ock to become
undefined.

onp_set | ock(| ock)

Forces the executing thread to wait until the lock
associated with | ock is available. The thread is
granted ownership of the lock when it becomes
available.

onp_unset | ock(| ock)

Releases the executing thread from ownership of the
lock associated with | ock. The behavior is undefined
if the executing thread does not own the lock
associated with | ock.

onmp_test | ock(lock

Attempts to set the lock associated with | ock. If
successful, returns TRUE, otherwise returns FALSE.

onp_init_nest | ock(lock)

Initializes the nested lock associated with | ock for use
in the subsequent calls.

onp_destroy_nest | ock(| ock)

Causes the nested lock associated with | ock to
become undefined.

onp_set _nest | ock(| ock)

Forces the executing thread to wait until the nested
lock associated with | ock is available. The thread is
granted ownership of the nested lock when it becomes
available.

onp_unset _nest | ock(| ock)

Releases the executing thread from ownership of the
nested lock associated with | ock if the nesting count
is zero. Behavior is undefined if the executing thread
does not own the nested lock associated with | ock.

onp_test _nest | ock(Ilock)

Attempts to set the nested lock associated with | ock.
If successful, returns the nesting count, otherwise
returns zero.

Timing Routines

onp_get _wtime()

Returns a double-precision value equal to the elapsed
wallclock time (in seconds) relative to an arbitrary
reference time. The reference time does not change
during program execution.

onp_get _wtick()

Returns a double-precision value equal to the number
of seconds between successive clock ticks.

Page 112 of 431

Intel® C++ Compiler User's Guide

Intel Extensions

The Intel® C++ Compiler implements the following groups of functions as extensions to the OpenMP*
run-time library:

e Getting and setting stack size for parallel threads
e Memory allocation

The Intel extensions described in this section can be used for low-level debugging to verify that the
library code and application are functioning as intended. It is recommended to use these functions with
caution because using them requires the use of the - Qopennp_st ubs command-line option to
execute the program sequentially. These functions are also generally not recognized by other vendor's
OpenMP-compliant compilers, which may cause the link stage to fail for these other compilers.

f) Note

The functions below require the pre-processor directive #i ncl ude <onp. h>.

Stack Size

In most cases, directives can be used in place of extensions. For example, the stack size of the
parallel threads may be set using the KMP_STACKSI ZE environment variable rather than the
knmp_set st acksi ze_s() function.

f) Note

A run-time call to an Intel extension takes precedence over the corresponding environment variable
setting. See the definitions of stack size functions in the Stack Size table below.

Memory Allocation

The Intel® C++ Compiler implements a group of memory allocation functions as extensions to the
OpenMP run-time library to enable threads to allocate memory from a heap local to each thread.
These functions are knp_mal | oc() , knp_cal | oc(), and knp_r eal | oc() . The memory allocated
by these functions must also be freed by the knp_f r ee() function. While it is legal for the memory to
be allocated by one thread and knp_f r ee() 'd by a different thread, this mode of operation has a
slight performance penalty. See the definitions of these functions in the Memory Allocation table below.

Page 113 of 431

Intel® C++ Compiler User's Guide

Stack Size

Function

Description

knmp_get st acksi ze_s()

Returns the number of bytes that will be allocated for each
parallel thread to use as its private stack. This value can be
changed with knp_set st acksi ze_s() prior to the first
parallel region or with the KMP_STACKSI ZE environment
variable.

knmp_get st acksi ze()

This function is provided for backwards compatibility only. Use
knp_get st acksi ze_s() for compatibility across different
families of Intel processors.

knp_set stacksi ze_s(size)

Sets to si ze the number of bytes that will be allocated for each
parallel thread to use as its private stack. This value can also be
set via the KMP_STACKSI ZE environment variable. In order for
knp_set stacksi ze_s() to have an effect, it must be called
before the beginning of the first (dynamically executed) parallel
region in the program.

knp_set st acksi ze(si ze)

This function is provided for backward compatibility only; use
knp_set stacksi ze_s() for compatibility across different
families of Intel processors.

Memory Allocation

Function

Description

krmp_mal | oc(si ze)

Allocate memory block of si ze bytes from thread-local heap.

kmp_cal l oc(nel em el size) | Allocate array of nel emelements of size el si ze from thread-
local heap.
knp_real |l oc(ptr, size) Reallocate memory block at address pt r and si ze bytes from

thread-local heap.

kmp_free(ptr)

Free memory block at address pt r from thread-local heap.
Memory must have been previously allocated with knp_nal | oc
(),knmp_call oc(),orknmp_realloc().

Page 114 of 431

Intel® C++ Compiler User's Guide

Overview: Intel Workqueuing Model

The workqueuing model lets you parallelize control structures that are beyond the scope of those
supported by the OpenMP* model, while attempting to fit into the framework defined by OpenMP. In
particular, the workqueuing model is a flexible mechanism for specifying units of work that are not pre-
computed at the start of the worksharing construct. For si ngl e, f or, and sect i ons constructs all
work units that can be executed are known at the time the construct begins execution. The
workqueuing pragmas taskq and task relax this restriction by specifying an environment (the taskq)
and the units of work (the tasks) separately.

Page 115 of 431

Intel® C++ Compiler User's Guide

Workqueuing Constructs

taskq Pragma

The t askqg pragma specifies the environment within which the enclosed units of work (tasks) are to be
executed. From among all the threads that encounter a t askq pragma, one is chosen to execute it
initially. Conceptually, thet askq pragma causes an empty queue to be created by the chosen thread,
and then the code inside the t askq block is executed single-threaded. All the other threads wait for
work to be enqueued on the conceptual queue. The t ask pragma specifies a unit of work, potentially
executed by a different thread. When a t ask pragma is encountered lexically within at askq block,
the code inside the t ask block is conceptually enqueued on the queue associated with the t askq.
The conceptual queue is disbanded when all work enqueued on it finishes, and when the end of the

t askq block is reached.

Control Structures

Many control structures exhibit the pattern of separated work iteration and work creation, and are
naturally parallelized with the workqueuing model. Some common cases are:

e whi | e loops
e C++ iterators
e Recursive functions.

while Loops

If the computation in each iteration of a whi | e loop is independent, the entire loop becomes the
environment for the t askq pragma, and the statements in the body of the whi | e loop become the
units of work to be specified with the t ask pragma. The conditional in the whi | e loop and any
modifications to the control variables are placed outside of the t ask blocks and executed sequentially
to enforce the data dependencies on the control variables.

C++ lterators

C++ Standard Template Library (STL) iterators are very much like the whi | e loops just described,
whereby the operations on the data stored in the STL are very distinct from the act of iterating over all
the data. If the operations are data-independent, they can be done in parallel as long as the iteration
over the work is sequential. This type of whi | e loop parallelism is a generalization of the standard
OpenMP* worksharing for loops. In the worksharing for loops, the loop increment operation is the
iterator and the body of the loop is the unit of work. However, because the f or loop iteration variable
frequently has a closed form solution, it can be computed in parallel and the sequential step avoided.

Recursive Functions

Recursive functions also can be used to specify parallel iteration spaces. The mechanism is similar to
specifying parallelism using the sect i ons pragma, but is much more flexible because it allows
arbitrary code to sit between the t askq and the t ask pragmas, and because it allows recursive
nesting of the function to build a conceptual tree of t askq queues. The recursive nesting of the

t askq pragmas is a conceptual extension of OpenMP worksharing constructs to behave more like
nested OpenMP parallel regions. Just like nested parallel regions, each nested workqueuing construct
is a new instance and is encountered by exactly one thread. However, the major difference is that
nested workqueuing constructs do not cause new threads or teams to be formed, but rather re-use the
threads from the team. This permits very easy multi-algorithmic parallelism in dynamic environments,

Page 116 of 431

Intel® C++ Compiler User's Guide

such that the number of threads need not be committed at each level of parallelism, but instead only at
the top level. From that point on, if a large amount of work suddenly appears at an inner level, the idle
threads from the outer level can assist in getting that work finished. For example, it is very common in
server environments to dedicate a thread to handle each incoming request, with a large number of
threads awaiting incoming requests. For a particular request, its size may not be obvious at the time
the thread begins handling it. If the thread uses nested workqueuing constructs, and the scope of the
request becomes large after the inner construct is started, the threads from the outer construct can
easily migrate to the inner construct to help finish the request.

Since the workqueuing model is designed to preserve sequential semantics, synchronization is
inherent in the semantics of the t askq block. There is an implicit team barrier at the completion of the
t askq block for the threads that encountered the t askq construct to ensure that all of the tasks
specified inside of the t askq block have finished execution. This t askq barrier enforces the
sequential semantics of the original program. Just like the OpenMP worksharing constructs, it is
assumed you are responsible for ensuring that either no dependences exist or that dependencies are
appropriately synchronized between the task blocks, or between code in a task block and code in the

t askq block outside of the task blocks.

The syntax, semantics, and allowed clauses are designed to resemble OpenMP* worksharing
constructs. Most of the clauses allowed on OpenMP worksharing constructs have a reasonable
meaning when applied to the workqueuing pragmas.

taskq Construct

#pragma intel onp taskq [clause[[,]clause]...]
struct ured- bl ock

where cl ause can be any of the following:

e private (variable-list)
e firstprivate (variable-list)
e lastprivate (variable-list)
e reduction (operator : variable-list)
e ordered
e nowait
private

The pri vat e clause creates a private, default-constructed version for each object in var i abl e-

I'i st forthe t askq. It also implies capt ur epri vat e on each enclosed task. The original object
referenced by each variable has an indeterminate value upon entry to the construct, must not be
modified within the dynamic extent of the construct, and has an indeterminate value upon exit from the
construct.

firstprivate

The firstprivat e clause creates a private, copy-constructed version for each object in var i abl e-
I i st forthe t askq. It also implies capt ur epri vat e on each enclosed task. The original object
referenced by each variable must not be modified within the dynamic extent of the construct and has
an indeterminate value upon exit from the construct.

Page 117 of 431

Intel® C++ Compiler User's Guide

lastprivate

The | ast pri vat e clause creates a private, default-constructed version for each object in

vari abl e-1i st forthe t askq. It also implies capt ur epri vat e on each enclosed task. The
original object referenced by each variable has an indeterminate value upon entry to the construct,
must not be modified within the dynamic extent of the construct, and is copy-assigned the value of the
object from the last enclosed task after that task completes execution.

reduction

The r educt i on clause performs a reduction operation with the given operator in enclosed task
constructs for each objectin vari abl e-1i st. operator andvari abl e-1i st are defined the
same as in the OpenMP Specifications.

ordered

The or der ed clause performs ordered constructs in enclosed t ask constructs in original sequential
execution order. The t askq directive, to which the or der ed is bound, must have an or der ed clause
present.

nowait

The nowai t clause removes the implied barrier at the end of the t askq. Threads may exit the t askq
construct before completing all the t ask constructs queued within it.

task Construct

#pragma intel onp task [clause[[,]clause]...]
st ruct ured- bl ock

where cl ause can be any of the following:

e private(variable-list)

e captureprivate(variable-list)
private

The pri vat e clause creates a private, default-constructed version for each object in var i abl e-

I i st forthe t ask. The original object referenced by the variable has an indeterminate value upon
entry to the construct, must not be modified within the dynamic extent of the construct, and has an
indeterminate value upon exit from the construct.

captureprivate

The capt ur epri vat e clause creates a private, copy-constructed version for each object in

vari abl e-1i st forthe t ask at the time the t ask is enqueued. The original object referenced by
each variable retains its value but must not be modified within the dynamic extent of the t ask
construct.

Page 118 of 431

Intel® C++ Compiler User's Guide

Combined parallel and taskq Construct

#pragma intel onp parallel taskq
[clause[[,]clause]...]
struct ur ed- bl ock

where cl ause can be any of the following:

i f(scal ar-expression)

num t hr eads(i nt eger - expr essi on)
copyi n(variabl e-1ist)
defaul t (shared | none)
shared(vari abl e-1i st)
private(variable-list)
firstprivate(variable-Ilist)

| astprivate(variable-list)

reducti on(operator : variable-list)
ordered

Cl ause descriptions are the same as for the OpenMP par al | el construct or the t askq construct
above as appropriate.

Page 119 of 431

Intel® C++ Compiler User's Guide

Example Function

The t est 1 function below is a natural candidate to be parallelized using the workqueuing model. You
can express the parallelism by annotating the loop with a parallel t askq pragma and the work in the
loop body with at ask pragma. The parallel t askq pragma specifies an environment for the whi | e
loop in which to enqueue the units of work specified by the enclosed t ask pragma. Thus, the loop’s
control structure and the enqueuing are executed single-threaded, while the other threads in the team
participate in dequeuing the work from the t askq queue and executing it. The capt ur epri vat e
clause ensures that a private copy of the link pointer p is captured at the time each task is being
enqueued, hence preserving the sequential semantics.

void test1(LIST p)
{ #pragma intel onp parallel taskqg shared(p)
while (p !'= NULL)
{ #pragma intel onp task captureprivate(p)
do_work1(p);

p = p->next;

Page 120 of 431

Intel® C++ Compiler User's Guide

Examples of OpenMP* Usage
The following examples show how to use the OpenMP* feature.

A Simple Difference Operator

This example shows a simple parallel loop where the amount of work in each iteration is different.
Dynamic scheduling is used to get good load balancing. The f or has a nowai t because there is an
implicit bar ri er at the end of the parallel region.

void for_1 (float a[], float b[], int n)

int i, j;
#pragma onp parallel shared(a,b,n) private(i,j)
{

#pragma onp for schedul e(dynam ¢, 1) nowait

for(i =1; i < n; i++)
for(j =0; j <=1i; j++)
b[j + n*i] = (a[j + n*i] +a[j + n*(i-1)])/2.0;

Two Difference Operators

The example below uses two parallel loops fused to reduce fork/join overhead. The first f or has a
nowai t because all the data used in the second loop is different than all the data used in the first loop.

void for_2 (float a[], float b[], float c[], \
float d[], int n, int m

int i, j;
#pragma onp parallel shared(a,b,c,d,n,n) private(i,j)
{

#pragma onp for schedul e(dynam c, 1) nowait

for(i =1; i < n; i++)
for(j =0; j <=1i; j++)
b[j + n*i] = (a[j + n*i] + a[j + n*(i-1)])/2.0;
#pragma onp for schedul e(dynam ¢, 1) nowait
for(i =1; i < m i++)
{
for(j =0; j <=1i; j++)
dfj + nvi] = (c[j + nmi] +c[j + nm(i-1)])/2.0;

Page 121 of 431

Intel® C++ Compiler User's Guide

Overview: Auto-parallelization

The auto-parallelization feature of the Intel® C++ Compiler automatically translates serial portions of
the input program into equivalent multithreaded code. The auto-parallelizer analyzes the dataflow of
the program'’s loops and generates multithreaded code for those loops which can be safely and
efficiently executed in parallel. This enables the potential exploitation of the parallel architecture found
in symmetric multiprocessor (SMP) systems.

Automatic parallelization relieves the user from:

e Having to deal with the details of finding loops that are good worksharing candidates

e Performing the dataflow analysis to verify correct parallel execution

e Partitioning the data for threaded code generation as is needed in programming with OpenMP
directives.

The parallel run-time support provides the same run-time features found in OpenMP*, such as
handling the details of loop iteration modification, thread scheduling, and synchronization.

While OpenMP directives enable serial applications to transform into parallel applications quickly, the
programmer must explicitly identify specific portions of the application code that contain parallelism
and add the appropriate compiler directives. Auto-parallelization triggered by the - par al | el option
automatically identifies those loop structures which contain parallelism. During compilation, the
compiler automatically attempts to decompose the code sequences into separate threads for parallel
processing. No other effort by the programmer is needed.

The following example illustrates how a loop’s iteration space can be divided so that it can be executed
concurrently on two threads:

Original Serial Code

for (i=1; i<100; i++)
afi] =a[i] + b[i] * c[i];

Transformed Parallel Code

Thread 1

for (i=1; i<50; i++)
a[i] =a[i] + b[i] * c[i];

Thread 2

for (i=50; i<100; i++)
a[i] =a[i] + b[i] * c[i];

Page 122 of 431

Intel® C++ Compiler User's Guide

Programming with Auto-parallelization

The auto-parallelization feature implements some concepts of OpenMP*, such as worksharing
construct (with the par al | el for directive). This section provides specifics of auto-parallelization.

Guidelines for Effective Auto-parallelization Usage
A loop is parallelizable if:

e The loop is countable at compile time. This means that an expression representing how many
times the loop will execute (also called "the loop trip count") can be generated just before
entering the loop.

e There are no FLOW(READ after WRI TE), OUTPUT (WRI TE after READ) or ANTI (WRI TE after
READ) loop-carried data dependences. A loop-carried data dependence occurs when the same
memory location is referenced in different iterations of the loop. At the compiler's discretion, a
loop may be parallelized if any assumed inhibiting loop-carried dependencies can be resolved
by run-time dependency testing.

The compiler may generate a run-time test for the profitability of executing in paral | el for loop with
loop parameters that are not compile-time constants.

Coding Guidelines
Enhance the power and effectiveness of the auto-parallelizer by following these coding guidelines:

e Expose the trip count of loops whenever possible. Specifically use constants where the trip
count is known and save loop parameters in local variables.

e Avoid placing structures inside loop bodies that the compiler may assume to carry dependent
data, for example, function calls, ambiguous indirect references, or global references.

Auto-parallelization Data Flow

For auto-parallelization processing, the compiler performs the following steps:

Data flow analysis

Loop classification
Dependence analysis
High-level parallelization

Data partitioning
Multi-threaded code generation

oukwnpE

Page 123 of 431

Intel® C++ Compiler User's Guide

These steps include:

e Data flow analysis: compute the flow of data through the program
e Loop classification: determine loop candidates for parallelization based on correctness and
efficiency as shown by threshold analysis
e Dependence analysis: compute the dependence analysis for references in each loop nest
e High-level parallelization:
o analyze dependence graph to determine loops which can execute in parallel.
o compute run-time dependency
e Data partitioning: examine data reference and partition based on the following types of access:
shared, private,andfirstprivate.
e Multi-threaded code generation:
o modify loop parameters
o generate entry/exit per threaded task
o generate calls to parallel runtime routines for thread creation and synchronization

Page 124 of 431

Intel® C++ Compiler User's Guide

Auto-parallelization: Enabling, Options, and
Environment Variables

To enable the auto-parallelizer, use the - par al | el option. The - par al | el option detects parallel
loops capable of being executed safely in parallel and automatically generates multithreaded code for
these loops. An example of the command using auto-parallelization follows:

IA-32 Systems: pronpt >icc -c -parallel prog.c
ltanium®-based Systems: pronpt >ecc -c -parallel prog.c

Auto-parallelization Options

The - par al | el option enables the auto-parallelizer if the - O2 (or - O3) optimization option is also on
(the default is - Q2). The - par al | el option detects parallel loops capable of being executed safely in
parallel and automatically generates multithreaded code for these loops.

Option Description

-parall el Enables the auto-parallelizer

-paral I el _threshol d{ 1- 100} | Controls the work threshold needed for auto-parallelization,
see later subsection.

-par _report{1] 2| 3} Controls the diagnostic messages from the auto-parallelizer,
see later subsection.

Auto-parallelization Environment Variables

Variable Description Default

OVP_NUM_THREADS | Controls the number of Number of processors currently installed in the
threads used. system while generating the executable

OVP_SCHEDULE Specifies the type of static

runtime scheduling.

Page 125 of 431

Intel® C++ Compiler User's Guide

Auto-parallelization Threshold Control and
Diagnostics

Threshold Control

The -par _t hreshol d{ n} option sets a threshold for the auto-parallelization of loops based on the
probability of profitable execution of the loop in parallel. The value of n can be from 0 to 100. The
default value is 75. This option is used for loops whose computation work volume cannot be
determined at compile-time. The threshold is usually relevant when the loop trip count is unknown at
compile-time.

The - par _t hr eshol d{n} option has the following versions and functionality:

e Default: - par _t hr eshol d is not specified in the command line, which is the same as when -
par _t hr eshol dO is specified. The loops get auto-parallelized regardless of computation work
volume, that is, parallelize always.

e -par _threshol d100 - loops get auto-parallelized only if profitable parallel execution is almost
certain.

e The intermediate 1 to 99 values represent the percentage probability for profitable speed-up.
For example, n=50 would mean: parallelize only if there is a 50% probability of the code
speeding up if executed in parallel.

e The default value of nis n=75 (or - par _t hr eshol d75). When - par _t hreshol d is used on
the command line without a number, the default value passed is 75.

The compiler applies a heuristic that tries to balance the overhead of creating multiple threads versus
the amount of work available to be shared amongst the threads.

Diagnostics

The - par _report{0]| 1] 2| 3} option controls the auto-parallelizer's diagnostic levels 0, 1, 2, or 3 as
follows:

e -par_report0 =no diagnostic information is displayed.

e -par_reportl =indicates loops successfully auto-parallelized (default). Issues a "LOOP
AUTO- PARALLELI ZED" message for parallel loops.

e -par_report 2 =indicates successfully auto-parallelized loops as well as unsuccessful loops.

e -par_report 3 =same as 2 plus additional information about any proven or assumed
dependencies inhibiting auto-parallelization (reasons for not parallelizing).

Page 126 of 431

Intel® C++ Compiler User's Guide

Example of Parallelization Diagnostics Report
The example below shows output generated by - par _r eport 3:

IA-32 Systems: pronpt >icc -c -parallel -par_report3 prog.c

Sample Ouput

program prog
procedure: prog

serial loop: line 5: not a parallel candidate due to
statenent at line 6
serial loop: line 9

fl ow data dependence fromline 10 to line 10, due to "a

12 Li nes Conpil ed

where the program pr og. c is as follows:

Sample prog.c

/* Assumed side effects */
for (i=1; i<10000; i++)

a[i] = foo(i);

/* Actual dependence */
for (i=1; i<10000; i++)

a[i] = a[i-1] + i;

Troubleshooting Tips

e Use - par _t hreshol dO to see if the compiler assumed there was not enough computational

work
e Use - par _report 3 to view diagnostics
e Use -i po to eliminate assumed side-effects done to function calls

Page 127 of 431

Intel® C++ Compiler User's Guide

Overview: Vectorization

The vectorizer is a component of the Intel® C++ Compiler that automatically uses SIMD instructions in
the MMX(TM), SSE, and SSE2 instruction sets. The vectorizer detects operations in the program that
can be done in parallel, and then converts the sequential program to process 2, 4, 8, or 16 elements in
one operation, depending on the data type.

This section provides guidelines, option descriptions, and examples for the Intel C++ Compiler
vectorization on IA-32 systems only. The following list summarizes this section's contents.

A quick reference of vectorization functionality and features
Descriptions of compiler switches to control vectorization
Descriptions of the C++ language features to control vectorization
Discussion and general guidelines on vectorization levels:

o Automatic vectorization

o Vectorization with user intervention
Examples demonstrating typical vectorization issues and resolutions

Page 128 of 431

Intel® C++ Compiler User's Guide

Vectorizer Options

Option Description

-ax{M K| W Enables the vectorizer and generates specialized and generic IA-32 code. The
generic code is usually slower than the specialized code.

-x{M K W Turns on the vectorizer and generates processor-specific specialized code.

-vec_reportn | Controls the vectorizer's level of diagnostic messages:

n =0 no diagnostic information is displayed.

n =1 display diagnostics indicating loops successfully vectorized (default).

e n =2same as n =1, plus diagnostics indicating loops not successfully
vectorized.

e n =3 same as n =2, plus additional information about any proven or

assumed dependences.

Usage

If youuse - c, -i po with-vec_report{n} optionor-c,-x{M K W or-ax{M K| W with -
vec_report{n}, the compiler issues a warning and no report is generated.

To produce a report when using the afore mentioned options, you need to add the - i po_obj option.
The combination of - ¢ and - i po_obj produces a single file compilation, and hence does generate
object code, and eventually a report is generated.

The following commands generate a vectorization report:

e pronpt>icc -x{M KW -vec_report3 file.c
e pronpt>icc -x{M KW -ipo -ipo_obj -vec_report3 file.c
e pronpt>icc -¢c -x{M KW -ipo -ipo_obj -vec_report3 file.c

The following commands do not generate a vectorization report:

e pronpt>icc -¢ -x{M KW -vec_report3 file.c
e pronpt>icc -x{M KW -ipo -vec_report3 file.c
e pronpt>icc -¢c -x{M KW -ipo -vec_report3 file.c

Page 129 of 431

Intel® C++ Compiler User's Guide

Loop Parallelization and Vectorization

Combining the - paral | el and - x{ M K| W options instructs the compiler to attempt both automatic
loop parallelization and automatic loop vectorization in the same compilation. In most cases, the
compiler will consider outermost loops for parallelization and innermost loops for vectorization. If
deemed profitable, however, the compiler may even apply loop parallelization and vectorization to the
same loop.

Note that in some cases successful loop parallelization (either automatically or by means of OpenMP*
directives) may affect the messages reported by the compiler for loop vectorization; for example, under
the - vec_r eport 2 option indicating loops not successfully vectorized.

Page 130 of 431

Intel® C++ Compiler User's Guide

Vectorization Key Programming Guidelines

The goal of vectorizing compilers is to exploit single-instruction multiple data (SIMD) processing
automatically. Review these guidelines and restrictions, see code examples in further topics, and
check them against your code to eliminate ambiguities that prevent the compiler from achieving
optimal vectorization.

Guidelines for loop bodies:

e Use straight-line code (a single basic block)

e Use vector data only; that is, arrays and invariant expressions on the right hand side of
assignments. Array references can appear on the left hand side of assignments.

e Use only assignment statements

Avoid the following in loop bodies:

Function calls

Unvectorizable operations

Mixing vectorizable types in the same loop
Data-dependent loop exit conditions

Preparing your code for vectorization

To make your code vectorizable, you will often need to make some changes to your loops. However,
you should make only the changes needed to enable vectorization and no others. In particular, you
should avoid these common changes:

e Do not unroll your loops, the compiler does this automatically.
e Do not decompose one loop with several statements in the body into several single-statement
loops.

Restrictions

Hardware. The compiler is limited by restrictions imposed by the underlying hardware. In the case of
Streaming SIMD Extensions, the vector memory operations are limited to st ri de- 1 accesses with a
preference to 16-byte-aligned memory references. This means that if the compiler abstractly
recognizes a loop as vectorizable, it still might not vectorize it for a distinct target architecture.

Style. The style in which you write source code can inhibit optimization. For example, a common
problem with global pointers is that they often prevent the compiler from being able to prove two
memory references at distinct locations. Consequently, this prevents certain reordering
transformations.

Many stylistic issues that prevent automatic vectorization by compilers are found in loop structures.
The ambiguity arises from the complexity of the keywords, operators, data references, and memory
operations within the loop bodies.

However, by understanding these limitations and by knowing how to interpret diagnostic messages,
you can modify your program to overcome the known limitations and enable effective vectorizations.
The following topics summarize the capabilities and restrictions of the vectorizer with respect to loop
structures.

Page 131 of 431

Intel® C++ Compiler User's Guide

Data Dependence

Data dependence relations represent the required ordering constraints on the operations in serial
loops. Because vectorization rearranges the order in which operations are executed, any auto-
vectorizer must have at its disposal some form of data dependence analysis. The "Data-dependent
Loop" example shows some code that exhibits data dependence. The value of each element of an
array is dependent on itself and its two neighbors.

Data-dependent Loop

float data[N];
int i;

for (i=1; i<N-1; i++)
data[i]=datali-1]*0.25+data[i]*0.5+data[i +1] *0. 25;

The loop in the example above is not vectorizable because the write to the current element dat a[i]
is dependent on the use of the preceding element dat a[i - 1] , which has already been written to and
changed in the previous iteration. To see this, look at the access patterns of the array for the first two
iterations as shown in the following example:

Data Dependence Vectorization Patterns

for(i=0; i<100; i++)
afi]=b[i];

has access pattern

read b[0]
wite af[0]
read b[1]
wite a[1]

i =1: READ dat a[0]
READ dat a[1]

READ dat a[2]

WRI TE dat a[1]

i =2: READ dat a[1]
READ dat a[2]

READ dat a[3]

WRI TE dat a[2]

In the normal sequential version of the loop shown, the value of dat a[1] read during the second
iteration was written into the first iteration. For vectorization, the iterations must be done in parallel,
without changing the semantics of the original loop.

Page 132 of 431

Intel® C++ Compiler User's Guide

Data Dependence Theory

Data dependence analysis involves finding the conditions under which two memory accesses may
overlap. Given two references in a program, the conditions are defined by:

e whether the referenced variables may be aliases for the same (or overlapping) regions in
memory,
e for array references, the relationship between the subscripts.

For array references, the Intel® C++ Compiler's data dependence analyzer is organized as a series of
tests that progressively increase in power as well as time and space costs. First, a number of simple
tests are performed in a dimension-by-dimension manner, since independence in any dimension will
exclude any dependence relationship. Multi-dimensional arrays references that may cross their
declared dimension boundaries can be converted to their linearized form before the tests are applied.
Some of the simple tests used are the fast GCD test, proving independence if the greatest common
divisor of the coefficients of loop indices cannot evenly divide the constant term, and the extended
bounds test, which tests potential overlap for the extreme values of subscript expressions.

If all simple tests fail to prove independence, the compiler will eventually resort to a powerful
hierarchical dependence solver that uses Fourier-Motzkin elimination to solve the data dependence
problem in all dimensions.

Loop Constructs

Loops can be formed with the usual f or and whi | e- do, orrepeat - unt i | constructs or by using a
got o0 and a label. However, the loops must have a single entry and a single exit to be vectorized.

Correct Usage

\{Nhi I e(i <n)

/1 1f branch is inside body of |oop

Incorrect Usage

whi | e(i <n)

if (condition) break;
/'l 2nd exit.
++i

Page 133 of 431

Intel® C++ Compiler User's Guide

Loop Exit Conditions

Loop exit conditions determine the number of iterations that a loop executes. For example, fixed
indexes for loops determine the iterations. The loop iterations must be countable; that is, the number
of iterations must be expressed as one of the following:

e A constant
e A loop invariant term
e A linear function of outermost loop indices

Loops whose exit depends on computation are not countable. Examples below show countable and
non-countable loop constructs.

Correct Usage for Countable Loop

/1l Exit condition specified by "N 1b+1"
count =N;

whi | e(count! =1b)

/1 1b is not affected within | oop
a[i]=b[i]*x;

bli]=[i]+sqrt(d[i]);

--count;

}

Correct Usage for Countable Loop

{/_O!Exit condition is "(n-m2)/2"

%Sr,(lzm I <n; [+=2)
a[i]=b[i]*x;
bli]=c[i]+sqrt(d[i]);

++i

}

Incorrect Usage for Non-Countable Loop

i =0;

/1 lterations dependent on afi]
whi l e(a[i]>0.0)
{

ali]=b[i]*c[i];

++i

}

Page 134 of 431

Intel® C++ Compiler User's Guide

Types of Loops Vectorized

For integer loops, MMX(TM) technology and Streaming SIMD Extensions provide SIMD instructions for
most arithmetic and logical operators on 32-bit, 16-bit, and 8-bit integer data types. Vectorization may
proceed if the final precision of integer wrap-around arithmetic will be preserved. A 32-bit shift-right
operator, for instance, is not vectorized if the final stored value is a 16-bit integer. Also, note that
because the MMX(TM) instructions and Streaming SIMD Extensions instruction sets are not fully
orthogonal (byte shifts, for instance, are not supported), not all integer operations can actually be
vectorized.

For loops that operate on 32-bit single-precision and 64-bit double-precision floating-point numbers,
the Streaming SIMD Extensions provide SIMD instructions for the arithmetic operators +, -, *,and /.
Also, the Streaming SIMD Extensions provide SIMD instructions for the binary M N, MAX, and unary
SQRT operators. SIMD versions of several other mathematical operators (like the trigopnometric
functions SI N, COS, TAN) are supported in software in a vector mathematical run-time library that is
provided with the Intel® C++ Compiler.

Stripmining and Cleanup

The compiler automatically stripmines your loop and generates a cleanup loop. This means you do not
need to unroll your loops, and, in most cases, this will also enable more vectorization.

Before Vectorization

i =0;
whi | e(i <n)
/1 Original |oop code

a[i]=b[i]+c[i];
+4i

After Vectorization

/1 The vectorizer generates the follow ng two | oops
i =0;

whi | e(i <(n-n%t))
/1 Vector strip-mined |oop
/1 Subscript [1:i+3] denotes SIM execution
a[i:i+3]=b[i:i+3]+c[i:i+3];
i =i +4;

whi | e(i <n)

/1 Scal ar cl ean-up | oop
afi]=b[i]+c[i];

Page 135 of 431

Intel® C++ Compiler User's Guide

Statements in the Loop Body

The vectorizable operations are different for floating-point and integer data.
Floating-point Array Operations

The statements within the loop body may contain float operations (typically on arrays). Supported
arithmetic operations include addition, subtraction, multiplication, division, negation, square root, max,
and min. Operation on double precision types is not permitted unless optimizing for a Pentium® 4
processor system, using the - xWor - axWcompiler option.

Integer Array Operations

The statements within the loop body may contain char , unsi gned char, short, unsi gned
short,int,and unsi gned i nt. Calls to functions such as sqrt and f abs are also supported.
Arithmetic operations are limited to addition, subtraction, bitwise AND, OR, and XOR operators, division
(16-bit only), multiplication (16-bit only), min, and max. You can mix data types only if the conversion
can be done without a loss of precision. Some example operators where you can mix data types are
multiplication, shift, or unary operators.

Other Operations

No statements other than the preceding floating-point and integer operations are allowed. In particular,
note that the special __n64 and __n128 datatypes are not vectorizable. The loop body cannot contain
any function calls. Use of the Streaming SIMD Extensions intrinsics (_nm add_ps) are not allowed.

Page 136 of 431

Intel® C++ Compiler User's Guide

Language Support and Directives

This topic addresses language features that better help to vectorize code. The __decl spec(al i gn
(n)) declaration enables you to overcome hardware alignment constraints. The restri ct qualifier
and the pragmas address the stylistic issues due to lexical scope, data dependence, and ambiguity

resolution.

Language Support

Option

Description

__decl spec(align(n))

Directs the compiler to align the variable to an n-byte
boundary. Address of the variable is addr ess mod n=0.

__decl spec(align(n,off))

Directs the compiler to align the variable to an n-byte boundary
with offset off within each n-byte boundary. Address of the
variable is addr ess nod n = off.

restrict

Permits the disambiguator flexibility in alias assumptions,
which enables more vectorization.

__assune_al i gned(a, n)

Instructs the compiler to assume that array a is aligned on an
n-byte boundary; used in cases where the compiler has failed
to obtain alignment information.

#pragma i vdep

Instructs the compiler to ignore assumed vector dependencies.

#pragma vect or
{aligned | unaligned |
al ways}

Specifies how to vectorize the loop and indicates that
efficiency heuristics should be ignored.

#pragma novect or

Specifies that the loop should never be vectorized

Multi-version Code

Multi-version code is generated by the compiler in cases where data dependence analysis fails to
prove independence for a loop due to the occurrence of pointers with unknown values. This
functionality is referred to as dynamic dependence testing.

Pragma Scope

See Vectorization Support.

Page 137 of 431

Intel® C++ Compiler User's Guide

Dynamic Dependence Testing Example

Sample Code

float *p, *q;
for(i=L; I<=U; i++)

plil=ali];

pL=p*4*L,;

pH=p+4*U;

qL=g-+4*L;

gH=gq+4* U;

i{f(pH<qL Il pL>gH)
/1 Loop without data dependence
for(i=L; i<=U; i++)

plil=ali];
} else {

for(i=L; i<=U; i++)

plil=ali];

Page 138 of 431

Intel® C++ Compiler User's Guide

Vectorization Examples
This section contains a few simple examples of some common issues in vector programming.

Argument Aliasing: A Vector Copy

The loop in the example below, a vector copy operation, vectorizes because the compiler can prove
dest[i] andsrc[i] are distinct.

Vectorizable Copy Due To Unproven Distinction

void vec_copy(float *dest, float *src, int |len)
int i;
for(i=0; i<len; i++;)
{dest[i]=src[i];}

The restrict keyword in the example below indicates that the pointers refer to distinct objects.
Therefore, the compiler allows vectorization without generation of multi-version code.

Using restrict to Prove Vectorizable Distinction

void vec_copy(float *restrict dest, float *restrict src, int |en)

int i;
for(i=0; i<len; i++)
{dest[i]=src[i];}

Data Alignment

A 16-byte or greater data structure or array should be aligned so that the beginning of each structure
or array element is aligned in a way that its base address is a multiple of sixteen.

The "Misaligned Data Crossing 16-Byte Boundary" figure shows the effect of a data cache unit (DCU)
split due to misaligned data. The code loads the misaligned data across a 16-byte boundary, which
results in an additional memory access causing a six- to twelve-cycle stall. You can avoid the stalls if
you know that the data is aligned and you specify to assume alignment.

Misaligned Data Crossing 16-Byte Boundary

16 Byte 16 Envte
| Boundaries | Boundaries

J

[I 1

CT N | |
L
Mlizaligned [rata

Page 139 of 431

Intel® C++ Compiler User's Guide

For example, if you know that elements a[0] and b[0] are aligned on a 16-byte boundary, then the
following loop can be vectorized with the alignment option on (#pr agna vector al i gned):

Alignment of Pointers is Known

float *a, *b;
int i;

for(int i=0; i<10; i++)

afi]=b[i];

After vectorization, the loop is executed as shown here:
Vector and Scalar Clean-up lterations

2 wectar tergtions 2 clean-up itergtions
in scalar moda

-
i=0,1,2,3i=4.6.67 j=g0

Both the vector iterations a[0: 3] =b[0: 3] ; and a[4: 7] =b[4: 7] ; can be implemented with
aligned moves if both the elements a[0] and b[0] (or, likewise, a[4] and b[4]) are 16-byte
aligned.

.& Caution

If you specify the vectorizer with incorrect alignment options, the compiler will generate unexpected
behavior. Specifically, using aligned moves on unaligned data, will result in an illegal instruction
exception.

Page 140 of 431

Intel® C++ Compiler User's Guide

Data Alignment Examples

The example below contains a loop that vectorizes but only with unaligned memory instructions. The
compiler can align the local arrays, but because | b is not known at compile-time. The correct
alignment cannot be determined.

Loop Unaligned Due to Unknown Variable Value at Compile Time
void f(int Ib)
float z2[N], a2[N, y2[N, x2;

for(i=lb; i<N, i++)
{a2[i]=a2[i]*x2+y2[i];}

If you know that | b is a multiple of 4, you can align the loop with #pr agma vect or al i gned as
shown in the example that follows:

Alignment Due to Assertion of Variable as Multiple of 4
void f(int Ib)
{
float z2[N], a2[N, y2[N, x2;
assert (1 b%l==0) ;
#pragma vector aligned
for(i=lb; i<N, i++)
{a2[i]=az[i]*x2+y2[i];}
}

Page 141 of 431

Intel® C++ Compiler User's Guide

Loop Interchange and Subscripts: Matrix Multiply

Matrix multiplication is commonly written as shown in the example below:

Typical Matrix Multiplication

for(i=0; i<N i++)
for(j=0; j<n; j++)
for(k=0; k<n; k++)
cliJliT=cli]llj]+a[i][k]l*b[KI[]];

The use of b[k] [j],isnotastride-1 reference and therefore will not normally be vectorizable. If
the loops are interchanged, however, all the references will become st ri de- 1 as shown in the
"Matrix Multiplication With Stride-1" example.

.& Caution

Interchanging is not always possible because of dependencies, which can lead to different results.

Matrix Multiplication With Stride-1

for(i = 0; i<N i++)
for(k=0; k<n; k++)
for(j=0; j<n; j++)

clilljl=clillil+ali][kl*b[K]I[j];

Page 142 of 431

Intel® C++ Compiler User's Guide

Optimization Support Features Overview

This section describes language extensions to the Intel® C++ Compiler that let you optimize your
source code directly. Examples are included of optimizations supported by Intel extended directives
and library routines that enhance and/or help analyze performance.

Compiler Directives

This section discusses the language extended directives used in:

Software Pipelining

Loop Count and Loop Distribution
Loop Unrolling

Prefetching

Vectorization

Pipelining for Itanium®-based Applications

The swp and noswp directives indicate preference for a loop to get software-pipelined or not. The swp
directive does not help data dependence, but overrides heuristics based on profile counts or lop-sided
control flow. The syntax for this directive is:

#pragma swp
#pragma noswp

Example of swp Directive

#pragma swp
for (i=0; i<m; i++)

if (a[i]==0)
bli]=a[i]+1;
el se

b[i]=a[i]*2;

The software pipelining optimization triggered by the swp directive applies instruction scheduling to
certain innermost loops, allowing instructions within a loop to be split into different stages, allowing
increased instruction level parallelism. This can reduce the impact of long-latency operations, resulting
in faster loop execution. Loops chosen for software pipelining are always innermost loops that do not
contain procedure calls that are not inlined. Because the optimizer no longer considers fully unrolled
loops as innermost loops, fully unrolling loops can allow an additional loop to become the innermost
loop. You can request and view the optimization report to see whether software pipelining was applied
(see Optimizer Report Generation).

Page 143 of 431

Intel® C++ Compiler User's Guide

Loop Count and Loop Distribution

loop count (n) Directive

The | oop count (n) directive indicates the loop count is likely to be n. The syntax for this directive
is:

#pragma | oop count (n)

where n is an integer constant. The value of | oop count affects heuristics used in software
pipelining, vectorization and loop-transformations.

Example of loop count (n) Directive

#pragma | oop count (10000)

for(i=0; i<m i++)

{
//swp likely to occur in this |oop
a[i]=b[i]+1.2;

distribute point Directive

The di st ri but e poi nt directive indicates to the compiler a preference of performing loop
distribution. The syntax for this directive is:

#pragnma di stribute point

Loop distribution may cause large loops be distributed into smaller ones. This may enable software
pipelining for more loops. If the directive is placed inside a loop, the distribution is performed after the
directive and any loop-carried dependency is ignored. If the directive is placed before a loop, the
compiler will determine where to distribute and data dependency is observed. Only one distribute
directive is supported when placed inside the loop.

Page 144 of 431

Intel® C++ Compiler User's Guide

Example of distribute point Directive

#pragma distribute point
for(i=1; i<m i++)
b[i]=a[i]+1;

/] Compiler will automatically
//deci de where to distribute.
/| Dat a dependency i s observed.

cli]=a[i]+b[i];

dli]=c[i]+1;
}

for(i=1; i<m i++)
bl[i]=a[i]+1;

#pragma distribute point

[/Distribution will start here,
/lignoring all |oop-carried dependency.

sub(a, n);
cli]=a[i]+b[i];

d[i]=c[i]+1;

Page 145 of 431

Intel® C++ Compiler User's Guide

Loop Unrolling Support

unroll Directive

The unr ol | directive (unrol | (n)| nounr ol |) tells the compiler how many times to unroll a counted
loop. The syntax for this directive is:

#pragma unrol |
#pragma unrol | (n)
#pragma nounr ol |

where n is an integer constant from 0 through 255. The unr ol | directive must precede the f or
statement for each f or loop it affects. If n is specified, the optimizer unrolls the loop n times. If n is
omitted, or if it is outside the allowed range, the optimizer assigns the number of times to unroll the
loop. The unrol | directive overrides any setting of loop unrolling from the command line. The
directive can be applied only for the innermost nested loop. If applied to the outer loops, it is ignored.
The compiler generates correct code by comparing n and the loop count.

Example of unroll Directive

#pragma unroll (4)
for(i=1; i<m i++)

b[i]=a[i]+1;
dli]=c[i]+1:

Page 146 of 431

Intel® C++ Compiler User's Guide

Prefetching Support

prefetch Directive

The pr ef et ch and nopr ef et ch directives assert that the data prefetches are generated or not
generated for some memory references. This affects the heuristics used in the compiler. The syntax
for this directive is:

#pragma noprefetch
#pragnma prefetch
#pragma prefetch a, b

If the expression a[j] is used within a loop, by placing pr ef et ch a in front of the loop, the compiler
will insert prefetches for a[j +d] within the loop, where d is determined by the compiler. This directive
is supported when option - O3 is on.

Example of prefetch Directive

#pragma noprefetch b
#pragma prefetch a

for(i=0; i<m i++)
a[i]=b[i]+1;

Page 147 of 431

Intel® C++ Compiler User's Guide

Vectorization Support (IA-32)

The vect or directives control the vectorization of the subsequent loop in the program, but the
compiler does not apply them to nested loops. Each nested loop needs its own directive preceding it.
You must place the vector directive before the loop control statement.

vector always Directive

The vect or al ways directive instructs the compiler to override any efficiency heuristic during the
decision to vectorize or not, and will vectorize non-unit strides or very unaligned memory accesses.

Example of vector always Directive

#pragma vector al ways
for(i=0; i<=N i++)

a[32*i] =b[99*i] ;

ivdep Directive

The i vdep directive instructs the compiler to ignore assumed vector dependences. To ensure correct
code, the compiler treats an assumed dependence as a proven dependence, which prevents
vectorization. This directive overrides that decision. Use i vdep only when you know that the assumed
loop dependences are safe to ignore. The loop in the example below will not vectorize with the i vdep,
since the value of k is not known (vectorization would be illegal if k<0).

Example of ivdep Directive

#pragma i vdep
for(i=0; i<m i++)

a[i]=ali+k]*c;

vector aligned Directive

The vect or al i gned directive means the loop should be vectorized, if it is legal to do so, ignoring
normal heuristic decisions about profitability. When the al i gned or unal i gned qualifier is used, the
loop should be vectorized using al i gned or unal i gned operations. Specify either al i gned or
unal i gned, but not both.

.& Caution

If you specify al i gned as an argument, you must be absolutely sure that the loop will be vectorizable
using this instruction. Otherwise, the compiler will generate incorrect code. The loop in the example
below uses the al i gned qualifier to request that the loop be vectorized with al i gned instructions, as
the arrays are declared in such a way that the compiler could not normally prove this would be safe to
do so.

Page 148 of 431

Intel® C++ Compiler User's Guide

Example of vector aligned Directive

#void foo(float *a)

{

#pragma vector aligned
for(i=0; i<m i++)

a[i]=a[i]*c;

The compiler includes several alignment strategies in case the alignment of data structures is not
known at compile time. A simple example is shown below, but several other strategies are supported
as well. If, in the loop shown below, the alignment of a is unknown, the compiler will generate a prelude
loop that iterates until the array reference that occurs the most hits an aligned address. This makes the
alignment properties of a known, and the vector loop is optimized accordingly.

Example of Alignment Strategies

float *a;

/1 Al'i gnment unknown
for(i=0; i<100; i++)

a[i]=al[i]+1.0f;

/I Dynam ¢ | oop peeling

p=a & 0xOf;
i f(p!=0)
p=(16-p)/4;

for(i=0; i<p; i++)

a[i]=al[i]+1.0f;

/Loop with a aligned.
/W11l be vectorized accordingly.
or(i=p; i<100; i++)

a[i]=al[i]+1.0f;

— ~——h—— —

Page 149 of 431

Intel® C++ Compiler User's Guide

novector Directive

The novect or directive specifies that the loop should never be vectorized, even if it is legal to do so.
In this example, suppose you know the trip count (ub - | b) is too low to make vectorization
worthwhile. You can use novect or to tell the compiler not to vectorize, even if the loop is considered
vectorizable.

Example of novector Directive

void foo(int Ib, int ub)

#pragma novect or
for(j=lb; j<ub; j++)

alj]=a[j]+b[j];

Page 150 of 431

Intel® C++ Compiler User's Guide

Timing Your Application

How fast your application executes is one indication of performance. When timing the speed of
applications, consider the following circumstances:

Run program timings when other users are not active. Your timing results can be affected by
one or more CPU-intensive processes also running while doing your timings.

Try to run the program under the same conditions each time to provide the most accurate
results, especially when comparing execution times of a previous version of the same program.
Use the same system (processor model, amount of memory, version of the operating system,
and so on) if possible.

If you do need to change systems, you should measure the time using the same version of the
program on both systems, so you know each system's effect on your timings.

For programs that run for less than a few seconds, run several timings to ensure that the results
are not misleading. Certain overhead functions, like loading external programs, might influence

short timings considerably.
e If your program displays a lot of text, consider redirecting the output from the program.

Redirecting output from the program will change the times reported because of reduced screen

I/O.

The following program illustrates a model for program timing:

Sample Timing

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>
#i ncl ude <ti ne. h>

i nt mai n(void)

clock t start, finish;

| ong | oop;

doubl e duration, |oop_calc;
start = clock();

for(loop=0; |oop <= 2000; | oop++)

| oop_calc = 123.456 * 789;

[lprintf() inculded to facilitate exanple
printf("\nThe value of loop is: %", |oop);

finish = clock();
duration = (double)(finish - start)/CLOCKS PER SEC
printf("\n%.3f seconds\n", duration);

Page 151 of 431

Intel® C++ Compiler User's Guide

Optimizer Report Generation

The Intel® C++ Compiler provides options to generate and manage optimization reports:

e -0pt _report generates an optimization report and directs it to st der r . By default, the
compiler does not generate optimization reports.

e -opt_report_filefil ename generates an optimization report and directs it to a file
specified in fil enamne.

e -opt _report_Ilevel {m n| med| max} specifies the detail level of the optimization report. The
m n argument provides the minimal summary and max produces the full report. The default is -
opt _report_I|evel mn.

e -opt_report_routinefil eroutine_substring generates reports from all routines with
names containing the subst ri ng as part of their name. If not specified, reports from all
routines are generated. By default, the compiler generates reports for all routines.

Specifying Optimizations to Generate Reports

The compiler can generate reports for an optimizer you specify in the phase argument of the -
opt _report _phasephase option. The option can be used multiple times on the same command line
to generate reports for multiple optimizers. Currently, the following optimizer reports are supported.

Optimizer | Optimizer Full Name

Logical

Name

i po Interprocedural Optimizer

hl o High Level Optimizer

ilo Intermediate Language Scalar Optimizer
ecg Code Generator

onp Open MP

al | All phases

When one of the above logical names for optimizers is specified, all reports from that optimizer are
generated.

For example, - opt _report_phasei po -opt _report_phaseecg generates reports from the
interprocedural optimizer and the code generator.

Page 152 of 431

Intel® C++ Compiler User's Guide

Each of the optimizers can potentially have specific optimizations within them. Each of these
optimizations are prefixed with one of the optimizer logical names. For example:

Optimizer_optimization Full Name

i po_inline Interprocedural Optimizer, inline expansion of functions

i po_const ant _propagat i on | Interprocedural Optimizer, constant propagation

i po_function_reorder Interprocedural Optimizer, function reorder

i | o_constant_propagation | Intermediate Language Scalar Optimizer, constant propagation

i | o_copy_propagation Intermediate Language Scalar Optimizer, copy propagation

ecg_sof tware_pi pelining | Code Generator, software pipelining

All optimization reports that have a matching prefix with the specified optimizer are generated. For
example, if -opt _report_phase il o_co is specified, a report from both the constant propagation
and the copy propagation are generated.

The Availability of Report Generation

The - opt _report _hel p option lists the logical names of optimizers available for report generation.

Overview: Libraries

The Intel® C++ Compiler uses the GNU* C Library and Dinkumware* C++ Library. These libraries are
documented at the following Internet locations:

GNU C Library
http://www.gnu.org/manual/glibc-2.2.3/html_chapter/libc_toc.html
Dinkumware C++ Library

http://www.dinkumware.com/htm_cpl/lib_cpp.html

Page 153 of 431

Intel® C++ Compiler User's Guide

Default Libraries

The following libraries are supplied with the Intel® C++ Compiler:

Library Description

: : ggﬂ: gg: 20 for OpenMP* implementation

libsvm.a short vector math library

libirc.a Intel support library for PGO and CPU dispatch
libinf.a Intel math library

libinf.so Intel math library

l'ibcprts.a Dinkumware C++ Library
libcprts.so

|'i bunwi nd. a | Unwinder library
i bunwi nd. so

l'i bcxa. a Intel run time support for C++ features.
l'i bcxa. so

If you want to link your program with alternate or additional libraries, specify them at the end of the
command line. For example, to compile and link pr og. ¢ with nyl i b. a, use the following command:

e |A-32 Systems: pronpt >icc -oprog prog.c nylib.a
e Itanium®-based Systems: pronpt >ecc -oprog prog.c nylib.a

The nyl i b. a library appears prior to the | i bi nf . a library in the command line for the | d linker.

.& Caution

The Linux* system libraries and the compiler libraries are not built with the - al i gn option. Therefore,
if you compile with the - al i gn option and make a call to a compiler distributed or system library, and
have | ong | ong, doubl e, or|l ong doubl e types in your interface, you will get the wrong answer
due to the difference in alignment. Any code built with - al i gn cannot make calls to libraries that use
these types in their interfaces unless they are built with - al i gn (in which case they will not work
without - al i gn).

Page 154 of 431

Intel® C++ Compiler User's Guide

Math Libraries

The Intel math library, | i bi nf . a, is included with the Intel C++ Compiler. This math library contains
optimized versions of the math functions in the standard C run-time library. The functionsin | i bi nf . a
are optimized for program execution speed on the Pentium® Il and Pentium 4 processors. The
Itanium® compiler also includes a | i bi nf . a designed to optimize execution on Itanium-based
systems.

f) Note

The - | mswitch is used for linking, precede it with - 1 i nf so that | i bi nf . a is linked in before the
system | i bm a.

Example: pronpt >i cc prog.c -1linf

See Managing Libraries.

Page 155 of 431

Intel® C++ Compiler User's Guide

Intel® Shared Libraries

The Intel® C++ Compiler links libraries statically at link time and dynamically at run time, the latter as
dynamically-shared objects (DSO).

By default, the libraries are linked as follows:

e C++ math,and | i bcprts. a libraries are linked at link time, that is, statically.
e |ibcxa. so is linked dynamically.
e GNU* and Linux* system libraries are linked dynamically.

Advantages of This Approach

This approach:

e Enables to maintain the same model for both IA-32 and Itanium® compilers.

e Provides a model consistent with the Linux model where system libraries are dynamic and
application libraries are static.

e The users have the option of using dynamic versions of our libraries to reduce the size of their
binaries if desired.

e The users are licensed to distribute Intel-provided libraries.

Shared Library Options
The main options used with shared libraries are - i _dynami ¢ and - shar ed.

The -i _dynanmi ¢ option can be used to specify that all Intel-provided libraries should be linked
dynamically. The comparison of the following commands illustrates the effects of this option.

1. pronpt>icc prog.c
This command produces the following results (default):

e C++ math,libirc.a,andlibcprts. a libraries are linked statically (at link time).
e Dynamic version of | i bcxa. so is linked at run time.

The statically linked libraries increase the size of the application binary, but do not need to be installed
on the systems where the application runs.

2.pronpt>icc -i_dynamic prog.c

This command links all of the above libraries dynamically. This has the advantage of reducing the size
of the application binary, but it requires all the dynamic versions installed on the systems where the
application runs.

The - shar ed option instructs the compiler to build a Dynamic Shared Object (DSO) instead of an
executable. For more details, refer to the | d man page documentation.

Page 156 of 431

Intel® C++ Compiler User's Guide

Managing Libraries

The LD _LI BRARY_PATH environment variable contains a colon-separated list of directories in which
the linker will search for library (. a) files. If you want the linker to search additional libraries, you can
add their names to LD_LI BRARY_PATH, to the command line, to a response file, or to the
configuration file. In each case, the names of these libraries are passed to the linker before the names
of the Intel libraries that the driver always specifies.

Modifying LD_LIBRARY_PATH

If you want to add a directory, / | i bs for example, to the LD_LI BRARY_PATH, you can do either of the
following:

e Command line: pronpt >export LD LI BRARY_PATH=/1i bs: $LD LI BRARY_PATH
e Startup file export LD LI BRARY_PATH=/1i bs: $LD LI BRARY_PATH

To compile fi | e. ¢ and link it with the library myl i b. a, enter the following command:

e |A-32 Systems: pronpt>icc file.c nylib.a
e Itanium®-based Systems: pronpt >ecc file.c nylib.a

The compiler passes file names to the linker in the following order:

The object file

Any objects or libraries specified on the command line, in a response file, or in a configuration
file

3. Theli binf. a library

1.
2.

Overview: Intel Math Library

The Intel® C++ Compiler includes a mathematical software library containing highly optimized and very
accurate mathematical functions. These functions are commonly used in scientific or graphic
applications, as well as other programs that rely heavily on floating-point computations. Support for
C99 Conpl ex data types is included by using the - c99 compiler option. The mat hi nf . h header file
includes prototypes for the library functions. See Using the Intel Math Library. For a complete list of the
functions available, refer to the Function List in this section.

Math Libraries for IA-32 and Itanium®-based Systems

The math library linked to an application depends on the compilation or linkage options specified.
Refer to the table below:

Library Description

l'i bi nf.a | Default static math library.

l'i bi nf.so | Default shared math library.

See also Math Libraries.

Page 157 of 431

Intel® C++ Compiler User's Guide

Using the Intel Math Library

To use the Intel math library, include the header file, mat hi nf . h, in your program. Below, are two
example programs that illustrate the use of the math library.

Example Using Real Functions

/1l real _math.c

#i ncl ude <stdi o. h>
#i ncl ude <mat hi nf. h>

int main() {

float fp32bits;

doubl e fp64bits;

| ong doubl e fp80bits;

| ong doubl e pi _by four = 3.141592653589793238/ 4. 0;

/1 pil4 radians is about 45 degrees.

fp32bits = (float) pi_by four; /1 float approximation to pi/4
fp6dbits = (double) pi_by four; // double approximation to pi/4
fp80bits = pi _by four; /1 1ong doubl e (extended) approximation
to pi/4

/1l The sin(pi/4) is known to be 1/sqrt(2) or approximtely .7071067

printf("wWen x
printf("Wen x
printf("wWen x
(fp8Obits));

98.8f, sinf(x) = 98.8f \n", fp32bits, sinf(fp32bits));
%46. 16f, sin(x) = %6.16f \n", fp64bits, sin(fp64bits));
%20. 20Lf, sinl(x) = 9%0.20f \n", fp80bits, sinl

return O;

}

Since the example program above includes the | ong doubl e data type, be sure to include the -
| ong_doubl e compiler option:

IA-32 Systems: i cc -long double real _math.c
ltanium®-based Systems: ecc -1ong_double real _math.c

The output of a. out will look like this:

Wien x = 0.78539816, sinf(x) = 0.70710678
When x = 0.7853981633974483, sin(x) = 0.7071067811865475
Wien x = 0.78539816339744827900, sinl(x) = 0.70710678118654750275

Page 158 of 431

Intel® C++ Compiler User's Guide

Example Using Complex Functions

/1 conplex_math.c

#i ncl ude <stdi o. h>
#i ncl ude <mat hi nf. h>

int main()

float _Compl ex ¢32in, c320ut;

doubl e _Conpl ex c64in, c64out;

doubl e pi _by four= 3.141592653589793238/ 4. 0;
c64in =1.0 + _|__* pi_by four;

/1l Create the double precision conplex nunber 1 + pi/4 |
/1 where | __is the imaginary unit.

c32in = (float _Conpl ex) c64in;
/1l Create the float conplex value fromthe doubl e conpl ex val ue.

c64out = cexp(c64in);
c32out = cexpf(c32in);

/1 Call the conpl ex exponential,
Il cexp(z) = cexp(x+ly) = eM (x +1i y) =e”x * (cos(y) + i sin(y))

printf("Wen z = %.7f + %.7f |, cexpf(z) = W.7f + %.7f | \n",crealf
(c32in), ci magf (c32in), creal f(c32out), ci magf (c320ut));

printf("Wen z = %2.12f + 9%42.12f |, cexp(z) = %2. 12f + 9%42.12f |
\'n", creal (c64in), ci mag(c64in), creal (c64out), ci magf (c64out));

return O;

}

IA-32 Systems: i cc conpl ex_math. c
Itanium®-based Systems: ecc conpl ex_math. ¢

The output of a. out will look like this:

When z = 1. 0000000 + 0.7853982 |, cexpf(z) = 1.9221154 + 1.9221156 |
Wien z = 1. 000000000000 + 0.785398163397 |, cexp(z) = 1.922115514080 +
1.922115514080 |

E/J Note

_Conpl ex data types are supported in C but not in C++ programs.

Page 159 of 431

Intel® C++ Compiler User's Guide

Other Considerations

Some math functions are inlined automatically by the compiler. The functions actually inlined may vary
and may depend on any vectorization or processor-specific compilation options used. For more
information, see Criteria for Inline Expansion of Functions.

A change of the default precision control or rounding mode may affect the results returned by some of
the mathematical functions. See Floating-point Arithmetic Precision.

Depending on the data types used, some important compiler options include:

e -1 ong_doubl e: Use this option when compiling programs that require support for the | ong
doubl e data type (80-bit floating-point). Without this option, compilation will be successful, but
| ong doubl e data types will be mapped to doubl e data types.

e -C99: Use this option when compiling programs that require support for _Conpl ex data types.

Page 160 of 431

Intel® C++ Compiler User's Guide

Trigonometric Functions

The Intel Math library supports the following trigonometric functions:

ACOS

Description: The acos function returns the principal value of the inverse cosine of x in the
range [0, pi] radians for x in the interval [-1,1].

Calling interface:

| ong doubl e acosl (1 ong doubl e x);
doubl e acos(double x);
float acosf(float x);

ACOSD

Description: The acosd function returns the principal value of the inverse cosine of x in the
interval [0,180] degrees for x in the interval [-1,1].

Calling interface:

| ong doubl e acosdl (1 ong doubl e x);
doubl e acosd(doubl e x);
float acosdf(float x);

ASIN
Description: The asi n function returns the principal value of the inverse sine of x in the range
[-pi/2, +pi/2] radians for x in the interval [-1,1].
Calling interface:
| ong doubl e asinl (1 ong double x);
doubl e asi n(doubl e x);
float asinf(float x);
ASIND

Description: The asi nd function returns the principal value of the inverse sine of x in the
interval [-90,90] degrees for x in the interval [-1,1].

Calling interface:

| ong doubl e asi ndl (1 ong doubl e x);
doubl e asi nd(doubl e x);
float asindf(float x);

Page 161 of 431

Intel® C++ Compiler User's Guide

ATAN
Description: The at an function returns the principal value of the inverse tangent of x in the
range [-pi/2, +pi/2] radians.
Calling interface:
| ong doubl e atanl (1 ong doubl e x);
doubl e atan(doubl e x);
float atanf(float x);
ATAN2
Description: The at an2 function returns the principal value of the inverse tangent of y/ x in the
range [-p, +pi] radians.
Calling interface:
| ong doubl e atan2l (1 ong double x, [ong double y);
doubl e atan2(doubl e x, double y);
float atan2f(float x, float y);
ATAND
Description: The at and function returns the principal value of the inverse tangent of x in the
interval [-90,90] degrees.
Calling interface:
| ong doubl e atandl (I ong doubl e x);
doubl e at and(doubl e x);
float atandf(float x);
ATAND2

Description: The at and2 function returns the principal value of the inverse tangent of y/ x in
the range [-180, +180] degrees.

Calling interface:

| ong doubl e atand2l (I ong doubl e x, long double y); /*1A-32 only *
doubl e atand2(doubl e x, double y);
float atand2f(float x, float y);

Page 162 of 431

Intel® C++ Compiler User's Guide

COS

Description: The cos function returns the cosine of x measured in radians.

Calling interface:

| ong doubl e cosl (I ong doubl e x);
doubl e cos(doubl e x);
float cosf(float x);

COSD

Description: The cosd function returns the cosine of x measured in degrees.

Calling interface:

| ong doubl e cosdl (1 ong doubl e x);
doubl e cosd(double x);
float cosdf(float x);

CoT
Description: The cot function returns the cotangent of x measured in radians.
Calling interface:

| ong doubl e cotl (I ong double x);
doubl e cot (doubl e x);
float cotf(float x);

COTD
Description: The cot d function returns the cotangent of x measured in degrees.

Calling interface:

| ong doubl e cotdl (1 ong double x);
doubl e cotd(double x);
float cotdf(float x);

SIN
Description: The si n function returns the sine of x measured in radians.
Calling interface:

| ong doubl e sinl(long double x);
doubl e sin(double x);
float sinf(float x);

Page 163 of 431

Intel® C++ Compiler User's Guide

SINCOS

Description: The si ncos function returns both the sine and cosine of x measured in radians.

Calling interface:

voi d sincosl (I ong double x, |Iong double *sinval, |ong double *cosval);
voi d sincos(doubl e x, double *sinval, double *cosval);
voi d sincosf(float x, float *sinval, float *cosval);

SINCOSD

SIND

TAN

TAND

Description: The si hcosd function returns both the sine and cosine of x measured in
degrees.

Calling interface:

voi d sincosdl (1 ong double x, |long double *sinval, |ong double
*cosval) ;

voi d sincosd(doubl e x, double *sinval, double *cosval);

voi d sincosdf (float x, float *sinval, float *cosval);

Description: The si nd function computes the sine of x measured in degrees.

Calling interface:

| ong doubl e sindl (long double x);
doubl e si nd(double x);
float sindf(float x);

Description: The t an function returns the tangent of x measured in radians.
Calling interface:

| ong doubl e tanl (I ong doubl e x);
doubl e tan(doubl e x);
float tanf(float x);

Description: The t and function returns the tangent of x measured in degrees.

Calling interface:

| ong doubl e tandl (1 ong doubl e x);
doubl e tand(double x);
float tandf(float x);

Page 164 of 431

Intel® C++ Compiler User's Guide

Hyperbolic Functions

The Intel Math library supports the following hyperbolic functions:

ACOSH

Description: The acosh function returns the inverse hyperbolic cosine of x.

Calling interface:

| ong doubl e acoshl (1 ong doubl e x);
doubl e acosh(doubl e x);
float acoshf(float x);

ASINH

Description: The asi nh function returns the inverse hyperbolic sine of x.

Calling interface:

| ong doubl e asi nhl (1 ong doubl e x);
doubl e asi nh(doubl e x);
float asinhf(float x);

ATANH

Description: The at anh function returns the inverse hyperbolic tangent of x.

Calling interface:

| ong doubl e atanhl (1 ong doubl e x);
doubl e at anh(doubl e x);
float atanhf(float x);

COSH
Description: The cosh function returns the hyperbolic cosine of x, (e*+e %)/ 2.

Calling interface:

| ong doubl e coshl (1 ong doubl e x);
doubl e cosh(doubl e x);
float coshf(float x);

Page 165 of 431

Intel® C++ Compiler User's Guide

SINH

Description: The si nh function returns the hyperbolic sine of x, (e*-e *)/ 2.

Calling interface:

| ong doubl e sinhl (l1ong double x);
doubl e si nh(double x);
float sinhf(float x);

SINHCOSH

TANH

Description: The si nhcosh function returns both the hyperbolic sine and hyperbolic cosine of
X.

Calling interface:

voi d sinhcoshl (1 ong doubl e x, |ong double *sinval, |ong double
*cosval) ;

voi d sinhcosh(double x, float *sinval, float *cosval);
voi d sinhcoshf(float x, float *sinval, float *cosval);

Description: The t anh function returns the hyperbolic tangent of x, (e*- e X)/ (eX+e X).

Calling interface:

| ong doubl e tanhl (1 ong doubl e x);
doubl e tanh(doubl e x);
float tanhf(float x);

Page 166 of 431

Intel® C++ Compiler User's Guide

Exponential Functions

The Intel Math library supports the following exponential functions:
CBRT
Description: The cbrt function returns the cube root of x.

Calling interface:

| ong doubl e cbrtl (long double x);
doubl e cbrt (double x);
float cbrtf(float x);

EXP
Description: The exp function returns e raised to the x power, e*.

Calling interface:

| ong doubl e expl (I ong doubl e x);
doubl e exp(doubl e x);
float expf(float x);

EXP10
Description: The exp10 function returns 10 raised to the x power, 10%.

Calling interface:

| ong doubl e expl0Il (1 ong doubl e x);
doubl e expl0(doubl e x);
float explOf(float x);

EXP2
Description: The exp2 function returns 2 raised to the x power, 2.

Calling interface:

| ong doubl e exp2l (1 ong doubl e x);
doubl e exp2(double x);
float exp2f(float x);

Page 167 of 431

Intel® C++ Compiler User's Guide

EXPM1

Description: The expml function returns e raised to the x power minus 1, e*- 1.

Calling interface:

| ong doubl e expmll (1 ong doubl e x);
doubl e expni(doubl e x);
float expmlf(float x);

FREXP

Description: The f r exp function converts a floating-point number x into signed normalized
fraction in [1/2, 1) multiplied by an integral power of two. The signed normalized fraction is
returned, and the integer exponent stored at location exp.

Calling interface:

| ong doubl e frexp(long double x, int *exp);
doubl e frexp(double x, int *exp);
float frexpf(float x, int *exp);

HYPOT

Description: The hypot function returns the value of the square root of the sum of the
squares.

Calling interface:

| ong doubl e hypotl (1 ong double x, [ong double y);
doubl e hypot (doubl e x, double y);
float hypotf(float x, float y);

ILOGB

Description: The i | ogb function returns the exponent of x base two as a signed i nt value.

Calling interface:

int ilogbl(long double x);
int ilogb(double x);
int ilogbf(float x);

Page 168 of 431

Intel® C++ Compiler User's Guide

LDEXP

LOG

Description: The | dexp function returns the value of x times 2 raised to the power exp,
X* 2€%XP,

Calling interface:

| ong doubl e | dexpl (I ong double x, int exp);
doubl e | dexp(doubl e x, int exp);
float |dexpf(float x, int exp);

Description: The | og function returns the natural log of x, | n(x) .

Calling interface:

| ong doubl e I ogl (I ong doubl e x);
doubl e | og(doubl e x);
float |ogf(float x);

LOG10

Description: The | 0g10 function returns the base-10 log of x, | 0g,,(X) .

Calling interface:

| ong doubl e 1 0g10I (I ong doubl e x);
doubl e | 0g10(doubl e x);
float |oglOf(float x);

LOG1P

LOG2

Description: The | oglp function returns the natural log of (x+1), | n(x + 1).

Calling interface:

| ong doubl e I oglpl (1 ong doubl e x);
doubl e | oglp(doubl e x);
float |oglpf(float x);

Description: The | 0g2 function returns the base-2 log of x, | 0g,(x) .

Calling interface:

| ong doubl e 1 0g2l (1 ong doubl e x);
doubl e | og2(doubl e x);
float |og2f(float x;

Page 169 of 431

Intel® C++ Compiler User's Guide

LOGB
Description: The | ogb function returns the signed exponent of x

Calling interface:

| ong doubl e | ogbl (1 ong doubl e x);
doubl e | ogb(doubl e x);
float |ogbf(float x);

POW
Description: The pow function returns x raised to the power of y, xV.
Calling interface:
L?ng doubl e pow (doubl e x, double y); /* Itani un® based systens only

doubl e pow(doubl e x, double y);
float powf (float x, float y);

SCALB
Description: The scal b function returns x* 2¥, where y is a floating-point value.

Calling interface:

| ong doubl e scal bl (I ong double x, |ong double y);
doubl e scal b(doubl e x, double y);
float scal bf(float x, float y);

SCALBN
Description: The scal bn function returns x* 2¥, where y is an integer value.

Calling interface:

| ong doubl e scal bnl (long double x, int y);
doubl e scal bn(double x, int y);
float scal bnf(float x, int y);

SCALBLN
Description: The scal bl n function returns x* 2"

Calling interface:

| ong doubl e scal bl nl (long double x, long int n);
doubl e scal bl n(double x, long int n);
float scalblnf(float x, long int n);

Page 170 of 431

Intel® C++ Compiler User's Guide

SQRT
Description: The sqgrt function returns the correctly rounded square root.
Calling interface:

| ong doubl e sqrtl (1l ong double x);
doubl e sqgrt (double x);
float sqrtf(float x);

Page 171 of 431

Intel® C++ Compiler User's Guide

Special Functions

The Intel Math library supports the following special functions:

ANNUITY

Description: The annui t y function computes the present value factor for an annuity, (1-
(14x) "¥)/ x, where x is a rate and y is a period.

Calling interface:

doubl e annui ty(doubl e x, double y);
float annuityf(float x, double y);

[* Al annuity functions: [A-32 only */
COMPOUND

Description: The conmpound function computes the compound interest factor, (1+x) ¥, where
X is arate and y is a period.

Calling interface:

doubl e compound(doubl e x, double y);
float conpoundf (float x, double y);

/* Al conmpound functions: |A-32 only */

ERF
Description: The er f function returns the error function value.
Calling interface:

| ong doubl e erfl (long double x);
doubl e erf(double x);
float erff(float x);

ERFC
Description: The er f ¢ function returns the complementary error function value.

Calling interface:

| ong doubl e erfcl (long double x);
doubl e erfc(double x);
float erfcf(float x);

Page 172 of 431

Intel® C++ Compiler User's Guide

GAMMA

Description: The gamra function returns the value of the logarithm of the absolute value of
gamma.

Calling interface:

doubl e gama(doubl e x);
fl oat gammaf (fl oat x);

GAMMA_R

Jo

Ji

JN

Description: The gamra_r function returns the value of the logarithm of the absolute value of
gamma. The sign of the ganmma function is returned in the external integer si gngam

Calling interface:

doubl e gama_r (doubl e x, int *signgan);
float gammaf _r(float x, int *signgam;

Description: Computes the Bessel function (of the first kind) of x with order 0.

Calling interface:

doubl e j O(doubl e x);
float jOf(float x);

Description: Computes the Bessel function (of the first kind) of x with order 1.

Calling interface:

doubl e j 1(doubl e x);
float j1f (float x);

Description: Computes the Bessel function (of the first kind) of x with order n.

Calling interface:

double jn(int n, double Xx);
float jnf(int n, float x);

Page 173 of 431

Intel® C++ Compiler User's Guide

LGAMMA

Description: The | ganma function returns the value of the logarithm of the absolute value of
gamma.

Calling interface:

| ong doubl e | ganmal (1 ong double x); /* Itani um® based systens only */

doubl e | ganma(doubl e x);
float |gammaf (float x);

LGAMMA_R

Description: The | ganme_r function returns the value of the logarithm of the absolute value of
gamma. The sign of the ganmma function is returned in the external integer si gngam

Calling interface:

doubl e | ganma_r (doubl e x, int *signgam;
float | gammaf r(float x, int *signgan);

TGAMMA

YO

Y1

Description: The t ganma function computes the gamma function of x.

Calling interface:

| ong doubl e tganmal (I ong double x); /* Itani um based systens only */
doubl e t ganma(doubl e x);
float tgammaf(float x);

Description: Computes the Bessel function (of the second kind) of x with order O.

Calling interface:

doubl e yO(doubl e x);
float yOf (float x);

Description: Computes the Bessel function (of the second kind) of x with order 1.

Calling interface:

doubl e y1(double x);
float ylf(float x);

Page 174 of 431

Intel® C++ Compiler User's Guide

YN

Description: Computes the Bessel function (of the second kind) of x with order n.

Calling interface:

doubl e yn(int n, double x);
float ynf(int n, float x);

Page 175 of 431

Intel® C++ Compiler User's Guide

Nearest Integer Functions

The Intel Math library supports the following nearest integer functions:

CEIL

Description: The cei | function returns the smallest integral value not less than x as a floating-
point number.

Calling interface:

| ong doubl e ceill (long double x);
doubl e ceil (doubl e x);
float ceil f(float x);

FLOOR

LRINT

Description: The f | oor function returns the largest integral value not greater than x as a
floating-point value.

Calling interface:

| ong doubl e floorl (I ong double x);
doubl e fl oor (double x);
float floorf(float x);

Description: The | ri nt function returns the rounded integer value as al ong i nt.

Calling interface:

long int Irintl(long double x);

long int Irint(double x);

long int Irintf(float x);
LLRINT

Description: The | | ri nt function returns the rounded integer value asal ong | ong int.
Calling interface:

long long int Ilrintl(long double x);

long long int Ilrint(double x);

long long int Ilrintf(float x);

Page 176 of 431

Intel® C++ Compiler User's Guide

LROUND

Description: The | r ound function returns the rounded integer value as al ong i nt.

Calling interface:

long int Iroundl (I ong double x);
long int |Iround(double x);
long int Iroundf(float Xx);

LLROUND

MODF

Description: The I | r ound function returns the rounded integer value asal ong | ong int.

Calling interface:

long long int Ilroundl (I ong double x);
long long int Ilround(double x);
long long int Ilroundf(float x);

Description: The nodf function returns the value of the signed fractional part of x and stores
the integral part in floating-point format in *i pt r .

Calling interface:

| ong doubl e nodfl (1 ong doubl e x, |ong double *iptr);
doubl e nodf (doubl e x, double *iptr);
float nodff(float x, float *iptr);

NEARBYINT

RINT

Description: The near byi nt function returns the rounded integral value as a floating-point
number.

Calling interface:

| ong doubl e nearbyintl (I ong double x);
doubl e near byi nt (doubl e Xx);
float nearbyintf(float x);

Description: The ri nt function returns the rounded integral value as a floating-point number.

Calling interface:

| ong doubl e rintl (long double x);
doubl e rint(double x);
float rintf(float x);

Page 177 of 431

Intel® C++ Compiler User's Guide

ROUND

Description: The r ound function returns the nearest integral value as a floating-point number.

Calling interface:

| ong doubl e roundl (I ong doubl e x);
doubl e round(doubl e x);
float roundf(float x);

TRUNC

Description: The t r unc function returns the truncated integral value as a floating-point
number.

Calling interface:

| ong doubl e truncl (1 ong double x);
doubl e trunc(doubl e x);
float truncf(float x);

Page 178 of 431

Intel® C++ Compiler User's Guide

Remainder Functions

The Intel Math library supports the following remainder functions:

FMOD

Description: The f nod function returns the value x- n*y for integer n such that if y is nonzero,
the result has the same sign as x and magnitude less than the magnitude of y.

Calling interface:

| ong doubl e fnodl (1 ong double x, |long double y);
doubl e fnod(doubl e x, double y);
float frodf(float x, float y);

REMAINDER

Description: The r emai nder function returns the value of x REM y.

Calling interface:

| ong doubl e renai nderl (I ong doubl e x, |ong double y);
doubl e remai nder (doubl e x, double y);
float renminderf(float x, float y);

REMQUO

Description: The r enquo function returns the value of x REM y.

Calling interface:

| ong doubl e renguol (I ong doubl e x, long double y, int *quo);
doubl e remguo(doubl e x, double y, int *quo);
float remguof (float x, float y, int *quo);

/* Al renmguo functions: |tani um® based systenms only */

Page 179 of 431

Intel® C++ Compiler User's Guide

Miscellaneous Functions

The Intel Math library supports the following miscellaneous functions:

COPYSIGN

Description: The copysi gn function returns the value with the magnitude of x and the sign of
y.

Calling interface:

| ong doubl e copysignl (1 ong double x, |ong double y);
doubl e copysi gn(doubl e x, double y);
float copysignf(float x, float y);

FABS
Description: The f abs function returns the absolute value of x.
Calling interface:
| ong doubl e fabsl (1 ong double x);
doubl e fabs(double x);
float fabsf(float x);
FDIM
Description: The f di mfunction returns the positive difference value, x-y (for x >y) or +0 (for
X<=Y).
Calling interface:
| ong double fdim (long double x, |long double y);
doubl e fdi n(dou e X, double y);
float fdinf(float x, float y);
FINITE

Description: The fi ni t e function returns 1 if x is not a NaN or +/-Infinity. Otherwise 0 is
returned..

Calling interface:

int finitel(long double x);
int finite(double x);
int finitef(float x);

[* Al finite functions: I|tani um® based systens only */

Page 180 of 431

Intel® C++ Compiler User's Guide

FMA

FMAX

FMIN

Description: The f ma functions return (x*y) +z.
Calling interface:

| ong doubl e fmal (I ong double x, |ong double y, |ong double z);
doubl e frma(doubl e x, double y, |ong double z);
float fmaf (float x, float y, |ong double z);

[* Al the fma functions: I|tanium based systens only */

Description: The f max function returns the maximum numeric value of its arguments.

Calling interface:

| ong doubl e fmaxl (1 ong double x, |ong double y);
doubl e fmax(doubl e x, double y);
float frmaxf(float x, float y);

Description: The f mi n function returns the minimum numeric value of its arguments.

Calling interface:

| ong doubl e fminl(long double x, |ong double y);
doubl e fm n(doubl e x, double y);
float fmnf(float x, float y);

ISNAN

Description: The i snan function returns a nonzero value if and only if x has a NaN value.

Calling interface:

int isnanl (long double x);
int isnan(double x);
int isnanf(float x);

NEXTAFTER

Description: The next af t er function returns the next representable value in the specified
format after x in the direction of y.

Calling interface:

| ong doubl e nextafterl (I ong double x, |ong double y);
doubl e nextafter(double x, double y);
float nextafterf(float x, float y);

Page 181 of 431

Intel® C++ Compiler User's Guide

NEXTTOWARD
Description: The next t owar d function returns the next representable value in the specified

format after x in the direction of y. If x equals y, then the function returns y converted to the
type of the function.

Calling interface:

| ong doubl e nexttowardl (1 ong double x, |ong double y);
doubl e nexttoward(double x, double y);
float nexttowardf(float x, float y);

/* Al nexttoward functions: Itanium based systens only */

Page 182 of 431

Intel® C++ Compiler User's Guide

Complex Functions

The Intel Math library supports the following complex functions:

CABS
Description: The cabs function returns the complex absolute value of z.
Calling interface:

doubl e cabs(double _Conplex z);
float cabsf(float _Conplex z);

CACOS
Description: The cacos function returns the complex inverse cosine of z.

Calling interface:

doubl e _Conpl ex cacos(doubl e _Conpl ex z);
float _Conplex cacosf(float Complex z);

CACOSH
Description: The cacosh function returns the complex inverse hyperbolic cosine of z.

Calling interface:

doubl e _Conpl ex cacosh(doubl e _Conplex z);
float _Conpl ex cacoshf(float _Conplex z);

CARG
Description: The car g function returns the value of the argument in the interval [-pi, +pi].

Calling interface:

doubl e carg(double _Conplex z);
float cargf(float _Conplex z);

CASIN

Description: The casi n function returns the complex inverse sine of z.

Calling interface:

doubl e _Conpl ex casi n(doubl e _Conpl ex z);
float _Conplex casinf(float Conmplex z);

Page 183 of 431

Intel® C++ Compiler User's Guide

CASINH
Description: The casi nh function returns the complex inverse hyperbolic sine of z.

Calling interface:

doubl e _Conpl ex casi nh(doubl e _Conplex z);
float _Conpl ex casinhf(float _Conplex z);

CATAN
Description: The cat an function returns the complex inverse tangent of z.

Calling interface:

doubl e _Conpl ex catan(doubl e Conplex z);
float _Conplex catanf(float _Complex z);

CATANH
Description: The cat anh function returns the complex inverse hyperbolic tangent of z.
Calling interface:

doubl e _Conpl ex catanh(doubl e _Conplex z);
float _Conpl ex catanhf(float _Conplex z);

CCOSs
Description: The ccos function returns the complex cosine of z.
Calling interface:

doubl e _Conpl ex ccos(double Complex z);
float _Conplex ccosf(float _Conplex z);

CCOSH
Description: The ccosh function returns the complex hyperbolic cosine of z.

Calling interface:

doubl e _Conpl ex ccosh(doubl e Conplex z);
float _Conplex ccoshf(float _Complex z);

Page 184 of 431

Intel® C++ Compiler User's Guide

CEXP
Description: The cexp function computes the complex base-e exponential of z.
Calling interface:

doubl e _Conpl ex cexp(double Complex z);
float _Conplex cexpf(float _Conplex z);

CIMAG
Description: The ci mag function returns the imaginary part value of z.
Calling interface:

doubl e ci mag(doubl e Conpl ex z);
float cimagf(float _Conplex z);

CIS
Description: The ci s function returns the cosine and sine (as a complex value) of z measured
in radians.
Calling interface:
doubl e _Conpl ex ci s(double z);
float _Conplex cis(float z);
CLOG
Description: The cl og function returns the complex natural logarithm of z.
Calling interface:
doubl e _Conpl ex cl og(double Conplex z);
float _Conplex clogf(float _Conplex z);
CONJ

Description: The conj function returns the complex conjugate of z, by reversing the sign of its
imaginary part.

Calling interface:

doubl e _Conpl ex conj (doubl e Conpl ex z);
float _Conplex conjf(float _Conplex z);

Page 185 of 431

Intel® C++ Compiler User's Guide

CPOW
Description: The cpow function returns the complex power function xY .

Calling interface:

doubl e _Conpl ex cpow(doubl e _Conpl ex x, double _Conplex y);
float _Conplex cpowf(float Conplex x, float _Conplex y);

CPROJ
Description: The cpr oj function returns a projection of z onto the Riemann sphere.

Calling interface:

doubl e _Conpl ex cproj (double _Conplex z);
float _Conplex cprojf(float Conmplex z);

CREAL
Description: The cr eal function returns the real part value of z.

Calling interface:

doubl e creal (doubl e _Conmplex z);
float creal f(float Conplex z);

CSIN
Description: The csi n function returns the complex sine of z.

Calling interface:

doubl e _Conpl ex csin(double _Complex z);
float _Conplex csinf(float _Conplex z);

CSINH
Description: The csi nh function returns the complex hyperbolic sine of z.

Calling interface:

doubl e _Conpl ex csi nh(doubl e _Conpl ex z);
float _Conplex csinhf(float Conplex z);

Page 186 of 431

Intel® C++ Compiler User's Guide

CSQRT
Description: The csqrt function returns the complex square root of z

Calling interface:

doubl e _Conpl ex csqrt(double Conplex z);
float _Conplex csqrtf(float _Complex z);

CTAN
Description: The ct an function returns the complex tangent of z.

Calling interface:

doubl e _Conpl ex ctan(double Complex z);
float _Conplex ctanf(float _Conplex z);

CTANH
Description: The ct anh function returns the complex hyperbolic tangent of z.

Calling interface:

doubl e _Conpl ex ctanh(double Conplex z);
float _Conplex ctanhf(float _Complex z);

Page 187 of 431

Intel® C++ Compiler User's Guide

Overview: Diagnostics and Messages

This section describes the various messages that the compiler produces. These messages include the
sign-on message and diagnostic messages for remarks, warnings, or errors. The compiler always
displays any diagnostic message, along with the erroneous source line, on the standard output.

This section also describes how to control the severity of diagnostic messages.

Diagnostic Messages

Option Description

-w0, - w | Displays error messages only. Both - w0 and - wdisplay exactly the same messages.

-wl, - w2 | Displays warnings and error messages. Both - wl and - w2 display exactly the same
messages.The compiler uses this level as the default.

Language Diagnostics

These messages describe diagnostics that are reported during the processing of the source file. These
diagnostics have the following format:

filenane (linenum: type [#nn]: message

fil ename | Indicates the name of the source file currently being processed.

I'i nenum | Indicates the source line where the compiler detects the condition.

type Indicates the severity of the diagnostic message: warning, remark, error, or
catastrophic error.

[#nn] The number assigned to the error (or warning) message. Hard errors or catastrophes
are not assigned a number.

nessage | Describes the diagnostic.

The following is an example of a warning message:
tantst.cpp(3): warning #328: Local variable "increnent" never used.

The compiler can also display internal error messages on the standard error. If your compilation
produces any internal errors, contact your Intel representative. Internal error messages are in the
following form:

FATAL COWPI LER ERROR nessage

Page 188 of 431

Intel® C++ Compiler User's Guide

Suppressing Warning Messages with lint Comments

The UNIX | i nt program attempts to detect features of a C or C++ program that are likely to be bugs,
non-portable, or wasteful. The compiler recognizes three | i nt -specific comments:

1. /*ARGSUSED*/
2. [*NOTREACHED*/
3. / *VARARGS*/

Like the | i nt program, the compiler suppresses warnings about certain conditions when you place
these comments at specific points in the source.

Suppressing Warning Messages or Enabling
Remarks

Use the - wor - Wh option to suppress warning messages or to enable remarks during the
preprocessing and compilation phases. You can enter the option with one of the following arguments:

Option | Description

-w0, - w | Displays error messages only. Both - w0 and - wdisplay exactly the same messages.

-wil, - Displays warnings and error messages. Both - wl and - w2 display exactly the same
w2 messages.The compiler uses this level as the default.

For some compilations, you might not want warnings for known and benign characteristics, such as the
K&R C constructs in your code. For example, the following command compiles newpr og. ¢ and
displays compiler errors, but not warnings:

e |A-32 System: pronpt >i cc - W newpr og. Cc
e Itanium®-based System: pr onpt >ecc - W) newprog. c

Page 189 of 431

Intel® C++ Compiler User's Guide

Limiting the Number of Errors Reported

Use the - wnn option to limit the number of error messages displayed before the compiler aborts. By
default, if more than 100 errors are displayed, compilation aborts.

Option | Description

-wnn Limit the number of error diagnostics
that will be displayed prior to aborting
compilationto n . Remarks and
warnings do not count towards this
limit.

For example, the following command line specifies that if more than 50 error messages are displayed
during the compilation of a. ¢, compilation aborts.

e |A-32 Systems: pronpt >icc -wn50 -c a.c
e Itanium®-based Systems: pronpt >ecc -wn50 -c a.c

Remark Messages

These messages report common, but sometimes unconventional, use of C or C++. The compiler does
not print or display remarks unless you specify level 4 for the - Woption, as described in Suppressing
Warning Messages or Enabling Remarks. Remarks do not stop translation or linking. Remarks do not
interfere with any output files. The following are some representative remark messages:

e function declared inplicitly
e type qualifiers are neaningless in this declaration
e controlling expression is constant

Page 190 of 431

Intel® C++ Compiler User's Guide

gcc Compatibility

C language object files created with the Intel® C++ Compiler are binary compatible with the GNU* gcc
compiler and glibc, the GNU C language library. C language object files can be linked with either the
Intel compiler or the gcc compiler. However, to correctly pass the Intel libraries to the linker, use the
Intel compiler. See Linking and Default Libraries for more information.

GNU C includes several, non-standard features not found in ISO standard C. Many of these
extensions to the C language are supported in this version of the Intel C++ Compiler. See the GNU
Web site at http://www.gnu.org for more information.

gcc Intel GNU Description and Examples
Extension to | Support
C Language

Statements Yes http://gcc.gnu.org/onlinedocs/gcc-3.1/gcc/Statement-Exprs.html#Statement%
and
Declarations
in
Expressions

Locally Yes http://gcc.gnu.org/onlinedocs/gcc-3.1/gcc/Local-Labels.html#Local%20Labels
Declared
Labels

Labels as Yes http://gcc.gnu.org/onlinedocs/gcc-3.1/gcc/Labels-as-Values.html#Labels%20i
Values 20Values

Nested No http://gcc.gnu.org/onlinedocs/gcc-3.1/gcc/Nested-Functions.html#Nested%2(
Functions

Constructing | No http://gcc.gnu.org/onlinedocs/gcc-3.1/gcc/Constructing-Calls.html#Constructil
Function
Calls

Naming an Yes http://gcc.gnu.org/onlinedocs/gcc-3.1/gcc/Naming-Types.html#Naming%20Ty
Expression's
Type

Referringto a | Yes http://gcc.gnu.org/onlinedocs/gcc-3.1/gcc/Typeof.html#Typeof

Type with
typeof

Generalized | Yes http://gcc.gnu.org/onlinedocs/gcce-3.1/gcc/Lvalues.html#Lvalues
Lvalues

Conditionals | Yes http://gcc.gnu.org/onlinedocs/gcce-3.1/gcc/Conditionals.html#Conditionals
with Omitted
Operands

Double-Word | Yes http://gcc.gnu.org/onlinedocs/gcce-3.1/gcc/Long-Long.html#Long%20Long
Integers

Complex Yes http://gcc.gnu.org/onlinedocs/gcc-3.1/gcc/Complex.html#Complex
Numbers

Page 191 of 431

Intel® C++ Compiler User's Guide

Hex Floats Yes http://gcc.gnu.org/onlinedocs/gcce-3.1/gcc/Hex-Floats.html#Hex%20Floats
Arrays of Yes http://gcc.gnu.org/onlinedocs/gcc-3.1/gcc/Zero-Length.html#Zero%20Length
Length Zero

Arrays of Yes http://gcc.gnu.org/onlinedocs/gcc-3.1/gcc/Variable-Length.html#Variable%20
Variable

Length

Macros with a | Yes http://gcc.gnu.org/onlinedocs/gcc-3.1/gcc/Variadic-Macros.html#Variadic%20
Variable

Number of

Arguments.

Slightly No http://gcc.gnu.org/onlinedocs/gcc-3.1/gcc/Escaped-Newlines.html#Escaped¥%
Looser Rules 20Newlines

for Escaped

Newlines

String Literals | Yes http://gcc.gnu.org/onlinedocs/gcc-3.1/gcc/Multi-line-Strings. html#Multi-line %2
with

Embedded

Newlines

Non-Lvalue Yes http://gcc.gnu.org/onlinedocs/gcc-3.1/gcc/Subscripting. html#Subscripting
Arrays May

Have

Subscripts

Arithmetic on | Yes http://gcc.gnu.org/onlinedocs/gcce-3.1/gcc/Pointer-Arith. html#Pointer%20Arith
void-Pointers

Arithmetic on | No http://gcc.gnu.org/onlinedocs/gcce-3.1/gcc/Pointer-Arith. html#Pointer%20Arith
Function-

Pointers

Non-Constant | Yes http://gcc.gnu.org/onlinedocs/gcc-3.1/gcc/Initializers.html#initializers
Initializers

Compound Yes http://gcc.gnu.org/onlinedocs/gcce-3.1/gcc/Compound-Literals.htmli#Compoun
Literals 20Literals

Designated Yes http://gcc.gnu.org/onlinedocs/gcc-3.1/gcc/Designated-Inits.html#Designated?
Initializers

Castto a Yes http://gcc.gnu.org/onlinedocs/gcc-3.1/gcc/Cast-to-Union.html#Cast%20to%2(
Union Type

Case Ranges | Yes http://gcc.gnu.org/onlinedocs/gcc-3.1/gcc/Case-Ranges.html#Case%20Rang
Mixed Yes http://gcc.gnu.org/onlinedocs/gcc-3.1/gcc/Mixed-Declarations.html#Mixed%
Declarations 20Declarations

and Code

Declaring No http://gcc.gnu.org/onlinedocs/gcc-3.1/gcc/Function-Attributes. html#Function¥
Attributes of 20Attributes

Functions

Attribute No http://gcc.gnu.org/onlinedocs/gcc-3.1/gcc/Attribute-Syntax.html#Attribute%20
Syntax

Page 192 of 431

Intel® C++ Compiler User's Guide

Prototypes
and Old-Style
Function
Definitions

No

http://gcc.gnu.org/onlinedocs/gcce-3.1/gcc/Function-Prototypes.html#Function
20Prototypes

C++ Style
Comments

Yes

http://gcc.gnu.org/onlinedocs/gcc-3.1/gcc/C---Comments.html#C++%20Comt

Dollar Signs
in Identifier
Names

Yes

http://gcc.gnu.org/onlinedocs/gcce-3.1/gcc/Dollar-Signs.html#Dollar%20Signs

The
Character
ESC in
Constants

Yes

http://gcc.gnu.org/onlinedocs/gcc-3.1/gcc/Character-Escapes.html#Charactel
20Escapes

Specifying
Attributes of
Variables

No

http://gcc.gnu.org/onlinedocs/gcc-3.1/gcc/Variable-Attributes.html#Variable%

Specifying
Attributes of
Types

No

http://gcc.gnu.org/onlinedocs/gcce-3.1/gcc/Type-Attributes.html#Type%20Attri

Inquiring on
Alignment of
Types or
Variables

Yes

http://gcc.gnu.org/onlinedocs/gcce-3.1/gcc/Alignment.html#Alignment

An Inline
Function is
As Fast As a
Macro

Yes

http://gcc.gnu.org/onlinedocs/gcc-3.1/gcc/Inline.htmi#inline

Assembler
Instructions
with C
Expression
Operands

Yes

http://gcc.gnu.org/onlinedocs/gcc-3.1/gcc/Extended-Asm.html#Extended%20

Controlling
Names Used
in Assembler
Code

Yes

http://gcc.gnu.org/onlinedocs/gcc-3.1/gcc/Asm-Labels.html#Asm%20Labels

Variables in
Specified
Registers

Yes

http://gcc.gnu.org/onlinedocs/gcc-3.1/gcc/Explicit-Reg-Vars.html#Explicit%20
20Vars

Alternate
Keywords

No

http://gcc.gnu.org/onlinedocs/gcc-3.1/gcc/Alternate-Keywords.html#Alternate’
20Keywords

Incomplete
enum Types

Yes

http://gcc.gnu.org/onlinedocs/gcc-3.1/gcc/Incomplete-Enums.html#incomplet
20Enums

Function
Names as
Strings

Page 193 of 431

Yes

http://gcc.gnu.org/onlinedocs/gcc-3.1/gcc/Function-Names.html#Function%2(

Intel® C++ Compiler User's Guide

Getting the Yes http://gcc.gnu.org/onlinedocs/gcc-3.1/gcc/Return-Address.html#Return%20A
Return or
Frame
Address of a
Function

Using Vector | No http://gcc.gnu.org/onlinedocs/gcc-3.1/gcc/Vector-Extensions.html#Vector%2(
Instructions
Through
Built-in
Functions

Other built-in | No http://gcc.gnu.org/onlinedocs/gcc-3.1/gcc/Other-Builtins.html#Other%20Builti
functions
provided by
GCC

Built-in No http://gcc.gnu.org/onlinedocs/gcc-3.1/gcc/Target-Builtins.html#Target%20Bui
Functions
Specific to
Particular
Target
Machines

Pragmas No http://gcc.gnu.org/onlinedocs/gcce-3.1/gcc/Pragmas.html#Pragmas
Accepted by
GCC

Unnamed No http://gcc.gnu.org/onlinedocs/gcc-3.1/gcc/Unnamed-Fields.html#Unnamed%:
struct/union
fields within
structs/unions

Page 194 of 431

Intel® C++ Compiler User's Guide

Compiler Limits

The table below shows the size or number of each item that the compiler can process. All capacities
shown in the table are tested values; the actual number can be greater than the number shown.

ltem Tested Values

Control structure nesting (block | 512
nesting)

Conditional compilation nesting | 512

Declarator modifiers 512

Parenthesis nesting levels 512

Significant characters, internal | 2048
identifier

External identifier name length | 64K

Number of external 128K
identifiers/file

Number of identifiers in a single | 2048
block

Number of macros 128K
simultaneously defined

Number of parameters to a 512
function call

Number of parameters per 512
macro

Number of characters in a 128K
string

Bytes in an object 512K
Include file nesting depth 512
Case labels in a switch 32K
Members in one structure or 32K
union

Enumeration constants in one 8192
enumeration

Levels of structure nesting 320

Page 195 of 431

Intel® C++ Compiler User's Guide

Key Files Summary for 1A-32

The following tables list and briefly describe files that are installed for use by the 1A-32 version of the
compiler.

/bin Files Description

i ccvars. sh | Batch file to set environment
variables

icc.cfg Configuration file for use from

command line

icc Intel® C++ Compiler

prof merge | Utility used for Profile Guided
Optimizations

prof order | Utility used for Profile Guided
Optimizations

xild Tool used for Interprocedural
Optimizations

/lib Files Description

[ibcprts.a C++ standard language library

l'i bcxa. so C++ language library
indicating I/O data location

[i bgui de. a OpenMP* library

l'i bgui de. so | Shared OpenMP library

libinf.a Special purpose math library
functions, including some
transcendentals, built only for
Linux*.

l'i bi ntrins.a | Intrinsic functions library

libirc.a Intel-specific library
(optimizations)

['i bunwi nd. a | Unwinder library

libsvm.a Short-vector math library
(used by vectorizer)

Page 196 of 431

Intel® C++ Compiler User's Guide

Key Files Summary for Itanium®-based Systems

The following tables list and briefly describe files that are installed for ltanium®-based systems.

/bin Files Description

eccvars. sh | Batch file to set environment
variables

ecc.cfg Configuration file for use from
command line

ecc Intel® C++ Compiler

i as Assembler

prof merge | Utility used for Profile Guided
Optimizations

prof order | Utility used for Profile Guided
Optimizations

xild Tool used for Interprocedural
Optimizations

/lib Files Description

libcprts.a C++ standard language
library

l'i bcxa. so C++ language library

indicating I/O data location

libirc.a Intel-specific library
(optimizations)

[ibma Math library

l'i bgui de. a OpenMP library

l'i bgui de. so Shared OpenMP library

i brofl. a Multiple Object Format
Library, used by the Intel
assembler

i bnofl . so Shared Multiple Object

Format Library, used by the
Intel assembler

['i bunwi nder. a | Unwinder library

l'ibintrins.a |Intrinsic functions library

Page 197 of 431

Intel® C++ Compiler User's Guide

Types of Intrinsics

The Intel® Pentium® 4 processor and other Intel processors have instructions to enable development
of optimized multimedia applications. The instructions are implemented through extensions to
previously implemented instructions. This technology uses the single instruction, multiple data (SIMD)
technique. By processing data elements in parallel, applications with media-rich bit streams are able to
significantly improve performance using SIMD instructions. The Intel® Itanium® processor also
supports these instructions.

The most direct way to use these instructions is to inline the assembly language instructions into your
source code. However, this can be time-consuming and tedious, and assembly language inline
programming is not supported on all compilers. Instead, Intel provides easy implementation through
the use of API extension sets referred to as intrinsics.

Intrinsics are special coding extensions that allow using the syntax of C function calls and C variables
instead of hardware registers. Using these intrinsics frees programmers from having to program in
assembly language and manage registers. In addition, the compiler optimizes the instruction
scheduling so that executables run faster.

In addition, the native intrinsics for the Itanium processor give programmers access to Itanium
instructions that cannot be generated using the standard constructs of the C and C++ lanugages. The
Intel® C++ Compiler also supports general purpose intrinsics that work across all IA-32 and Itanium-
based platforms.

For more information on intrinsics, please refer to the following publications:

Intel Architecture Software Developer's Manual, Volume 2: Instruction Set Reference Manual, Intel
Corporation, doc. number 243191.

Itanium®-based Application Developer's Architecture Guide, Intel Corporation

Intrinsics Availability on Intel Processors

Processors: | MMX(TM) Streaming | Streaming | Itanium
Technology | SIMD SIMD Processor
Intrinsics Extensions | Extensions | Instructions

2

ltanium X X N/A X

Processor

Pentium 4 X X X N/A

Processor

Pentium Il X X N/A N/A

Processor

Pentium Il X N/A N/A N/A

Processor

Pentium with | X N/A N/A N/A

MMX(TM)

Technology

Page 198 of 431

Intel® C++ Compiler User's Guide

Pentium Pro | N/A N/A N/A N/A
Processor
Pentium N/A N/A N/A N/A
Processor

Page 199 of 431

Intel® C++ Compiler User's Guide

Benefits of Using Intrinsics

The major benefit of using intrinsics is that you now have access to key features that are not available
using conventional coding practices. Intrinsics enable you to code with the syntax of C function calls
and variables instead of assembly language. Most MMX(TM) technology, Streaming SIMD Extensions,
and Streaming SIMD Extensions 2 intrinsics have a corresponding C intrinsic that implements that
instruction directly. This frees you from managing registers and enables the compiler to optimize the
instruction scheduling.

The MMX technology and Streaming SIMD Extension instructions use the following new features:

e New Registers--Enable packed data of up to 128 bits in length for optimal SIMD processing.
e New Data Types--Enable packing of up to 16 elements of data in one register.

The Streaming SIMD Extensions 2 intrinsics are defined only for I1A-32, not for Itanium®-based
systems. Streaming SIMD Extensions 2 operate on 128 bit quantities—2 64-bit double precision floating
point values. The Itanium architecture does not support parallel double precision computation, so
Streaming SIMD Extensions 2 are not implemented on Itanium-based systems.

New Registers

A key feature provided by the architecture of the processors are new register sets. The MMX
instructions use eight 64-bit registers (nm0 to nm7) which are aliased on the floating-point stack
registers.

MMX(TM) Technology Registers

Tag Werd MMM Technelogy Registers
1 0 6.3 i]

QULT

MR

OMOsEsE
Streaming SIMD Extensions Registers
The Streaming SIMD Extensions use eight 128-bit registers (xmr0 to xmv).

Straming SIMD Exension Redisters
128 0

Hhhi

Hhana?

CIMOESES

These new data registers enable the processing of data elements in parallel. Because each register
can hold more than one data element, the processor can process more than one data element

Page 200 of 431

Intel® C++ Compiler User's Guide

simultaneously. This processing capability is also known as single-instruction multiple data processing
(SIMD).

For each computational and data manipulation instruction in the new extension sets, there is a
corresponding C intrinsic that implements that instruction directly. This frees you from managing
registers and assembly programming. Further, the compiler optimizes the instruction scheduling so
that your executable runs faster.

E/J Note

The MMand XMMregisters are the SIMD registers used by the 1A-32 platforms to implement MMX
technology and Streaming SIMD Extensions/Streaming SIMD Extensions 2 intrinsics. On the Itanium-
based platforms, the MMX and Streaming SIMD Extension intrinsics use the 64-bit general registers
and the 64-bit significand of the 80-bit floating-point register.

New Data Types

Intrinsic functions use four new C data types as operands, representing the new registers that are used
as the operands to these intrinsic functions. The table below shows the new data type availability
marked with "X".

New Data Types Available

New MMX(TM) Streaming | Streaming | ltanium®
Data Technology | SIMD SIMD Processor
Type Extensions | Extensions
2

__nb4 X X X X

__nl28 | N/A X X X
__nll28d | N/A N/A X X
__nl28i | N/A N/A X X

__m64 Data Type

The __ nB4 data type is used to represent the contents of an MMX register, which is the register
that is used by the MMX technology intrinsics. The ___nB64 data type can hold eight 8-bit values,
four 16-bit values, two 32-bit values, or one 64-bit value.

__m128 Data Types

The _ nl28 data type is used to represent the contents of a Streaming SIMD Extension
register used by the Streaming SIMD Extension intrinsics. The __nil28 data type can hold four
32-bit floating values.

The __nml28d data type can hold two 64-bit floating-point values.

The _ nl28i data type can hold sixteen 8-bit, eight 16-bit, four 32-bit, or two 64-bit integer
values.

Page 201 of 431

Intel® C++ Compiler User's Guide

The compiler aligns ___mL28 local and global data to 16-byte boundaries on the stack. To align
i nt eger, fl oat, or doubl e arrays, you can use the declspec statement.

New Data Types Usage Guidelines

Since these new data types are not basic ANSI C data types, you must observe the following usage
restrictions:

e Use new data types only on either side of an assignment, as a return value, or as a parameter.

You cannot use it with other arithmetic expressions ("+", "-", and so on).
e Use new data types as objects in aggregates, such as unions to access the byte elements and
structures.

e Use new data types only with the respective intrinsics described in this documentation. The new
data types are supported on both sides of an assignment statement: as parameters to a
function call, and as a return value from a function call.

Page 202 of 431

Intel® C++ Compiler User's Guide

Naming and Usage Syntax

Most of the intrinsic names use a notational convention as follows:

_mm<intrin_op> <suffix>

<i ntrin_op> | Indicates the intrinsics basic operation; for example, add
for addition and sub for subtraction.

<suf fi x> Denotes the type of data operated on by the instruction.
The first one or two letters of each suffix denotes whether
the data is packed (p), extended packed (ep), or scalar
(s). The remaining letters denote the type:

s single-precision floating point
d double-precision floating point
i 128 signed 128-bit integer

i 64 signed 64-bit integer

u64 unsigned 64-bit integer

i 32 signed 32-bit integer

u32 unsigned 32-bit integer

i 16 signed 16-bit integer

ul6 unsigned 16-bit integer

i 8 signed 8-bit integer

u8 unsigned 8-bit integer

A number appended to a variable name indicates the element of a packed object. For example, r 0 is
the lowest word of r . Some intrinsics are "composites" because they require more than one instruction
to implement them.

The packed values are represented in right-to-left order, with the lowest value being used for scalar
operations. Consider the following example operation:

double a[2] = {1.0, 2.0};
_ nml28d t = _nmload_pd(a);

The result is the same as either of the following:

_ ml28d t _mmset _pd(2.0, 1.0);

_ ml28d t

_mmsetr_pd(1.0, 2.0);
In other words, the xmmregister that holds the value t will look as follows:

137)
[0 J1.0]

The "scalar" element is 1. 0. Due to the nature of the instruction, some
intrinsics require their arguments to be immediates (constant integer literals).

Page 203 of 431

Intel® C++ Compiler User's Guide

Intrinsic Syntax

To use an intrinsic in your code, insert a line with the following syntax:
data_type intrinsic_nanme (paraneters)

Where,

dat a_t ype Is the return data type, which can be either voi d,
int, nb4, ml28, m28d,_nl28i,
__int64. Intrinsics that can be implemented across
all IA may return other data types as well, as
indicated in the intrinsic syntax definitions.

i ntrinsic_nane |Isthe name of the intrinsic, which behaves like a
function that you can use in your C++ code instead of
inlining the actual instruction.

par anet ers Represents the parameters required by each
intrinsic.

Intrinsics for All 1A

The intrinsics in this section function across all IA-32 and Itanium®-based platforms. They are offered
as a convenience to the programmer. They are grouped as follows:

Integer Arithmetic Related
Floating-Point Related

String and Block Copy Related
Miscellaneous

Page 204 of 431

Intel® C++ Compiler User's Guide

Integer Arithmetic Related
‘E}Note

Passing a constant shift value in the rotate intrinsics results in higher performance.

Intrinsic

Description

int abs(int)

Returns the absolute value
of an integer.

| ong | abs(| ong)

Returns the absolute value
of a long integer.

unsigned long _Irotl(unsigned |Iong value, int shift)

Rotates bits left for an
unsigned long integer.

unsigned long _Irotr(unsigned |Iong value, int shift)

Rotates bits right for an
unsigned long integer.

unsigned int _ rotl(unsigned int value, int shift)

Rotates bits left for an
unsigned integer.

unsigned int _ _rotr(unsigned int value, int shift)

Rotates bits right for an
unsigned integer.

Page 205 of 431

Intel® C++ Compiler User's Guide

Floating-point Related

Intrinsic

Description

doubl e fabs(doubl e)

Returns the absolute value of a floating-point value.

doubl e | og(doubl e)

Returns the natural logarithm In(x), x>0, with double
precision.

float |ogf(float)

Returns the natural logarithm In(x), x>0, with single
precision.

doubl e | 0g10(doubl e)

Returns the base 10 logarithm log10(x), x>0, with double
precision.

float |oglOf(float)

Returns the base 10 logarithm log10(x), x>0, with single
precision.

doubl e exp(doubl e)

Returns the exponential function with double precision.

float expf(float)

Returns the exponential function with single precision.

doubl e pow doubl e, doubl e)

Returns the value of x to the power y with double precision.

float powf (float, float)

Returns the value of x to the power y with single precision.

doubl e si n(doubl e)

Returns the sine of x with double precision.

float sinf(float)

Returns the sine of x with single precision.

doubl e cos(doubl e)

Returns the cosine of x with double precision.

float cosf(float)

Returns the cosine of x with single precision.

doubl e tan(doubl e)

Returns the tangent of x with double precision.

float tanf(float)

Returns the tangent of x with single precision.

doubl e acos(doubl e)

Returns the arccosine of x with double precision

float acosf(float)

Returns the arccosine of x with single precision

doubl e acosh(doubl e)

Compute the inverse hyperbolic cosine of the argument with
double precision.

fl oat acoshf(float)

Compute the inverse hyperbolic cosine of the argument with
single precision.

doubl e asi n(doubl e)

Compute arc sine of the argument with double precision.

float asinf(float)

Compute arc sine of the argument with single precision.

doubl e asi nh(doubl e)

Compute inverse hyperbolic sine of the argument with
double precision.

fl oat asinhf(float)

Compute inverse hyperbolic sine of the argument with
single precision.

doubl e at an(doubl e)

Page 206 of 431

Compute arc tangent of the argument with double precision.

Intel® C++ Compiler User's Guide

float atanf(float)

Compute arc tangent of the argument with single precision.

doubl e at anh(doubl e)

Compute inverse hyperbolic tangent of the argument with
double precision.

float atanhf(float)

Compute inverse hyperbolic tangent of the argument with
single precision.

fl oat cabs(double)**

Computes absolute value of complex number.

doubl e ceil (doubl e)

Computes smallest integral value of double precision
argument not less than the argument.

float ceil f(float)

Computes smallest integral value of single precision
argument not less than the argument.

doubl e cosh(doubl e)

Computes the hyperbolic cosine of double precison
argument.

float coshf(float)

Computes the hyperbolic cosine of single precison
argument.

float fabsf(float)

Computes absolute value of single precision argument.

doubl e fl oor (doubl e)

Computes the largest integral value of the double precision
argument not greater than the argument.

float floorf(float)

Computes the largest integral value of the single precision
argument not greater than the argument.

doubl e fnod(doubl e)

Computes the floating-point remainder of the division of the
first argument by the second argument with double
precison.

float fnodf(float)

Computes the floating-point remainder of the division of the
first argument by the second argument with single precison.

doubl e hypot (doubl e, doubl e)

Computes the length of the hypotenuse of a right angled
triangle with double precision.

float hypotf(float)

Computes the length of the hypotenuse of a right angled
triangle with single precision.

doubl e ri nt (doubl e)

Computes the integral value represented as double using
the IEEE rounding mode.

float rintf(float)

Computes the integral value represented with single
precision using the IEEE rounding mode.

doubl e si nh(doubl e)

Computes the hyperbolic sine of the double precision
argument.

float sinhf(float)

Computes the hyperbolic sine of the single precision
argument.

float sqrtf(float)

Computes the square root of the single precision argument.

doubl e tanh(doubl e)

Page 207 of 431

Computes the hyperbolic tangent of the double precision
argument.

Intel® C++ Compiler User's Guide

float tanhf(float)

Computes the hyperbolic tangent of the single precision
argument.

* Not implemented on Itanium®-based systems.

** doubl e in this case is a complex number made up of two single precision (32-bit floating point)

elements (real and imaginary parts).

String and Block Copy Related

Z-) Note

The following are not implemented as intrinsics on Itanium®-based platforms.

Intrinsic

Description

char * strset(char *, _int32)

Sets all characters in a string to a fixed value.

voi d *nmencnp(const void *cs,
void *ct, size_ t n)

const

Compares two regions of memory. Return <0 if
cs<ct,O0ifcs=ct, or>0if cs>ct.

voi d *nencpy(void *s, const void

Copies from memory. Returns s.

* ct)

*ct, size_t n)

void *nenset(void * s, int c, Sets memory to a fixed value. Returns s.
size_t n)

char *strcat(char * s, const char | Appends to a string. Returns s.

* ct)

int *strcnp(const char *, const Compares two strings. Return <0 if cs<ct , O if
char *) cs=ct, or>0if cs>ct.

char *strcpy(char * s, const char Copies a string. Returns s.

size_t strlen(const char * cs)

Returns the length of string cs.

int strncnp(char *, char *, int) Compare two strings, but only specified number of
characters.
int strncpy(char *, char *, int) Copies a string, but only specified number of

characters.

Page 208 of 431

Intel® C++ Compiler User's Guide

Miscellaneous Intrinsics

f-.) Note

Except for _enabl e() and _di sabl e(), these functions have not been implemented for Itanium®

instructions.

Intrinsic

Description

void *_alloca(int)

Allocates the buffers.

int _setjnp(jnmp_buf)*

A fast version of set j mp() , which bypasses the termination
handling. Saves the callee-save registers, stack pointer and
return address.

_exception_code(void) Returns the exception code.

_exception_info(void) Returns the exception information.

_abnormal _term nation(void) |Can be invoked only by termination handlers. Returns TRUE if
the termination handler is invoked as a result of a premature
exit of the corresponding try-finally region.

voi d _enabl e() Enables the interrupt.

voi d _disabl e() Disables the interrupt.

int _bswap(int) Intrinsic that maps to the 1A-32 instruction BSWAP (swap
bytes). Convert little/big endian 32-bit argument to big/little
endian form

int _in_byte(int) Intrinsic that maps to the IA-32 instruction | N. Transfer data
byte from port specified by argument.

int _in_dword(int) Intrinsic that maps to the IA-32 instruction | N. Transfer
double word from port specified by argument.

int _in_ word(int) Intrinsic that maps to the I1A-32 instruction | N. Transfer word
from port specified by argument.

int _inp(int) Sameas _in_byte

int _inpd(int) Same as _in_dword

int _inpw(int) Same as _in_word

int _out_byte(int, int) Intrinsic that maps to the IA-32 instruction OUT. Transfer data
byte in second argument to port specified by first argument.

int _out_dword(int, int) Intrinsic that maps to the IA-32 instruction OUT. Transfer
double word in second argument to port specified by first
argument.

int _out_word(int, int) Intrinsic that maps to the IA-32 instruction QUT. Transfer word

in second argument to port specified by first argument.

int outp(int, int)

Page 209 of 431

Same as _out _byte

Intel® C++ Compiler User's Guide

int outpd(int, int)

Same as _out _dword

int outpw(int, int)

Same as _out _word

* Implemented as a library function call.

Support for MMX(TM) Technology

MMX(TM) technology is an extension to the Intel architecture (1A) instruction set. The MMX instruction
set adds 57 opcodes and a 64-bit quadword data type, and eight 64-bit registers. Each of the eight
registers can be directly addressed using the register names nm0 to mv.

The prototypes for MMX technology intrinsics are in the nmi nt ri n. h header file.

Page 210 of 431

Intel® C++ Compiler User's Guide

The EMMS Instruction: Why You Need It

Using EMVE is like emptying a container to accommodate new content. For instance, MMX(TM)
instructions automatically enable an FP tag word in the register to enable use of the __n64 data type.
This resets the FP register set to alias it as the MMX register set. To enable the FP register set again,
reset the register state with the EMVE instruction or via the _nm enpt y() intrinsic.

Why You Need EMMS to Reset After an MMX(TM) Instruction

MK Insbuchon BegislersMesd meg Daba ppes

’ FF Tag a E3 :-.:.:..nn_--ii-_:||_-ry;.

LLath

FP Tang Wid Akages FP Registes b Agl Like oy Regeters o Accepd i Daba Ty pes
FP Instucion Regislers Nead o be Flésel 1o Accegt
FP Dala wpes of 32, &4 and 80 biks
FPTa2 FE Pl
11 o T F .L‘_ﬂ_.} lars o

FPd

FP7
______ mn_ gty () Clears Bie FP Tag Weord and Afows FP Data Ty pes in Flagishes Again

]

.& Caution

Failure to empty the multimedia state after using an MMX instruction and before using a floating-point
instruction can result in unexpected execution or poor performance.

Page 211 of 431

Intel® C++ Compiler User's Guide

EMMS Usage Guidelines

The guidelines when to use EMVS are:

Do not use on Itanium®-based systems. There are no special registers (or overlay) for the MMX
(TM) instructions or Streaming SIMD Extensions on Itanium-based systems even though the
intrinsics are supported.
Use _mm enpty() after an MMX instruction if the next instruction is a floating-point (FP)
instruction—for example, before calculations on f | oat , doubl e or | ong doubl e. You must be
aware of all situations when your code generates an MMX instruction with the Intel® C++
Compiler, i.e.:

e when using an MMX technology intrinsic

e when using Streaming SIMD Extension integer intrinsics that use the __n64 data type

e when referencing an __nb64 data type variable

e when using an MMX instruction through inline assembly
Do not use _mm enpt y() before an MMX instruction, since using _nm enpt y() before an
MMX instruction incurs an operation with no benefit (no-op).
Use different functions for operations that use FP instructions and those that use MMX
instructions. This eliminates the need to empty the multimedia state within the body of a critical
loop.
Use _mm enpt y() during runtime initialization of __n64 and FP data types. This ensures
resetting the register between data type transitions.
See the "Correct Usage" coding example below.

Incorrect Usage Correct Usage
__nb4 x = _mpaddd(y, z); |__n64 x = _mpaddd(y, z);
loat f =init(); loat f = (_mmenpty(), init());

For more documentation on EMVS, visit the http://developer.intel.com Web site.

Page 212 of 431

Intel® C++ Compiler User's Guide

MMX(TM) Technology General Support Intrinsics

The prototypes for MMX(TM) technology intrinsics are in the mm nt ri n. h header file.

Intrinsic Alternate Corresponding | Operation Signhed | Saturation
Name Name Instruction
_menpty _mm enpty EMVS Empty MMstate | -- --
~mfromint | _mmcvtsi32 si64 |MWD Convert from -- --
i nt
_mto_int _mmcvtsi64_si32 | MOVD Convert from -- --
I nt
_m packsswb | _mm packs_pi 16 PACKSSWVB Pack Yes Yes
_m packssdw | _mm packs_pi 32 PACKSSDW Pack Yes Yes
_m packuswb | _mm packs_pul6 PACKUSWVB Pack No Yes
_m punpckhbw | _mm unpackhi _pi 8 | PUNPCKHBW Interleave -- --
_m punpckhwd | _mm unpackhi _pi 16 | PUNPCKHW\D Interleave -- --
_m punpckhdqg | _mm unpackhi _pi 32 | PUNPCKHDQ Interleave - -
_m punpckl bw | _mm unpackl o_pi 8 | PUNPCKLBW Interleave -- --
_m punpcklwd | _mm unpackl o_pi 16 | PUNPCKLWD Interleave -- --
_m punpckl dg | _mm unpackl o_pi 32 | PUNPCKLDQ Interleave - -
void _menpty(void)

Empty the multimedia state.

See The EMMS Instruction: Why You Need It for detalils.

_m4 mfromint(int i)

Convert the integer object i to a 64-bit ___n64 object. The integer value is zero-extended to 64

bits.

i nt

_mto_int(__nm4 m

Convert the lower 32 bits of the ___n64 object mto an integer.

__mB64 _m packsswb(__nb4 mi,

__nmb4 nR)

Pack the four 16-bit values from ni into the lower four 8-bit values of the result with signed
saturation, and pack the four 16-bit values from n? into the upper four 8-bit values of the result
with signed saturation.

__mb64 _m packssdw(__nb4 mi,

Page 213 of 431

__nmb4 nP)

Intel® C++ Compiler User's Guide

Pack the two 32-bit values from nil into the lower two 16-bit values of the result with signed
saturation, and pack the two 32-bit values from n® into the upper two 16-bit values of the result
with signed saturation.

__mB64 _m packuswb(__nb4 ml, _ nb4 nR)

Pack the four 16-bit values from ni into the lower four 8-bit values of the result with unsigned
saturation, and pack the four 16-bit values from n? into the upper four 8-bit values of the result
with unsigned saturation.

__mB64 _m punpckhbw(__n64 ml, _ nm64 nR)

Interleave the four 8-bit values from the high half of nil with the four values from the high half of
n2. The interleaving begins with the data from L.

__mB64 _m punpckhwd(__n64 ml, _ nm64 nR)

Interleave the two 16-bit values from the high half of niL with the two values from the high half of
nR2. The interleaving begins with the data from L.

__mB64 _m punpckhdq(__n64 ml, _ nm64 nR)

Interleave the 32-bit value from the high half of mlL with the 32-bit value from the high half of n2.
The interleaving begins with the data from nil.

__m64 _m punpckl bw(__n64 ml, _ nm64 nR)

Interleave the four 8-bit values from the low half of mL with the four values from the low half of
nR2. The interleaving begins with the data from nil.

__mB64 _m punpcklwd(__n64 ml, _ nm64 nR)

Interleave the two 16-bit values from the low half of mlL with the two values from the low half of
nR2. The interleaving begins with the data from nil.

__mB64 _m punpckldq(__n64 ml, _ nm64 nR)

Interleave the 32-bit value from the low half of ml with the 32-bit value from the low half of n2.
The interleaving begins with the data from nil.

Page 214 of 431

Intel® C++ Compiler User's Guide

MMX(TM) Technology Packed Arithmetic Intrinsics

The prototypes for MMX(TM) technology intrinsics are in the mm nt ri n. h header file.

Intrinsic Alternate Name Corresponding | Operation Signed | Argument | Result
Name Instruction Values/Bits | Values/B
_m paddb _mm add_pi 8 PADDB Addition -- 8/8 8/8

_m paddw _mm add_pi 16 PADDW Addition - 4/16 4/16

_m paddd _mm add_pi 32 PADDD Addition -- 2/32 2/32

_m paddsb |_nm adds_pi 8 PADDSB Addition Yes 8/8 8/8

_m paddsw |_nm adds_pi 16 | PADDSW Addition Yes 4/16 4/16

_m paddusb | _nm adds_pu8 PADDUSB Addition No 8/8 8/8

_m paddusw | _mm adds_pul6é | PADDUSW Addition No 4/16 4/16

_m psubb _mm sub_pi 8 PSUBB Subtraction | -- 8/8 8/8

_m psubw _mm sub_pi 16 PSUBW Subtraction | -- 4/16 4/16

_m psubd _mm sub_pi 32 PSUBD Subtraction | -- 2/32 2/32

_m psubsb | _mm subs_pi 8 PSUBSB Subtraction | Yes 8/8 8/8

_m psubsw | _nm subs_pi 16 | PSUBSW Subtraction | Yes 4/16 4/16

_m psubusb | _mm subs_pu8 PSUBUSB Subtraction | No 8/8 8/8

_m psubusw | _mm subs_pul6 | PSUBUSW Subtraction | No 4/16 4/16

_m pmaddwd | _nmm nmadd_pi 16 | PMADDWD Multiplication | -- 4/16 2/32
_mpmnul hw | _rmmnul hi _pi 16 | PMULHW Multiplication | Yes 4/16 4/16 (higr
_mpmullw | _mmumullo_pil6 | PMULLW Multiplication | -- 4/16 4/16 (low)
__nm64 _m paddb(__n64 nl, _ nb64 nR)

Add the eight 8-bit values in n to the eight 8-bit values in n2.

__mB64 _m paddw __nb4 i,

__nmB4 nR)

Add the four 16-bit values in mlL to the four 16-bit values in n2.

__mb64 _m paddd(__nb64 i,

__nmB4 nR)

Add the two 32-bit values in mlL to the two 32-bit values in n2.

__mb64 _m paddsb(__nmb64 i,

n64 ne)

Add the eight signed 8-bit values in ni to the eight signed 8-bit values in n2 using saturating

Page 215 of 431

Intel® C++ Compiler User's Guide

arithmetic.
__mb64 m paddsw(__n64 nml, _ nbB4 nR)

Add the four signed 16-bit values in ml to the four signed 16-bit values in n? using saturating
arithmetic.

__mB64 _m paddusb(__nm64 nil, _ nb4 nR)

Add the eight unsigned 8-bit values in mlL to the eight unsigned 8-bit values in n2 and using
saturating arithmetic.

__mb64 _m paddusw(__nm64 nil, _ nb4 nR)

Add the four unsigned 16-bit values in nil to the four unsigned 16-bit values in n2 using
saturating arithmetic.

__nb4 _mpsubb(__nmb4 ml, _ nb4 nR)

Subtract the eight 8-bit values in n2 from the eight 8-bit values in mL.
__nb4 _mpsubw(__nmB4 ml, _ nb4 nR)

Subtract the four 16-bit values in n2 from the four 16-bit values in ni.
__nb4 _mpsubd(__nmb4 ml, _ nb4 nR)

Subtract the two 32-bit values in n2 from the two 32-bit values in ni.
__mB64 mpsubsb(__nm64 nml, _ nbB4 nR)

Subtract the eight signed 8-bit values in n2 from the eight signed 8-bit values in nl using
saturating arithmetic.

__mB64 _mpsubsw(__n64 nml, _ nbB4 nR)

Subtract the four signed 16-bit values in m2 from the four signed 16-bit values in ml using
saturating arithmetic.

__mB64 _m psubusb(__nm64 nil, _ nb4 nR)

Subtract the eight unsigned 8-bit values in n2 from the eight unsigned 8-bit values in ml using
saturating arithmetic.

__mB64 _m psubusw(__nm64 nil, _ nb4 nR)

Subtract the four unsigned 16-bit values in 2 from the four unsigned 16-bit values in il using
saturating arithmetic.

__mB64 mprmaddwd(__nm64 nil, _ nb4 nR)

Multiply four 16-bit values in mL by four 16-bit values in n2 producing four 32-bit intermediate

Page 216 of 431

Intel® C++ Compiler User's Guide

results, which are then summed by pairs to produce two 32-bit results.
_m64 mpmul hw(__n64 ml, _ nb4 nR)

Multiply four signed 16-bit values in mL by four signed 16-bit values in n2 and produce the high
16 bits of the four results.

_m4 mpmullw(__nm64 ml, _ nbB4 nR)

Multiply four 16-bit values in mL by four 16-bit values in n2 and produce the low 16 bits of the
four results.

Page 217 of 431

Intel® C++ Compiler User's Guide

MMX(TM) Technology Shift Intrinsics

The prototypes for MMX(TM) technology intrinsics are in the mm nt ri n. h header file.

Intrinsic Alternate Shift Shift Corresponding
Name Name Direction | Type Instruction
mpsllw | _mmsll_pil6 | left Logical PSLLW
mpsliw | _mmslli_pil6 | left Logical PSLLW
~mpslld | _mmsll_pi32 | left Logical PSLLD
~mpslldi |_mmslli_pi32 | |eft Logical PSLLDI
_mpsllqg |_mmsll_si64 |left Logical PSLLQ
_mpsllqgi |_mmslli_si64|left Logical PSLLQ
_mpsraw |_mmsra_pi 16 |right Arithmetic | PSRAW
_mpsrawi | _nmmsrai_pi 16 |right Arithmetic | PSRAW
_mpsrad |_mmsra_pi32 |right Arithmetic | PSRAD
_mpsradi |_nmm srai_pi32 |right Arithmetic | PSRADI
_mpsrlw |_nmsrl_pil6 |right Logical PSRLW
_mpsriw |_mmsrli_pi16 |right Logical PSRLW
_mpsrid |_mnmsrl_pi32 |right Logical PSRLD
_mpsrldi |_nmsrli_pi32 |right Logical PSRLDI
_mpsrlqg |_nmsrl_si64 |right Logical PSRLQ
_mpsrlqgi |_mmsrli_si64 |right Logical PSRLQ
_m4 mpsliw__nb4 m _ nb4 count)

Shift four 16-bit values in mleft the amount specified by count while shifting in zeros.
_m4 mpsliwi(__m4 m int count)

Shift four 16-bit values in mleft the amount specified by count while shifting in zeros. For the
best performance, count should be a constant.

_m4 mpsllid(__nb4 m _ nb4 count)
Shift two 32-bit values in mleft the amount specified by count while shifting in zeros.
_m4 mpsllidi(_m4 m int count)

Shift two 32-bit values in mleft the amount specified by count while shifting in zeros. For the

Page 218 of 431

Intel® C++ Compiler User's Guide

best performance, count should be a constant.
_m4 mpsllg(__nb4 m _ nb4 count)

Shift the 64-bit value in mleft the amount specified by count while shifting in zeros.
_m4 mpsllqgi(_nm4 m int count)

Shift the 64-bit value in mleft the amount specified by count while shifting in zeros. For the best
performance, count should be a constant.

__m4 mpsram __nb4 m _ nbB4 count)
Shift four 16-bit values in mright the amount specified by count while shifting in the sign bit.
__m64 mpsrawi (__nm64 m int count)

Shift four 16-bit values in mright the amount specified by count while shifting in the sign bit. For
the best performance, count should be a constant.

__m4 mpsrad(__nb4 m _ nb4 count)
Shift two 32-bit values in mright the amount specified by count while shifting in the sign bit.
__m4 mpsradi(__nm4 m int count)

Shift two 32-bit values in mright the amount specified by count while shifting in the sign bit. For
the best performance, count should be a constant.

__m4 mpsriw__nb4d m _ nb4 count)
Shift four 16-bit values in mright the amount specified by count while shifting in zeros.
_m4 mpsriwi(__nm4 m int count)

Shift four 16-bit values in mright the amount specified by count while shifting in zeros. For the
best performance, count should be a constant.

__m4 mpsrld(__nb4 m _ nb4 count)
Shift two 32-bit values in mright the amount specified by count while shifting in zeros.
__m4 mpsrlidi(_nm4 m int count)

Shift two 32-bit values in mright the amount specified by count while shifting in zeros. For the
best performance, count should be a constant.

__m4 mpsrlg(_nb4 m _ nb4 count)

Shift the 64-bit value in mright the amount specified by count while shifting in zeros.

Page 219 of 431

Intel® C++ Compiler User's Guide

__m4 mpsrlqgi(_nm4 m int count)

Shift the 64-bit value in mright the amount specified by count while shifting in zeros. For the
best performance, count should be a constant.

MMX(TM) Technology Logical Intrinsics

The prototypes for MMX(TM) technology intrinsics are in the mm nt ri n. h header file.

Intrinsic Alternate Operation Corresponding
Name Name Instruction
_mpand |_nm and_si 64 Bitwise AND PAND

_m pandn | _mm andnot _si 64 | Logical NOT PANDN

_m por _mm or_si 64 Bitwise OR POR

_mopxor |_mmxor_si 64 Bitwise Exclusive OR | PXOR

__m64 mpand(__nm64 nl, _ nb4d nP)
Perform a bitwise AND of the 64-bit value in mL with the 64-bit value in n2.
__mB64 mpandn(__nB4 ml, _ nb4 nR)

Perform a logical NOT on the 64-bit value in niL and use the result in a bitwise AND with the 64-
bit value in n2.

__m4 mpor(__n64 m, _ nm64 nP)
Perform a bitwise OR of the 64-bit value in nml with the 64-bit value in n2.
__m64 mpxor(__nm64 nl, _ nb4d nP)

Perform a bitwise XOR of the 64-bit value in mL with the 64-bit value in n2.

Page 220 of 431

Intel® C++ Compiler User's Guide

MMX(TM) Technology Compare Intrinsics

The prototypes for MMX(TM) technology intrinsics are in the mm nt ri n. h header file.

Intrinsic Alternate Comparison | Number of | Element | Corresponding
Name Name Elements | Bit Size | Instruction

_m pcnpegb | _nm cnpeqg_pi 8 | Equal 8 8 PCMPE(B

_m pcrpeqw | _mm cnped_pi 16 | Equal 4 16 PCMPEQW

_m pcnpeqd | _mm cnpeq_pi 32 | Equal 2 32 PCMPEQD
_mpcnpgtb | _mm cnpgt _pi 8 | Greater Than | 8 8 PCVPGTB

_m pcnpgtw | _nmm cnpgt _pi 16 | Greater Than | 4 16 PCMPGTW

_m pcnpgtd | _mm cnpgt _pi 32 | Greater Than | 2 32 PCVPGTD

__mB64 _m pcnpeqb(__nm64 nil, _ nb4 nR)

If the respective 8-bit values in il are equal to the respective 8-bit values in n2 set the
respective 8-bit resulting values to all ones, otherwise set them to all zeros.

__mB64 _m pcnpegw __nm64 nil, _ nb4 nR)

If the respective 16-bit values in mL are equal to the respective 16-bit values in n2 set the
respective 16-bit resulting values to all ones, otherwise set them to all zeros.

__mB64 _m pcnpeqd(__nm64 nil, _ nbB4 nR)

If the respective 32-bit values in mL are equal to the respective 32-bit values in n2 set the
respective 32-bit resulting values to all ones, otherwise set them to all zeros.

__m64 mpcnpgtb(__nm64 nl, _ nbB4 nR)

If the respective 8-bit values in nil are greater than the respective 8-bit values in n2 set the
respective 8-bit resulting values to all ones, otherwise set them to all zeros.

__m64 mpcnpgtw(__nm64 nil, _ nB4 nR)

If the respective 16-bit values in mL are greater than the respective 16-bit values in n2 set the

respective 16-bit resulting values to all ones, otherwise set them to all zeros.

__mB64 mpcnpgtd(__nm64 nil, _ nB4 nR)

If the respective 32-bit values in mL are greater than the respective 32-bit values in n2 set the

respective 32-bit resulting values to all ones, otherwise set them all to zeros.

Page 221 of 431

Intel® C++ Compiler User's Guide

MMX(TM) Technology Set Intrinsics

The prototypes for MMX(TM) technology intrinsics are in the mm nt ri n. h header file.

Intrinsic Operation Number of | Element | Signed | Reverse
Name Elements | Bit Size Order
_mm set zer o_si 64 | set to zero 1 64 No No
_mm set _pi 32 set integer values | 2 32 No No
_mm set_pi 16 set integer values | 4 16 No No
_mmset _pi8 set integer values | 8 8 No No
_mm set1_pi 32 set integer values | 2 32 Yes No
_mm setl pil6 set integer values | 4 16 Yes No
_mmsetl pi8 set integer values | 8 8 Yes No
_mm setr_pi 32 set integer values | 2 32 No Yes
_mm setr_pi 16 set integer values | 4 16 No Yes
_mmsetr_pi8 set integer values | 8 8 No Yes

ﬂ Note

In the following descriptions regarding the bits of the MMX(TM) register, bit 0 is the least significant

and bit 63 is the most significant.

__nmb4 _mm setzero_si 64()

PXOR

Sets the 64-bit value to zero.

r .= 0x0

__mB64 mmset pi32(int

il, int

Sets the 2 signed 32-bit integer values.

ro :
rl .

i0
il

i 0) (composite)

__m64 _mm_set_pil6(short s3, short s2, short s1, short s0)

(composite) Sets the 4 signed 16-bit integer values.

ro .=

ri:=wl

r2z .= w2

r3 = w3
__mB64 mmset pi8(char b7, char
char b1, char bO0)

Page 222 of 431

b6,

char b5,

char b4,

char

b3, char b2,

Intel® C++ Compiler User's Guide

(composite) Sets the 8 signed 8-bit integer values.
ro := b0
ri:=bl

(7 := b7

_mB64 mmsetl pi32(int i)

(composite) Sets the 2 signed 32-bit integer values to i.
ro =i
ri:=1i

__m4 mmsetl pil6(short s)

(composite) Sets the 4 signed 16-bit integer values to w.
ro :
ri:
r2
r3:

o
==

__m64 mmsetl pi8(char b)

(composite) Sets the 8 signed 8-bit integer values to b.
b

ro :=
rl :=b
r7 = b

_mb4 mmsetr_pi32(int i1, int i0)

(composite) Sets the 2 signed 32-bit integer values in reverse order.
ro :=io0
ri:=i1

__mb4 mmsetr_pil6(short s3, short s2, short sl1, short sO0)

(composite) Sets the 4 signed 16-bit integer values in reverse order.
= wo

ro :=

rl .=wl
r2 .= w2
r3 := w3

__mB64 mmsetr_pi8(char b7, char b6, char b5, char b4, char b3, char b2,
char b1, char bO0)

(composite) Sets the 8 signed 8-bit integer values in reverse order.

r0 := b0
rl := bl
(7 1= b7

Page 223 of 431

Intel® C++ Compiler User's Guide

MMX(TM) Technology Intrinsics on Itanium®
Architecture

MMX(TM) technology intrinsics provide access to the MMX technology instruction set on Itanium-
based systems. To provide source compatibility with the IA-32 architecture, these intrinsics are
equivalent both in name and functionality to the set of I1A-32-based MMX intrinsics.

Some intrinsics have more than one name. When one intrinsic has two names, both names generate
the same instructions, but the first is preferred as it conforms to a newer naming standard.

The prototypes for MMX technology intrinsics are in the nmi nt ri n. h header file.

Data Types

The C data type __n64 is used when using MMX technology intrinsics. It can hold eight 8-bit values,
four 16-bit values, two 32-bit values, or one 64-bit value.

The __ nB4 data type is not a basic ANSI C data type. Therefore, observe the following usage
restrictions:

e Use the new data type only on the left-hand side of an assignment, as a return value, or as a
parameter. You cannot use it with other arithmetic expressions (" +", " -, and so on).

e Use the new data type as objects in aggregates, such as unions, to access the byte elements
and structures; the address of an __n64 object may be taken.

e Use new data types only with the respective intrinsics described in this documentation.

For complete details of the hardware instructions, see the Intel Architecture MMX Technology
Programmer's Reference Manual. For descriptions of data types, see the Intel Architecture Software
Developer's Manual, Volume 2.

Intrinsics Support for Streaming SIMD Extensions

This section describes the C++ language-level features supporting the Streaming SIMD Extensions in
the Intel® C++ Compiler. These topics explain the following features of the intrinsics:

Floating Point Intrinsics

Arithmetic Operation Intrinsics
Logical Operation Intrinsics
Comparison Intrinsics

Conversion Intrinsics

Load Operations

Set Operations

Store Operations

Cacheability Support

Integer Intrinsics

Memory and Initialization Intrinsics
Miscellaneous Intrinsics

Using Streaming SIMD Extensions on Itanium® Architecture

The prototypes for Streaming SIMD Extensions intrinsics are in the xmm nt ri n. h header file.

Page 224 of 431

Intel® C++ Compiler User's Guide

Floating-point Intrinsics for Streaming SIMD
Extensions

You should be familiar with the hardware features provided by the Streaming SIMD Extensions when
writing programs with the intrinsics. The following are four important issues to keep in mind:

e Certain intrinsics, such as _nm | oadr _ps and _nm cnpgt _ss, are not directly supported by
the instruction set. While these intrinsics are convenient programming aids, be mindful that they
may consist of more than one machine-language instruction.

e Floating-point data loaded or stored as ___ mlL28 objects must be generally 16-byte-aligned.

e Some intrinsics require that their argument be immediates, that is, constant integers (literals),
due to the nature of the instruction.

e The result of arithmetic operations acting on two NaN (Not a Number) arguments is undefined.
Therefore, FP operations using NaN arguments will not match the expected behavior of the
corresponding assembly instructions.

Page 225 of 431

Intel® C++ Compiler User's Guide

Arithmetic Operations for Streaming SIMD
Extensions

The prototypes for Streaming SIMD Extensions intrinsics are in the xmm nt ri n. h header file.

Intrinsic Instruction | Operation RO R1 R2 R3
_mm add_ss ADDSS Addition a0 [op] bO | a1 a2 a3
mm add_ps ADDPS Addition a0 [op] bO | al [op] a2 [op] a3 [op]
b1 b2 b3
_mm sub_ss SUBSS Subtraction a0 [op] bO | a1 a2 a3
_mm sub_ps SUBPS Subtraction a0 [op] bO | al [op] a2 [op] a3 [op]
b1 b2 b3
_mm nmul _ss MJLSS Multiplication a0 [op] bO | a1 a2 a3
_mm_mul _ps MJLPS Multiplication a0 [op] bO | al [op] a2 [op] a3 [op]
b1 b2 b3
_mmdiv_ss DI VSS Division a0 [op] bO | a1 a2 a3
_mmdiv_ps DI VPS Division a0 [op] bO | al [op] a2 [op] a3 [op]
b1 b2 b3
_mmsqrt_ss | SQRTSS Squared Root [op] a0 al a2 a3
_mmsqrt_ps | SQRTPS Squared Root [op] a0 [op] b1 [op] b2 [op] b3
_mmrcp_ss RCPSS Reciprocal [op] a0 al a2 a3
_mmrcp_ps RCPPS Reciprocal [op] a0 [op] b1 [op] b2 [op] b3
_mmrsqgrt_ss | RSQRTSS Reciprocal Square [op] a0 al a2 a3
Root
_mmrsqrt_ps | RSQRTPS | Reciprocal Squared | [op] a0 [op] b1 [op] b2 [op] b3
Root
_mm.min_ss M NSS Computes Minimum | [op] al a2 a3
(a0,b0)
_mm mi n_ps M NPS Computes Minimum | [op] [op] (1, |[op] (@2, |[op] (a3,
(a0,b0) b1) b2) b3)
_mMm_max_ss MAXSS Computes Maximum | [op] al a2 a3
(a0,b0)
_mm_max_ps MAXPS Computes Maximum | [op] [op] (1, |[op] (@2, |[op] (a3,
(a0,b0) b1) b2) b3)

_ ml28 nmmadd_ss(__nl28 a,

__mi28 b)

Adds the lower SP FP (single-precision, floating-point) values of a and b ; the upper 3 SP FP
values are passed through from a.

Page 226 of 431

Intel® C++ Compiler User's Guide

rO := a0 + bO
rl al ; r2 :=a2; r3 := a3

_ m28 mmadd_ps(__nl28 a, _ ml28 b)

Adds the four SP FP values of a and b.

r0O := a0 + b0
rl :=al + bl
r2 := a2 + b2
r3 := a3 + b3

_ ml28 mmsub_ss(_ nl28 a, _ ml28 b)

Subtracts the lower SP FP values of a and b. The upper 3 SP FP values are passed through

_ m28 mmsub_ps(__nl28 a, _ ml28 b)

Subtracts the four SP FP values of a and b.

r0O := a0 - b0
rl :=al - bl
r2 := a2 - b2
r3 := a3 - b3

_ ml28 mmnul _ss(__nl28 a, _ ml28 b)

Multiplies the lower SP FP values of a and b ; the upper 3 SP FP values are passed through

_ m28 mmnmul_ps(__nl28 a, _ m28 b)

Multiplies the four SP FP values of a and b.

r0O := a0 * b0
rl :=al * bl
r2 := a2 * b2
r3 := a3 * b3

_ ml28 mmdiv_ss(__nl28 a, _ ml28 b)

Divides the lower SP FP values of a and b ; the upper 3 SP FP values are passed through from

a.
rO := a0 / bo
rl:=al ; r2 :=a2; r3 := a3

Page 227 of 431

Intel® C++ Compiler User's Guide

_ ml28 mmdiv_ps(__nl28 a, _ ml28 b)

Divides the four SP FP values of a and b.

rO := a0 / bo
rl :=al/ bl
r2 := a2/ b2
r3 := a3/ b3

_ ml28 mmsqrt_ss(__ml28 a)

Computes the square root of the lower SP FP value of a ; the upper 3 SP FP values are passed
through.

grt (a0)
1; r2:=a2; r3 := a3
_ ml28 mmsqrt_ps(__ml28 a)

Computes the square roots of the four SP FP values of a.

ro := sqgrt(a0)
rl .= sqrt(al)
r2 :=sqrt(a2)
r3 .= sqrt(a3)

_ m28 mmrcp_ss(__nl28 a)

Computes the approximation of the reciprocal of the lower SP FP value of a; the upper 3 SP FP
values are passed through.

r
r

= O
I

_ ml28 mmrcp_ps(__nl28 a)

Computes the approximations of reciprocals of the four SP FP values of a.

ro := recip(a0)
rl :=recip(al)
r2 :=recip(az2)
r3 :=recip(al)

_ ml28 mmrsqgrt_ss(__m28 a)

Computes the approximation of the reciprocal of the square root of the lower SP FP value of a;
the upper 3 SP FP values are passed through.

reci p(sqrt(a0))
al ; r2 := a2 ; r3 := a3

_ ml28 mmrsqgrt_ps(__ml28 a)

Page 228 of 431

Intel® C++ Compiler User's Guide

Computes the approximations of the reciprocals of the square roots of the four SP FP values of

a.
rO :=recip(sqrt(a0))
ri :=recip(sqrt(al))
r2 :=recip(sqrt(a2))
r3 :=recip(sqrt(a3))

_ ml28 mmmin_ss(__nl28 a, _ ml28 b)

Computes the minimum of the lower SP FP values of a and b; the upper 3 SP FP values are
passed through from a.

m n(a0, bO0)

ro :
rl al ; r2 := a2 ; r3 := a3

_ m28 mmmn_ps(__nl28 a, _ m28 b)

Computes the minimum of the four SP FP values of a and b.

ro := mn(a0, bO0)
rl:= mn(al, bl)
r2 := mn(a2, b2)
r3 := mn(a3, b3)

_ ml28 mmnmax_ss(__nl28 a, _ ml28 b)

Computes the maximum of the lower SP FP values of a and b ; the upper 3 SP FP values are
passed through from a.

x(a0, b0)

ro : ma
rl al ; r2 := a2 ; r3 := a3

_ m28 mmmax_ps(__nl28 a, _ ml28 b)

Computes the maximum of the four SP FP values of a and b.

ro : = max(a0, bO0)
ri := max(al, bl)
r2 := max(a2, b2)
r3 := max(a3, b3)

Page 229 of 431

Intel® C++ Compiler User's Guide

Logical Operations for Streaming SIMD Extensions

The prototypes for Streaming SIMD Extensions intrinsics are in the xmm nt ri n. h header file.

Intrinsic Operation Corresponding
Name Instruction
_mm and_ps Bitwise AND ANDPS

_mm andnot _ps | Logical NOT ANDNPS
_mm.or_ps Bitwise OR ORPS

_mm_Xor _ps Bitwise Exclusive OR | XCRPS

_ m28 mmand_ps(__nl28 a, _ ml28 b)

Computes the bitwise And of the four SP FP values of a and b.

r0O := a0 & b0
rl := al & bl
r2 := a2 & b2
r3 := a3 & b3

_ m28 nmmandnot_ps(__nl28 a, _ ml28 b)

Computes the bitwise AND-NOT of the four SP FP values of a and b.

r0 := ~a0 & b0
rl := ~al & bl
r2 := ~a2 & b2
r3 := ~a3 & b3

_ m28 mmor_ps(__m28 a, _ nl28 b)

Computes the bitwise OR of the four SP FP values of a and b.

ro := a0 | bO
ri:=al| bl
r2 := a2 | b2
r3 := a3 | b3

_ ml28 mmxor_ps(__nl28 a, _ ml28 b)

Computes bitwise XOR (exclusive-or) of the four SP FP values of a and b.

roO := a0 N b0
rl :=al " bl
r2 := a2 " b2
r3 := a3 " b3

Page 230 of 431

Intel® C++ Compiler User's Guide

Comparisons for Streaming SIMD Extensions

Each comparison intrinsic performs a comparison of a and b. For the packed form, the four SP FP
values of a and b are compared, and a 128-bit mask is returned. For the scalar form, the lower SP FP
values of a and b are compared, and a 32-bit mask is returned; the upper three SP FP values are
passed through from a. The mask is setto Oxfff f f f f f for each element where the comparison is

true and 0x0 where the comparison is false.

The prototypes for Streaming SIMD Extensions intrinsics are in the xmm nt ri n. h header file.

Page 231 of 431

Intrinsic Comparison Corresponding
Name Instruction
_mm cnpeq_ss Equal CVMPEQSS
_mm cnpeq_ps Equal CVMPEQPS
_mmcnplt_ss Less Than CVPLTSS
_mmcnpl t_ps Less Than CVPLTPS
_mm cnpl e_ss Less Than or Equal CVPLESS
_mm cnpl e_ps Less Than or Equal CMPLEPS
_hm_cnpgt _ss Greater Than CMPLTSS
_mm_cnpgt _ps Greater Than CMPLTPS
_mm.cnpge_ss Greater Than or Equal CMPLESS
_mm.cnpge_ps Greater Than or Equal CVPLEPS
_mm cnpneq_ss Not Equal CVPNEQSS
_hm .cnpneq_ps Not Equal CVPNEQPS
_mmcnpnlt_ss Not Less Than CVPNLTSS
_mm.cnpnl t _ps Not Less Than CVPNLTPS
_mm cnpnl e_ss Not Less Than or Equal CMPNLESS
_mm crpnl e_ps Not Less Than or Equal CVPNLEPS
_mm cnpngt _ss Not Greater Than CVMPNLTSS
_mm._cnpngt _ps Not Greater Than CVPNLTPS
_hm.cnpnge_ss Not Greater Than or Equal | CMPNLESS
_mm_cnpnge_ps Not Greater Than or Equal | CMPNLEPS
_nm cnpord_ss Ordered CMPORDSS
_mm cnpor d_ps Ordered CVMPORDPS
_nmm crpunor d_ss | Unordered CMPUNCORDSS

Intel® C++ Compiler User's Guide

_mm crpunor d_ps | Unordered CMPUNORDPS
_mm_coni eq_ss Equal COM SS
_mmconilt_ps |LessThan COM SS
_mmcomnil e_ss Less Than or Equal COM SS
_mm comi gt _ss Greater Than COM SS
_mm_coni ge_ss Greater Than or Equal COM SS
_mm_coni neq_ss | Not Equal COM SS
_mm ucomi eq_ss | Equal UCOM SS
_mmucomni | t_ss |Less Than UCOM SS
_mmucomni | e_ss | Less Than or Equal UCOM SS
_mm.ucomi gt _ss | Greater Than UCOM SS
_mm_uconi ge_ss | Greater Than or Equal UCOM SS
_mm_ucom neq_ss | Not Equal UCOM SS
_ ml28 mmcnpeq_ss(__ml28 a, _ nl28 b)
Compare for equality.
ro:= (a0 == b0) ? Oxffffffff 0x0
ri:=al; r2:=a2; r3 := a3
_ m28 mmcnpeqg_ps(__m28 a, _ nl28 b)
Compare for equality.
ro := (a0 == b0) ? Oxffffffff 0x0
rli:=(al == bl) ? Oxffffffff 0x0
r2 := (a2 == b2) ? Oxffffffff 0x0
r3 := (a3 == b3) ? Oxffffffff 0x0
_ ml28 mmenplt_ss(__ml28 a, _ nl28 b)
Compare for less-than.
ro := (a0 < b0) ? Ooxffffffff : OxO
ri:=al; r2:=a2; r3 := a3
_ m28 mmecnplt_ps(__m28 a, _ nl28 b)
Compare for less-than.
ro := (a0 < b0) ? Oxffffffff 0x0
ri:=(al < bl) ? Oxffffffff 0x0

Page 232 of 431

Intel® C++ Compiler User's Guide

r2
r3 :

(a2 < b2) ? Oxffffffff : OxO
(a3 < b3) ? Oxffffffff : OxO

_ m28 mmecnple_ss(__ml28 a, _ nl28 b)
Compare for less-than-or-equal.

0 <= b0) ? Oxffffffff : OxO

0 :=(a
1 al ; r2 :=a2; r3 := a3

_ m28 mmecnple_ps(__m28 a, _ nl28 b)

Compare for less-than-or-equal.

ro := (a0 <= b0) ? Oxffffffff : OxO
ri:=(al <= bl) ? Oxffffffff : OxO
r2 := (a2 <= b2) ? oxffffffff : OxO
r3 := (a3 <= b3) ? Oxffffffff : OxO

_ ml28 mmecnpgt _ss(__ml28 a, _ nl28 b)
Compare for greater-than.

ro :
rl .

(a0 > b0) ? Oxffffffff : OxO
al ; r2 := a2 ; r3 := a3

_ m28 mmcnpgt_ps(__m28 a, _ nl28 b)

Compare for greater-than.

ro := (a0 > b0) ? Oxffffffff : OxO
ri:=(al > bl) ? Oxffffffff : OxO
r2 := (a2 > b2) ? oxffffffff : OxO
r3 := (a3 > b3) ? Oxffffffff : OxO

_ ml28 mmcnpge_ss(__ml28 a, _ nl28 b)
Compare for greater-than-or-equal.

0 >= b0) ? Oxffffffff : OxO

0 :=(a
1 al ; r2 :=a2; r3 := a3

_ m28 mmcnpge_ps(__m28 a, _ nl28 b)

Compare for greater-than-or-equal.

ro := (a0 >= b0) ? Oxffffffff : OxO
ri:=(al >= bl) ? Oxffffffff : OxO
r2 := (a2 >= b2) ? oxffffffff : OxO
r3 := (a3 >= b3) ? Oxffffffff : OxO

__ml28 mmcnpneq_ss(__nl28 a, _ ml28 b)

Page 233 of 431

Intel® C++ Compiler User's Guide

Compare for inequality.

0 !=Db0) ? OXFFfffffff

(a
al ; r2 := a2 ; r3 := a3

0x0

__ml28 mmcnpneq_ps(__nl28 a, _ ml28 b)

Compare for inequality.

r0 := (a0 !'= b0) 2 Oxffffffff
rl:=(al !'= bl) ? Oxffffffff
r2 0= (a2 '= b2) ? Oxffffffff
r3 := (a3 !'= b3) ? Oxffffffff

0x0
0x0
0x0
0x0

_ m28 mmcnpnlt_ss(__nl28 a, _ ml28 b)

Compare for not-less-than.

a0 < b0) ? Oxffffffff

H(
al ; r2 := a2 ; r3 := a3

0x0

_ ml28 mmecnpnlt_ps(__nl28 a, _ ml28 b)

Compare for not-less-than.

r0 :=1(a0 < b0) ? Oxffffffff
rl:=1!(al < bl) ? Oxffffffff
r2 ;= 1(a2 < b2) ? Oxffffffff
r3 :=1(a3 < b3) ? Oxffffffff

0x0
0x0
0x0
0x0

_ m28 mmcnpnle_ss(__nl28 a, _ m28 b)

Compare for not-less-than-or-equal.

(a0 <= b0) ? Oxffffffff
al ; r2 := a2 ; r3 := a3

0x0

_ ml28 mmcnpnle_ps(__nl28 a, _ ml28 b)

Compare for not-less-than-or-equal.

r0 :=1!(a0 <= b0) ? Oxffffffff : OxO0
rl:=1!(al <= bl) ? Oxffffffff : OxO0
r2 :=1(a2 <= b2) ? Oxffffffff : OxO0
r3 :=1(a3 <= b3) ? Oxffffffff : OxO0

_ m28 mmcnpngt_ss(__nl28 a, _ ml28 b)

Compare for not-greater-than.

ro :=1!(a0 > b0) ? Oxffffffff : OxO

Page 234 of 431

Intel® C++ Compiler User's Guide

rl:=al; r2 :=a2 ; r3 := a3
_ ml28 mmcnpngt _ps(__nl28 a, _ ml28 b)

Compare for not-greater-than.

r0 :=1(a0 > b0) ? Oxffffffff : OxO
r1:=1!(al > bl) ? Oxffffffff : OxO
r2 :=1(a2 > b2) ? Oxffffffff : OxO
r3 :=1(a3 > b3) ? Oxffffffff : OxO

_ ml28 nmmcnpnge_ss(__nl28 a, _ ml28 b)
Compare for not-greater-than-or-equal.

= 1(a0 >= b0) ? Ooxffffffff : OxO
= al ; r2 :=a2; r3 := a3

__ml28 mmcnpnge_ps(__nl28 a, _ ml28 b)

Compare for not-greater-than-or-equal.

r0 :=!(a0 >= b0) ? Oxffffffff : OxO0
rl:=1!(al >= bl) ? Oxffffffff : OxO0
r2 :=1(a2 >= b2) ? Oxffffffff : Ox0
r3 :=1(a3 >= b3) ? Oxffffffff : OxO0

_ m28 mmcnpord_ss(__nl28 a, _ ml28 b)
Compare for ordered.

ro :
rl :

(a0 ord? b0) ? Oxffffffff : OxO
al ; r2 := a2 ; r3 := a3

_ ml28 mmcnpord_ps(__nl28 a, _ ml28 b)

Compare for ordered.

r0 := (a0 ord? b0) ? Oxffffffff : 0xO
rl1:= (al ord? bl) ? Oxffffffff : 0xO
r2 := (a2 ord? b2) ? Oxffffffff : 0x0
r3 := (a3 ord? b3) ? Oxffffffff : 0xO

_ m28 mmcnpunord_ss(__ ml28 a, _ nl28 b)

Compare for unordered.

(a0 unord? b0) ? Oxffffffff : OxO
al ; r2 := a2 ; r3 := a3

_ ml28 mmcnpunord _ps(__ ml28 a, _ nl28 b)

Page 235 of 431

Intel® C++ Compiler User's Guide

i nt

i nt

i nt

i nt

i nt

i nt

Compare for unordered.

ro := (a0 unord? b0) ? Oxffffffff : OxO
rl := (al unord? bl) ? Oxffffffff : OxO
r2 := (a2 unord? b2) ? Oxffffffff : OxO
r3 := (a3 unord? b3) ? Oxffffffff : OxO

_mmcom eq_ss(__ml28 a, _ nil28 b)

Compares the lower SP FP value of a and b for a equal to b. If a and b are equal, 1 is returned.
Otherwise 0 is returned.

r := (a0 == b0) ? 0x1 : 0xO
_mmeconilt_ss(__m28 a, _ nl28 b)

Compares the lower SP FP value of a and b for a less than b. If a is less than b, 1 is returned.
Otherwise 0 is returned.

r := (a0 < b0) ? 0x1 : 0xO
~mmcomle ss(__m28 a, _ nl28 b)

Compares the lower SP FP value of a and b for a less than or equal to b. If a is less than or
equal to b, 1 is returned. Otherwise 0 is returned.

r := (a0 <= b0) ? 0x1 : 0xO
_mmconmigt_ss(__ m28 a, _ nl28 b)

Compares the lower SP FP value of a and b for a greater than b. If a is greater than b are
equal, 1 is returned. Otherwise 0 is returned.

r := (a0 > b0) ? 0Ox1 : O0xO
_mmcom ge_ss(__ml28 a, _ nil28 b)

Compares the lower SP FP value of a and b for a greater than or equal to b. If a is greater than
or equal to b, 1 is returned. Otherwise O is returned.

r := (a0 >= b0) ? 0x1 : 0xO
_mm coni neq_ss(__nl28 a, _ ml28 b)

Compares the lower SP FP value of a and b for a not equal to b. If a and b are not equal, 1 is
returned. Otherwise O is returned.

r := (a0 !'= b0) ? Ox1 : 0xO

_mm.ucom eq_ss(__nl28 a, _ ml28 b)

Page 236 of 431

Intel® C++ Compiler User's Guide

i nt

i nt

i nt

i nt

i nt

Compares the lower SP FP value of a and b for a equal to b. If a and b are equal, 1 is returned.
Otherwise 0 is returned.

r := (a0 == b0) ? 0x1 : 0xO
_mmucom |t _ss(__nl28 a, _ ml28 b)

Compares the lower SP FP value of a and b for a less than b. If a is less than b, 1 is returned.
Otherwise 0 is returned.

r := (a0 < b0) ? Ox1 : 0xO
_mmuconile_ss(__nl28 a, _ ml28 b)

Compares the lower SP FP value of a and b for a less than or equal to b. If a is less than or
equal to b, 1 is returned. Otherwise 0 is returned.

r := (a0 <= b0) ? 0x1 : 0xO
_mmucomigt_ss(_ nl28 a, _ ml28 b)

Compares the lower SP FP value of a and b for a greater than b. If a is greater than or equal to
b, 1 is returned. Otherwise O is returned.

r := (a0 > b0) ? Ox1 : 0OxO
_mmucomige_ss(__nl28 a, _ ml28 b)

Compares the lower SP FP value of a and b for a greater than or equal to b. If a is greater than
or equal to b, 1 is returned. Otherwise 0 is returned.

r := (a0 >= b0) ? 0x1 : 0xO
_mm.ucom neq_ss(__m28 a, _ nl28 b)

Compares the lower SP FP value of a and b for a not equal to b. If a and b are not equal, 1 is
returned. Otherwise O is returned.

r := (a0 !'= b0) ? Ox1 : 0xO

Page 237 of 431

Intel® C++ Compiler User's Guide

Conversion Operations for Streaming SIMD
Extensions

The conversions operations are listed in the following table followed by a description of each intrinsic
with the most recent mnemonic naming convention. The alternate name is provided in case you have
used these intrinsics before.

The prototypes for Streaming SIMD Extensions intrinsics are in the xmm nt ri n. h header file.

Intrinsic Alternate Corresponding
Name Name Instruction
_mm cvt _ss2si _mmcvtss_si 32 | CVTISS2SI
_mm cvt_ps2pi _mmcvtps_pi 32 | CVTPS2PI
_mmcvtt_ss2si _mmcvttss_si 32 | CVTTSS2SI
_mmcvtt_ps2pi _mmcvttps_pi 32 | CVTTPS2PI
_mm cvt _si 2ss _mm cvtsi 32 _ss | CVTSI 2SS
_mm cvt _pi 2ps _mmcvtpi 32_ps | CVITPS2PI
_mm cvtpi 16_ps composite
_mm cvt pul6_ps composite
_mm cvt pi 8_ps composite
_mm cvt pu8_ps composite
_mm cvt pi 32x2_ps composite
_mmcvtps_pi 16 composite
_mmcvtps_pi 8 composite

int _mmecvt_ss2si(__ml28 a)

Convert the lower SP FP value of a to a 32-bit integer according to the current rounding mode.

r :=(int)a0

__mb4 mmecvt _ps2pi (__m28 a)

Convert the two lower SP FP values of a to two 32-bit integers according to the current rounding
mode, returning the integers in packed form.

ro :
rl .

(int)a0
(int)al

int _mmecvtt_ss2si(__m28 a)

Page 238 of 431

Int

el® C++ Compiler User's Guide

Convert the lower SP FP value of a to a 32-bit integer with truncation.
r :=(int)a0
64 _mmecvtt _ps2pi (__ml28 a)

Convert the two lower SP FP values of a to two 32-bit integer with truncation, returning the
integers in packed form.

ro :
rl .

(int)a0
(int)al

~ml28 _mmcvt_si2ss(__ml28, int)

Convert the 32-bit integer value b to an SP FP value; the upper three SP FP values are passed
through from a.

loat)b

ro = (f
ril al ; r2 := a2 ; r3 := a3

~ml28 _mmcvt _pi2ps(__m28, _ nb4)

Convert the two 32-bit integer values in packed form in b to two SP FP values; the upper two
SP FP values are passed through from a.

ro := (float)hbo
rl .= (float)bl
r2 .= a2
r3 := a3

inline _ m28 _mmcvtpil6_ps(__nb4 a)

Convert the four 16-bit signed integer values in a to four single precision FP values.

ro := (float)a0
ri:= (float)al
r2 := (float)az
r3 := (float)a3

_inline __ m28 mmcvtpul6 ps(__nb4 a)

Convert the four 16-bit unsigned integer values in a to four single precision FP values.

ro := (float)a0
rl .= (float)al
r2 .= (float)a2
r3 := (float)a3

_inline __ nml28 nmmcvtpi 8 ps(__nb4 a)

Convert the lower four 8-bit signed integer values in a to four single precision FP values.

Page 239 of 431

Intel® C++ Compiler User's Guide

ro := (float)a0
rl .= (float)al
r2 .= (float)a2
r3 .= (float)a3

_inline __m28 _mmcvtpu8_ps(__nmb64 a)

Convert the lower four 8-bit unsigned integer values in a to four single precision FP values.

ro := (float)a0
ri:= (float)al
r2 := (float)az
r3 := (float)a3

_inline __ m28 mmcvtpi32x2 ps(__nmb4 a, _ nb4 b)

Convert the two 32-bit signed integer values in a and the two 32-bit signed integer values in b to
four single precision FP values.

ro := (float)a0
rl .= (float)al
r2 := (float)hbo
r3 .= (float)bl

_inline __mb64 _mmcvtps_pi 16(__m28 a)

Convert the four single precision FP values in a to four signed 16-bit integer values.

ro := (short)a0
rl := (short)al
r2 := (short)az
r3 := (short)as

_inline __nm64 mmecvtps_pi 8(___m28 a)

Convert the four single precision FP values in a to the lower four signed 8-bit integer values of

the result.

ro := (char)a0
rl:= (char)al
r2 := (char)a2
r3 := (char)a3

Page 240 of 431

Intel® C++ Compiler User's Guide

Load Operations for Streaming SIMD Extensions

See summary table in Summary of Memory and Initialization topic.
The prototypes for Streaming SIMD Extensions intrinsics are in the xmm nt ri n. h header file.
_ m28 mmload_ss(float * p)
Loads an SP FP value into the low word and clears the upper three words.
ro :=*p
ri:=0.0,; r2:=00; r3:=0.0
_ m28 mmload psl(float * p)

Loads a single SP FP value, copying it into all four words.

ro :=*p
ri:=*p
r2z :=*p
r3 :=*p

_ m28 mmload _ps(float * p)

Loads four SP FP values. The address must be 16-byte-aligned.

ro := p[0]
ri = p[1]
r2z :=p[2]
r3 = p[3]

_ ml28 mmloadu_ps(float * p)

Loads four SP FP values. The address need not be 16-byte-aligned.

ro := p[0]
ri:=p[1]
r2 :=p[2]
r3 :=p[3]

_ m28 nmmloadr_ps(float * p)

Page 241 of 431

Intel® C++ Compiler User's Guide

Loads four SP FP values in reverse order. The address must be 16-byte-aligned.

ro = p[3]
ri = p[2]
r2 1= p[1]
r3 := p[0]

Page 242 of 431

Intel® C++ Compiler User's Guide

Set Operations for Streaming SIMD Extensions

See summary table in Summary of Memory and Initialization topic.
The prototypes for Streaming SIMD Extensions intrinsics are in the xmm nt ri n. h header file.
_ m28 mmset_ss(float w)
Sets the low word of an SP FP value to wand clears the upper three words.
ro:=w
ri:=r2:=r3:=0.0
_ ml28 mmset psl(float w)
Sets the four SP FP values to w.
ro:=r1:=r2:=r3:=w
_ m28 mmset_ps(float z, float y, float x, float w)

Sets the four SP FP values to the four inputs.

ro:=w
ri:=x
r2 .=y
r3 .=z

_ ml28 mmsetr _ps(float z, float y, float x, float w)

Sets the four SP FP values to the four inputs in reverse order.

ro:=z
ri:=y
rz :=x
r3:=w

_ ml28 mm setzero_ps(void)
Clears the four SP FP values.

ro:=rl1l:=r2:=r3:=0.0

Page 243 of 431

Intel® C++ Compiler User's Guide

Store Operations for Streaming SIMD Extensions

See summary table in Summary of Memory and Initialization topic.
The prototypes for Streaming SIMD Extensions intrinsics are in the xmm nt ri n. h header file.
void mmstore_ss(float * p, _ ml28 a)
Stores the lower SP FP value.
*p .= a0
void mmstore psi(float * p, _ nl28 a)

Stores the lower SP FP value across four words.

p[0] := a0
p[1] := a0
p[2] := a0
p[3] := a0

void _mmstore_ps(float *p, _ nl28 a)

Stores four SP FP values. The address must be 16-byte-aligned.

p[0] := a0
p[1] := al
p[2] := a2
p[3] := a3
void mmstoreu_ps(float *p, _ ml28 a)

Stores four SP FP values. The address need not be 16-byte-aligned.

p[0] := a0
p[1l] := al
p[2] := a2
p[3] := a3
void nmmstorer_ps(float * p, _ nl28 a)

Page 244 of 431

Intel® C++ Compiler User's Guide

Stores four SP FP values in reverse order. The address must be 16-byte-aligned.

p[0] := a3
p[1] := a2
p[2] := al
p[3] := a0

_ ml28 mmnove_ss(_ ml28 a, _ nl28 b)

Sets the low word to the SP FP value of b. The upper 3 SP FP values are passed through from

a.
ro := bo
ri:=al
rz := a2
r3 := a3

Page 245 of 431

Intel® C++ Compiler User's Guide

Cacheability Support Using Streaming SIMD
Extensions

The prototypes for Streaming SIMD Extensions intrinsics are in the xmm nt ri n. h header file.
voi d _nm pause(voi d)

The execution of the next instruction is delayed an implementation specific amount of time. The
instruction does not modify the architectural state. This intrinsic provides especially significant
performance gain and described in more detail below.

PAUSE Intrinsic

The PAUSE intrinsic is used in spin-wait loops with the processors implementing dynamic execution
(especially out-of-order execution). In the spin-wait loop, PAUSE improves the speed at which the code
detects the release of the lock. For dynamic scheduling, the PAUSE instruction reduces the penalty of
exiting from the spin-loop.

Example of loop with the PAUSE instruction:
spi n_| oop: pause

cnp eax, A

j ne spin_|loop

In the above example, the program spins until memory location A matches the value in register eax.
The code sequence that follows shows a test-and-test-and-set. In this example, the spin occurs only
after the attempt to get a lock has failed.

get _lock: nov eax, 1

xchg eax, A; Try to get lock
cnp eax, 0 ; Test if successfu

j ne spin_|loop

Critical Section:

<critical_section code>

nov A, O ; Release |ock

jmp continue

spi n_| oop: pause; Spin-loop hint

cnp 0, A; Check lock availability

Page 246 of 431

Intel® C++ Compiler User's Guide

j ne spin_|loop
jmp get _lock

conti nue: <other code>

Note that the first branch is predicted to fall-through to the critical section in anticipation of successfully
gaining access to the lock. It is highly recommended that all spin-wait loops include the PAUSE
instruction. Since PAUSE is backwards compatible to all existing IA-32 processor generations, a test for
processor type (a CPUID test) is not needed. All legacy processors will execute PAUSE as a NOP, but
in processors which use the PAUSE as a hint there can be significant performance benefit.

Page 247 of 431

Intel® C++ Compiler User's Guide

Integer Intrinsics Using Streaming SIMD Extensions

The integer intrinsics are listed in the table below followed by a description of each intrinsic with the

most recent mnemonic naming convention.

The prototypes for Streaming SIMD Extensions intrinsics are in the xmm nt ri n. h header file.

Intrinsic Alternate Operation Corresponding
Name Name Instruction
_mpextrw _mm extract_pi 16 | Extract on of four words PEXTRW
_m pinsrw _mm.insert pil6 Insert a word Pl NSRW
_mpnmaxsw | _nm nmax_pi 16 Compute the maximum PVAXSW
_m pnaxub _mm _nax_pu8 Compute the maximum, unsigned PVAXUB
_mpninsw | _nmumnin_pil6 Compute the minimum PM NSW
_m pni nub _mm.nin_pu8 Compute the minimum, unsigned PM NUB
_m pnoviskb | _nm novenask_pi 8 | Create an eight-bit mask PMOVIVBKB
_mpmul huw | _nm nul hi _pul6 Multiply, return high bits PMULHUW
_mpshufw | _mmshuffle_pi 16 |Return a combination of four words PSHUFW
_m masknovg | _mm masknmove_si 64 | Conditional Store MASKMOVQ
_m pavgb _mm avg_pu8 Compute rounded average PAVGB

_m pavgw _mm avg_pulé Compute rounded average PAVGW

_m psadbw _mm sad_pu8 Compute sum of absolute differences | PSADBW

For these intrinsics you need to empty the multimedia state for the mmx register. See The EMMS
Instruction: Why You Need It and When to Use It topic for more details.

int _mpextrw__nb4 a,

int n)

Extracts one of the four words of a. The selector n must be an immediate.

r .= (n=

__m4 mpinsrw(__nb4 a,

=0) ? a0 :

int d,

((n==1) ? al :

((n==2) ? a2 :

int n)

Inserts word d into one of four words of a. The selector n must be an

immediate.

ro := (n==0) ? d: a0;
ri:=(n==1) ? d: al;
r2 :=(n==2) ?2 d: a2
r3 :=(n==3) ?2 d: a3;

Page 248 of 431

a3))

Intel® C++ Compiler User's Guide

__mb64 mpnmaxsw(__nb4 a, __nb4 b)

Computes the element-wise maximum of the words in a and b.

ro := mn(ao,
rl := mn(al,
r2 := mn(az2,
r3 := mn(as,

b0)
b1)
b2)
b3)

__mb64 mpnmaxub(__nb64 a, __nb4 b)

Computes the element-wise maximum of the unsigned bytes in a and b.

ro := mn(ao,
rl := mn(al,
.r.7.:: m n(a7,

bO)
b1)

b7)

__m4 mpmnsw(__nb4 a, __nb4 b)

Computes the element-wise minimum of the words in a and b.

ro := mn(ao,
rl := mn(al,
r2 := mn(az2,
r3 := mn(as3,

b0)
b1)
b2)
b3)

__m64 mpmnub(__nb64 a, __nb4 b)

Computes the element-wise minimum of the unsigned bytes in a and b.

ro := mn(ao,
rl := mn(al,
.r.7.:: m n(a7,

bO)
b1)

b7)

int _mpnovnskb(__n64 a)

Creates an 8-bit mask from the most significant bits of the bytes in a.

r :=sign(a7)<<7 | sign(a6)<<6 |... | sign(a0)

__m64 _m prmul huw(__

n64 a, _ nb4 b)

Multiplies the unsigned words in a and b, returning the upper 16 bits of the 32-bit intermediate

results.

ro := hiword(a0 * b0)
rl := hiwrd(al * bl)
r2 := hiwrd(a2 * b2)
r3 := hiword(a3 * b3)

__m64 mpshufw(__nb64 a, int n)

Page 249 of 431

Intel® C++ Compiler User's Guide

Returns a combination of the four words of a. The selector n must be an immediate.

ro := word (n&x3) of a

rl:= word ((n>>2)&0x3) of a
r2 :=word ((n>>4)&0x3) of a
r3 := word ((n>>6)&0x3) of a

void _m masknovq(__n64 d, _ nmb4 n, char *p)

Conditionally store byte elements of d to address p. The high bit of each byte in the selector n
determines whether the corresponding byte in d will be stored.

if (sign(n0)) p[0] := dO
if (sign(nl)) p[1l] :=d1
if (sign(n7)) p[7] := d7

__m64 _mpavgh(__nb4 a, _ nb4 b)
Computes the (rounded) averages of the unsigned bytes in a and b.

t = (unsigned short)a0 + (unsigned short) b0
ro =(t > 1) | (t & 0x01)

t = (unsi gned short)a7 + (unsigned short)b7
r7 = (unsigned char)((t >> 1) | (t & 0x01))

__nb4 _mpavgw(__nbB4 a, __nb4 b)
Computes the (rounded) averages of the unsigned words in a and b.

t = (unsigned int)a0 + (unsigned int)b0
ro =(t > 1) | (t & 0x01)

t = (unsi gned word)a7 + (unsigned word)b7
r7 = (unsigned short)((t >> 1) | (t & 0x01))

__m64 m psadbw(__nb4 a, __nb4 b)

Computes the sum of the absolute differences of the unsigned bytes in a and b, returning he
value in the lower word. The upper three words are cleared.

ro
ril

abs(a0-b0) +... + abs(a7-b7)
r2=r3=20

Page 250 of 431

Intel® C++ Compiler User's Guide

Memory and Initialization Using Streaming SIMD
Extensions

This section describes the | oad, set , and st or e operations, which let you load and store data into
memory. The | oad and set operations are similar in that both initialize __ml28 data. However, the

set operations take a float argument and are intended for initialization with constants, whereas the

| oad operations take a floating point argument and are intended to mimic the instructions for loading
data from memory. The st or e operation assigns the initialized data to the address.

The intrinsics are listed in the following table. Syntax and a brief description are contained the following

topics.

The prototypes for Streaming SIMD Extensions intrinsics are in the xmm nt ri n. h header file.

Page 251 of 431

Intrinsic Alternate Operation Corresponding
Name Name Instruction
_mm | oad_ss Load the low value and clear the MOVSS
three high values
_mm | oad_ps1 _mm_| oadl_ps | Load one value into all four words MOVSS +
Shuffling
nm| oad_ps Load four values, address aligned MOVAPS
nmm| oadu_ps Load four values, address unaligned | MOVUPS
nm| oadr _ps Load four values, in reverse order MOVAPS +
Shuffling
_mmset_ss Set the low value and clear the three | Composite
high values
_mm set _psl _mmsetl_ps Set all four words with the same value | Composite
_mmset_ps Set four values, address aligned Composite
_mmsetr_ps Set four values, in reverse order Composite
_mm set zero_ps Clear all four values Composite
_mm store_ss Store the low value MOVSS
_mmstore_psl |_mmstorel_ps | Store the low value across all four Shuffling +
words. The address must be 16-byte | MOVSS
aligned.
_hmstore_ps Store four values, address aligned MOVAPS
_mm storeu_ps Store four values, address unaligned | MOVUPS
_mm storer_ps Store four values, in reverse order MOVAPS +
Shuffling
_hm nove_ss Set the low word, and pass in three MOVSS
high values

Intel® C++ Compiler User's Guide

_mm get csr Return register contents STMXCSR

_mm setcsr Control Register LDMXCSR

_mm prefetch

_mm st ream pi

_mm stream ps

_mm sfence

_ ml28 mmload _ss(float const*a)
Loads an SP FP value into the low word and clears the upper three words.

ro :
rl ;.

*a
0.0 ; r2:=0.0; r3:=0.0

_ ml28 mmload psl(float const*a)

Loads a single SP FP value, copying it into all four words.

roO := *a
rl .= *a
r2 := *a
r3 := *a

__ ml28 mmload ps(float const*a)

Loads four SP FP values. The address must be 16-byte-aligned.

ro := a[0]
rl .= a[l]
r2 := al2]
r3 .= al3]

_ ml28 mm|loadu_ps(float const*a)

Loads four SP FP values. The address need not be 16-byte-aligned.

ro := a[0]
rl .= a[l]
r2 := al2]
r3 .= al3]

__ ml28 mm|loadr_ps(float const*a)

Loads four SP FP values in reverse order. The address must be 16-byte-aligned.

ro := a[3]
rl .= al2]
r2 := a[1]
r3 .= a[0]

Page 252 of 431

Intel® C++ Compiler User's Guide

_ m28 mmset_ss(float a)

Sets the low word of an SP FP value to a and clears the upper three words.

ro:=c
ri rz:=r3:=0.0
_ m28 mmset_psl(float a)
Sets the four SP FP values to a.
ro:=rl:=r2:=r3:=a
_ ml28 mmset _ps(float a, float b, float ¢, float d)

Sets the four SP FP values to the four inputs.

roO := a
rl :=b
r2 :=c¢
r3 :=d

_ ml28 mmsetr_ps(float a, float b, float c, float d)

Sets the four SP FP values to the four inputs in reverse order.

ro :=d
rl .=c
r2 :=b
r3 :=a

__ml28 mm setzero_ps(void)
Clears the four SP FP values.
ro:=r1:=r2:=r3:=0.0

void _mmstore_ss(float *v, _ nl28 a)
Stores the lower SP FP value.
*v 1= a0

void mmstore psi(float *v, _ ml28 a)

Stores the lower SP FP value across four words.

v[0] := a0
v[1] := a0
v[2] := a0
v[3] := a0
void mmstore ps(float *v, _ nl28 a)

Page 253 of 431

Intel® C++ Compiler User's Guide

voi d

voi d

Stores four SP FP values. The address must be 16-byte-aligned.

v[0] := a0
v[1] := al
v[2] := a2
v[3] := a3
_mmstoreu_ps(float *v, _ nl28 a)

Stores four SP FP values. The address need not be 16-byte-aligned.

v[0] := a0
v[1] := a1l
v[2] := a2
v[3] := a3
_mmstorer_ps(float *v, _ nl28 a)

Stores four SP FP values in reverse order. The address must be 16-byte-aligned.

a3
a2
al
a0

WN O
[l e P et}
I

<< <<

[
[
[
[

_ ml28 mmnove_ss(__ml28 a, _ ml28 b)

Sets the low word to the SP FP value of b. The upper 3 SP FP values are passed through from

r0 := bo
rl ;= al
r2 := a2
r3 := a3

unsi gned int _nm getcsr(void)

voi d

voi d

voi d

Returns the contents of the control register.
_mmsetcsr(unsigned int i)

Sets the control register to the value specified.
_mm prefetch(char const*a, int sel)

(uses PREFETCH) Loads one cache line of data from address a to a location "closer" to the
processor. The value sel specifies the type of prefetch operation: the constants

_MM HINT_TO, MM HINT_T1, MM HI NT_T2, and _MM_HI NT_NTA should be used,
corresponding to the type of pr ef et ch instruction.

_mmstreampi(__nm64 *p, _ nb4 a)

(uses MOVNTQ) Stores the data in a to the address p without polluting the caches. This intrinsic
requires you to empty the multimedia state for the mx register. See The EMMS Instruction:

Page 254 of 431

Intel® C++ Compiler User's Guide

Why You Need It and When to Use It topic.
void _mmstreamps(float *p, _ ml28 a)

(see MOVNTPS) Stores the data in a to the address p without polluting the caches. The address
must be 16-byte-aligned.

void _nmm sfence(void)

(uses SFENCE) Guarantees that every preceding store is globally visible before any subsequent
store.

Page 255 of 431

Intel® C++ Compiler User's Guide

Miscellaneous Intrinsics Using Streaming SIMD

Extensions

The prototypes for Streaming SIMD Extensions intrinsics are in the xmm nt ri n. h header file.

Intrinsic Operation Corresponding
Name Instruction
_mmshuffl e_ps | Shuffle SHUFPS
_mm_unpackhi _ps | Unpack High UNPCKHPS

mm unpackl o_ps | Unpack Low UNPCKLPS

mm| oadh_pi Load High MOVHPS reg, nem
_nmm st or eh_pi Store High MOVHPS nem reg
_mm novehl _ps | Move Highto Low | MOVHLPS

_mm novel h_ps | Move Low to High | MOVLHPS

mm| oad! _pi Load Low MOVLPS reg, nmem
_nm st orel _pi Store Low MOVLPS mem reg
_nm novermask_ps | Create four-bit mask | MOVMBKPS
_ m28 mmshuffle ps(__m28 a, _ nml28 b, unsigned int inmB)

Selects four specific SP FP values from a and b, based on the mask i m8. The mask must be
an immediate. See Macro Function for Shuffle Using Streaming SIMD Extensions for a
description of the shuffle semantics.

_ ml28 mmunpackhi _ps(__ml28 a, _ nl28 b)

Selects and interleaves the upper two SP FP values from a and b.

r0 := a2
rl .= b2
r2 := a3
r3 := b3

_ m28 mmunpacklo_ps(__ml28 a, _ nl28 b)

Selects and interleaves the lower two SP FP values from a and b.

rO := a0
rl := b0
r2 := al
r3 := bl

Page 256 of 431

Intel® C++ Compiler User's Guide

_ ml28 mmloadh pi(__ml28, _ nb64 const *p)

Sets the upper two SP FP values with 64 bits of data loaded from the address p.

ro .= a0
rl :=al
r2 := *p0
r3 := *pl

void _mmstoreh_pi(__nb4 *p, _ ml28 a)
Stores the upper two SP FP values to the address p.

*pO :
*pl :

a2
a3

__ml28 mmnovehl _ps(__ nl28 a, _ ml28 b)

Moves the upper 2 SP FP values of b to the lower 2 SP FP values of the result. The upper 2 SP
FP values of a are passed through to the result.

r3 := a3
r2 := a2
rl := b3
ro := b2

_ m28 nmmnovel h_ps(__nl28 a, _ m28 b)

Moves the lower 2 SP FP values of b to the upper 2 SP FP values of the result. The lower 2 SP
FP values of a are passed through to the result.

r3 := bl
r2 := bo
rl := al
rO := a0

_ m28 mmloadl _pi(__m28 a, _ nb4 const *p)

Sets the lower two SP FP values with 64 bits of data loaded from the address p; the upper two
values are passed through from a.

ro := *po
rl .= *pl
r2 .= a2
r3 .= a3

void _mmstorel _pi(__nb4 *p, _ ml28 a)
Stores the lower two SP FP values of a to the address p.

a0
al

*pO :
*pl :

Page 257 of 431

Intel® C++ Compiler User's Guide

int _mmnovenmask _ps(__ nl28 a)
Creates a 4-bit mask from the most significant bits of the four SP FP values.

r :=sign(al3)<<3 | sign(a2)<<2 | sign(al)<<l | sign(a0)

Page 258 of 431

Intel® C++ Compiler User's Guide

Using Streaming SIMD Extensions on Itanium®
Architecture

The Streaming SIMD Extensions intrinsics provide access to Itanium® instructions for Streaming SIMD
Extensions. To provide source compatibility with the I1A-32 architecture, these intrinsics are equivalent
both in name and functionality to the set of IA-32-based Streaming SIMD Extensions intrinsics.

To write programs with the intrinsics, you should be familiar with the hardware features provided by the
Streaming SIMD Extensions. Keep the following four important issues in mind:

e Certain intrinsics are provided only for compatibility with previously-defined 1A-32 intrinsics.
Using them on Itanium-based systems probably leads to performance degradation. See section
below.

e Floating-point (FP) data loaded stored as ___n128 objects must be 16-byte-aligned.

e Some intrinsics require that their arguments be immediates— that is, constant integers (literals),
due to the nature of the instruction.

Data Types

The new data type __ nl28 is used with the Streaming SIMD Extensions intrinsics. It represents a 128-
bit quantity composed of four single-precision FP values. This corresponds to the 128-bit 1A-32
Streaming SIMD Extensions register.

The compiler aligns ___mL28 local data to 16-byte boundaries on the stack. Global data of these types
is also 16 byte-aligned. To aligni nt eger, f | oat, or doubl e arrays, you can use the decl spec
alignment.

Because Itanium instructions treat the Streaming SIMD Extensions registers in the same way whether
you are using packed or scalar data, there is no __ B2 data type to represent scalar data. For scalar
operations, use the __n28 objects and the "scalar" forms of the intrinsics; the compiler and the
processor implement these operations with 32-bit memory references. But, for better performance the
packed form should be substituting for the scalar form whenever possible.

The address ofa __ nl28 object may be taken.

For more information, see Intel Architecture Software Developer's Manual, Volume 2: Instruction Set
Reference Manual, Intel Corporation, doc. number 243191.

Implementation on Itanium-based systems

Streaming SIMD Extensions intrinsics are defined for the __ n28 data type, a 128-bit quantity
consisting of four single-precision FP values. SIMD instructions for Itanium-based systems operate on
64-bit FP register quantities containing two single-precision floating-point values. Thus, each __ 28
operand is actually a pair of FP registers and therefore each intrinsic corresponds to at least one pair
of Itanium instructions operating on the pair of FP register operands.

Compatibility versus Performance

Many of the Streaming SIMD Extensions intrinsics for Itanium-based systems were created for
compatibility with existing 1A-32 intrinsics and not for performance. In some situations, intrinsic usage
that improved performance on IA-32 will not do so on Itanium-based systems. One reason for this is

Page 259 of 431

Intel® C++ Compiler User's Guide

that some intrinsics map nicely into the 1A-32 instruction set but not into the Itanium instruction set.
Thus, it is important to differentiate between intrinsics which were implemented for a performance

advantage on Itanium-based systems, and those implemented simply to provide compatibility with
existing 1A-32 code.

The following intrinsics are likely to reduce performance and should only be used to initially port legacy
code or in non-critical code sections:

e Any Streaming SIMD Extensions scalar intrinsic (_ss vari ety) - use packed (_ps) version if
possible

e com anduconm Streaming SIMD Extensions comparisons - these correspond to I1A-32
COM SS and UCOM SS instructions only. A sequence of Itanium instructions are required to
implement these.

e Conversions in general are multi-instruction operations. These are particularly expensive:
_mmcvtpi 16_ps, _mmcvtpul6_ps, nmcvtpi 8 ps, mm cvt pu8_ps,
_mm cvt pi 32x2_ps, _mmcvtps_pi 16, nmcvtps_pi 8

e Streaming SIMD Extensions utility intrinsic _nm novermask_ps

If the inaccuracy is acceptable, the SIMD reciprocal and reciprocal square root approximation intrinsics
(rcp and r sqgrt) are much faster than the true di v and sqrt intrinsics.

Page 260 of 431

Intel® C++ Compiler User's Guide

Macro Function for Shuffle Using Streaming SIMD
Extensions

The Streaming SIMD Extensions provide a macro function to help create constants that describe
shuffle operations. The macro takes four small integers (in the range of 0 to 3) and combines them
into an 8-bit immediate value used by the SHUFPS instruction. See the example below.

Shuffle Function Macro

_MM SHUFFLE(=z,¥,.x.w)
F* expands to the following walue */F
f==<g) | fy2ad) | fx==2)] ow

You can view the four integers as selectors for choosing which two words from the first input operand
and which two words from the second are to be put into the result word.

View of Original and Result Words with Shuffle Function Macro

127]
;oml = (alblc]d]
127 0
PomZ = (2 [f]a[h]
n? = @mw shuffle psiml, nz,
_MM SHUFFLE(l,0,3,.2))
127 0
;w3 o= (g hlalb]

Page 261 of 431

Intel® C++ Compiler User's Guide

Macro Functions to Read and Write the Control
Registers

The following macro functions enable you to read and write bits to and from the control register. For
details, see Set Operations. For ltanium®-based systems, these macros do not allow you to access all
of the bits of the FPSR. See the descriptions for the get f psr () and set f psr () intrinsics in the
Native Intrinsics for Itanium Instructions topic.

Exception State Macros Macro Arguments
_MM _SET_EXCEPTI ON_STATE(x) _MM_EXCEPT_I NVALI D
_ MM _GET_EXCEPTI ON_STATE() _MM EXCEPT_DI V_ZERO

_MM_EXCEPT_DENORM

Macro Definitions _ MM _EXCEPT_OVERFLOW

Write to and read from the sixth-least
significant control register bit, respectively.

_MM_EXCEPT_UNDERFLOW

_MM_EXCEPT_| NEXACT

The following example tests for a divide-by-zero exception.

Exception State Macros with _MM_EXCEPT_DIV_ZERO

if [_MM_LET_EXCEPTION_STATE(=] & _MM _EXCEPT DIV ZERO) 4

§* Exception has occurred *f

]

Exception Mask Macros Macro Arguments
_MM_SET_EXCEPTI ON_MASK(x) _MM_MASK_| NVALI D
_ MM _GET_EXCEPTI ON_MASK () _MM_MASK DI V_ZERO

_MM_MASK_DENORM

Macro Definitions _MM_MASK_OVERFLOW

Write to and read from the seventh through twelfth
control register bits, respectively.

Note: All six exception mask bits are always affected.
Bits not set explicitly are cleared.

_MM_MASK_UNDERFLOW

_ MM _MASK_| NEXACT

Page 262 of 431

Intel® C++ Compiler User's Guide

The following example masks the overflow and underflow exceptions and unmasks all other
exceptions.

Exception Mask with _MM_MASK_OVERFLOW and _MM_MASK_UNDERFLOW

_MM_SET_EXCEPTI ON_MASK(MM_MASK_OVERFLOW | _ MVl MASK_UNDERFLOW

Rounding Mode Macro Arguments
MM _SET_ROUNDI NG_MODE(x) _MM_ROUND_NEAREST
_MM_GET_ROUNDI NG_MODE() _ MM _ROUND_DOWN
Macro Definition _MM_ROUND_UP

Write to and read from bits thirteen and fourteen of the control
register.

_MM_ROUND_TOWARD_ZERO

The following example tests the rounding mode for round toward zero.

Rounding Mode with _MM_ROUND_TOWARD_ZERO

if (_MM GET_ROUNDI NG MODE() == _MM ROUND_TOWARD_ZERO) {

/* Roundi ng nbde is round toward zero */

}

Flush-to-Zero Mode Macro Arguments
_MM SET_FLUSH ZERO MODE(x) _MM FLUSH ZERO ON
_MM CGET_FLUSH_ZERO MODE() _MM FLUSH_ZERO OFF

Macro Definition

Write to and read from bit fifteen of the control register.

The following example disables flush-to-zero mode.

Flush-to-Zero Mode with _MM_FLUSH_ZERO_OFF
_MM_SET_FLUSH _ZERO MODE(_MM FLUSH_ZERO OFF)

Page 263 of 431

Intel® C++ Compiler User's Guide

Macro Function for Matrix Transposition

The Streaming SIMD Extensions also provide the following macro function to transpose a 4 by 4 matrix
of single precision floating point values.

_ MM TRANSPCSE4 _PS(row0, rowl, row2, row3)

The arguments r ow0, r owl, r ow2, and r ow3 are __ml 28 values whose elements form the
corresponding rows of a 4 by 4 matrix. The matrix transposition is returned in arguments r ow0, r owl,
r ow2, and r ow3 where r ow0 now holds column 0 of the original matrix, r owl now holds column 1 of
the original matrix, and so on.

The transposition function of this macro is illustrated in the "Matrix Transposition Using the
_ MM _TRANSPOSE4_PS™" figure.

Matrix Transposition Using MM_TRANSPOSE4 PS Macro

reval) Xa L Z Wi (L= 5 = ¥ o

ol | My ¥y F2] Vh rowl | g L i L Ta
L 2

row Xa ¥ ¥ L fra z & rd A

rowd; X Y. F. W rowes | Wk N Vi W

lest st Tl
signilicant airpiean
ey ey

Page 264 of 431

Intel® C++ Compiler User's Guide

Overview: Streaming SIMD Extensions 2 Intrinsics

This section describes the C++ language-level features supporting the Intel® Pentium® 4 processor
Streaming SIMD Extensions 2 in the Intel® C++ Compiler, which are divided into two categories:

e Floating-Point Intrinsics -- describes the arithmetic, logical, compare, conversion, memory, and
initialization intrinsics for the double-precision floating-point data type (__n128d).

e Integer Intrinsics -- describes the arithmetic, logical, compare, conversion, memory, and
initialization intrinsics for the extended-precision integer data type (__ml28i).

f) Note

The Pentium 4 processor Streaming SIMD Extensions 2 intrinsics are defined only for 1A-32 platforms,
not Itanium®-based platforms. Pentium 4 processor Streaming SIMD Extensions 2 operate on 128 bit
quantities—2 64-bit double precision floating point values. The Itanium processor does not support
parallel double precision computation, so Pentium 4 processor Streaming SIMD Extensions 2 are not
implemented on Itanium-based systems.

For more details, refer to the Pentium® 4 processor Streaming SIMD Extensions 2 External
Architecture Specification (EAS) and other Pentium 4 processor manuals available for download from
the developer.intel.com web site. You should be familiar with the hardware features provided by the
Streaming SIMD Extensions 2 when writing programs with the intrinsics. The following are three
important issues to keep in mind:

e Certain intrinsics, such as _nm | oadr _pd and _nm cnpgt _sd, are not directly supported by
the instruction set. While these intrinsics are convenient programming aids, be mindful of their
implementation cost.

e Data loaded or stored as __ml28d objects must be generally 16-byte-aligned.

e Some intrinsics require that their argument be immediates, that is, constant integers (literals),
due to the nature of the instruction.

The prototypes for Streaming SIMD Extensions 2 intrinsics are in the enmi nt ri n. h header file.

Page 265 of 431

Intel® C++ Compiler User's Guide

Floating-point Arithmetic Operations for Streaming
SIMD Extensions 2

The arithmetic operations for the Streaming SIMD Extensions 2 are listed in the following table and are
followed by descriptions of each intrinsic.

The prototypes for Streaming SIMD Extensions 2 intrinsics are in the enmi nt ri n. h header file.

Intrinsic Corresponding | Operation RO R1

Name Instruction Value Value
mm add_sd | ADDSD Addition a0 [op] b0 | al

mm add_pd | ADDPD Addition a0 [op] b0 | a1 [op] bl
_mm sub_sd | SUBSD Subtraction a0 [op] b0 | al

_mm sub_pd | SUBPD Subtraction a0 [op] b0 | al [op] bl
_mm_nul _sd | MJLSD Multiplication a0 [op] b0 | al
_mmmul _pd | MJLLPD Multiplication a0 [op] b0 | al [op] bl
_mmdiv_sd |D VSD Division a0 [op] b0 | al
_mmdiv_pd | DI VPD Division a0 [op] b0 | al [op] bl
_mm.sqrt_sd | SORTSD Computes Square Root | a0 [op] b0 | al
_mm.sqrt_pd | SORTPD Computes Square Root | a0 [op] b0 | al [op] bl
_mm.nin_sd |MNSD Computes Minimum a0 [op] b0 | al
_mmmn_pd | MNPD Computes Minimum a0 [op] b0 | al [op] bl
_mm_nex_sd | MAXSD Computes Maximum a0 [op] bO | a1

_mm max_pd | MAXPD Computes Maximum a0 [op] b0 | a1 [op] b1

_ ml28d mm add_sd(__ml28d a, _ ml28d b)

Adds the lower DP FP (double-precision, floating-point) values of a and b ; the upper DP FP
value is passed through from a.

ro :
rl .

a0 + b0
al

_ ml28d mm add _pd(__ml28d a, _ ml28d b)
Adds the two DP FP values of a and b.

ro :
rl .

a0 + b0
al + bl

_ ml28d mmsub_sd(__ml28d a, _ ml28d b)

Page 266 of 431

Intel® C++ Compiler User's Guide

Subtracts the lower DP FP value of b from a. The upper DP FP value is passed through from a.

ro :
rl :

a0 - bO
al

_ m28d _nmm sub_pd(__m28d a, _ ml28d b)
Subtracts the two DP FP values of b from a.

ro :
rl :

a0 - bO
al - bl

_ m28d _mm mul _sd(__ml28d a, _ ml28d b)
Multiplies the lower DP FP values of a and b. The upper DP FP is passed through from a.

ro :
rl :

a0 * b0
al

_ m28d _mmmul _pd(__m28d a, _ nml28d b)
Multiplies the two DP FP values of a and b.

ro :
rl :

a0 * bO
al * bl

_ m28d mmdiv_sd(__m28d a, _ ml28d b)
Divides the lower DP FP values of a and b. The upper DP FP value is passed through from a.

ro :
rl :

a0 / bo
al

_ m28d mmdiv_pd(__m28d a, _ ml28d b)
Divides the two DP FP values of a and b.

ro :
rl :

a0 / bo
al / bl

_ ml28d _mmsqrt_sd(__ml28d a, _ ml28d b)

Computes the square root of the lower DP FP value of b. The upper DP FP value is passed
through from a.

ro :
rl :

sqrt (b0)
al

_ ml28d _mmsqrt_pd(__ml28d a)
Computes the square roots of the two DP FP values of a.

ro := sqrt(a0)

Page 267 of 431

Intel® C++ Compiler User's Guide

rl .= sqrt(al)
_ ml28d mMmmn_sd(__m28d a, _ ml28d b)

Computes the minimum of the lower DP FP values of a and b. The upper DP FP value is
passed through from a.

ro :
rl .

mn (a0, bO)
al

_ ml28d mmmn_pd(__m28d a, _ ml28d b)
Computes the minima of the two DP FP values of a and b.

ro :
rl ;.

m n(a0, bO)
m n(al, bl)

_ ml28d _mm max_sd(__ml28d a, _ ml28d b)

Computes the maximum of the lower DP FP values of a and b. The upper DP FP value is
passed through from a.

ro :
rl .

max (a0, bO)
al

_ ml28d _mm max_pd(__ml28d a, _ ml28d b)
Computes the maxima of the two DP FP values of a and b.

ro :
rl :

max (a0, bO0)
max(al, bl)

Page 268 of 431

Intel® C++ Compiler User's Guide

Logical Operations for Streaming SIMD Extensions 2

The prototypes for Streaming SIMD Extensions 2 intrinsics are in the enmi nt ri n. h header file.
_ ml28d mm and pd(__ml28d a, _ ml28d b)
(uses ANDPD) Computes the bitwise AND of the two DP FP values of a and b.

ro :
rl ;.

a0 & b0
al & bl

__ ml28d _nmm andnot pd(__ml28d a, _ nl28d b)

(uses ANDNPD) Computes the bitwise AND of the 128-bit value in b and the bitwise NOT of the
128-bit value in a.

ro :
rl .

~a0) & b0
& bl

I
—~
l
QD
[y
~

_ ml28d mmor_pd(__nl28d a, _ ml28d b)
(uses ORPD) Computes the bitwise OR of the two DP FP values of a and b.

ro :
rl .

I
QD
[N
(e
ey

_ ml28d _mm xor _pd(__ml28d a, __ ml28d b)
(uses XORPD) Computes the bitwise XOR of the two DP FP values of a and b.

ro :
rl :

a0 ~ b0
al ~ bl

Page 269 of 431

Intel® C++ Compiler User's Guide

Comparison Operations for Streaming SIMD

Extensions 2

Each comparison intrinsic performs a comparison of a and b. For the packed form, the two DP FP
values of a and b are compared, and a 128-bit mask is returned. For the scalar form, the lower DP FP
values of a and b are compared, and a 64-bit mask is returned; the upper DP FP value is passed
through from a. The mask is setto Oxffffffffffffffff for each element where the comparison is
true and 0x0 where the comparison is false. The r following the instruction name indicates that the
operands to the instruction are reversed in the actual implementation. The comparison intrinsics for the
Streaming SIMD Extensions 2 are listed in the following table followed by detailed descriptions.

The prototypes for Streaming SIMD Extensions 2 intrinsics are in the enmi nt ri n. h header file.

Page 270 of 431

Intrinsic Corresponding | Compare For:

Name Instruction

_mm cnpeg_pd CMPEQPD Equality
_mmecnplt_pd CVPLTPD Less Than

_mmcnpl e_pd CMPLEPD Less Than or Equal
_mm cnpgt _pd CMPLTPDY Greater Than

_nmm cnpge_pd CMPLEPDx Greater Than or Equal
_mm cnpor d_pd CVPORDPD Ordered

_mm cnpunor d_pd | CMPUNORDPD Unordered

_mm cnpneq_pd CVPNEQPD Inequality
_mmcnpnlt_pd CVPNLTPD Not Less Than

_mm cnpnl e_pd CMPNLEPD Not Less Than or Equal
_mm _cnpngt _pd CMPNLTPDY Not Greater Than
_nmm cnpnge_pd CMPLEPDx Not Greater Than or Equal
_mm cnpeg_sd CVMPEQSD Equality
_mmecnplt_sd CVMPLTSD Less Than

_mmcnpl e_sd CMPLESD Less Than or Equal
_mm cnpgt _sd CMPLTSDrx Greater Than

_nmm cnpge_sd CMPLESDx Greater Than or Equal
_mm cnpord_sd CMPORDSD Ordered

_mm cnpunor d_sd | CMPUNORDSD Unordered

_mm cnpneq_sd CVPNEQSD Inequality
_mmcnpnlt_sd CVPNLTSD Not Less Than

Intel® C++ Compiler User's Guide

_mm cnpnl e_sd CVPNLESD Not Less Than or Equal
_mm cnpngt _sd CVPNLTSDx Not Greater Than

_mm cnpnge_sd CVPNLESDR Not Greater Than or Equal
mm comi eqg_sd COM SD Equality
_mmcomlt_sd COM SD Less Than
_mmconile_sd COM SD Less Than or Equal
_mm comi gt _sd COM SD Greater Than

_mm comi ge_sd COM SD Greater Than or Equal
_mm comi neq_sd | COM SD Not Equal

_mm.ucom eqg_sd | UCOM SD Equality

_mmucom | t_sd |UCOM SD Less Than

_mmucom le_sd | UCOM SD Less Than or Equal
_mm.ucom gt _sd | UCOM SD Greater Than
_mm.ucom ge_sd | UCOM SD Greater Than or Equal
_mm_ucom neqg_sd | UCOM SD Not Equal

_ ml28d _nm cnpeq_pd(__ nl28d a, _ nl28d b)
Compares the two DP FP values of a and b for equality.

ro :
rl ;.

(a0 == b0) ? Oxffffffffffffffff : OxO
(al == bl) ? Oxffffffffffffffff : OxO

_ ml28d mmecnplt_pd(__ nl28d a, _ nl28d b)
Compares the two DP FP values of a and b for a less than b.

ro :
rl ;.

(a0 < b0) ?2 0
(al < bl) 20

xX X

_ nml28d mmecnple_pd(__m28d a, _ nl28d b)
Compares the two DP FP values of a and b for a less than or equal to b.

ro :
rl .

(a0 <= b0) ? Oxffffffffffffffff : OxO
(al <= bl) Oxffffffffffffffff : OxO

_ ml28d mmecnpgt_pd(__nl28d a, _ nl28d b)
Compares the two DP FP values of a and b for a greater than b.

ro :
rl .

(a0 > b0) ? Oxffffffffffffffff : OxO
(al > bl) ? Oxffffffffffffffff : OxO

Page 271 of 431

Intel® C++ Compiler User's Guide

_ ml28d _nm cnpge_pd(__nl28d a, _ nl28d b)
Compares the two DP FP values of a and b for a greater than or equal to b.

ro :
rl :

(a0 >= b0) ? Oxffffffffffffffff . OxO
(al >= bl) Oxffffffffffffffff : OxO
_ m28d _nmmcnpord_pd(__m28d a, _ nl28d b)

Compares the two DP FP values of a and b for ordered.

ro :
rl :

(a0 ord b0) 2 Oxffffffffffffffff . OxO
(al ord bl) ? Oxffffffffffffffff . OxO
_ ml28d _nmm cnpunord_pd(__nl28d a, _ nl28d b)

Compares the two DP FP values of a and b for unordered.

ro :
rl :

(a0 unord b0) ? Oxffffffffffffffff : OxO
(al unord bl) ? Oxffffffffffffffff : OxO
_ m28d _mmcnpneq_pd (_ nl28d a, _ nl28d b)

Compares the two DP FP values of a and b for inequality.

ro :
rl :

(a0 !'= b0) ? 0
2 0

fEEfffffffffffff - OxO
(al !'= bl) FEFFFEFFEFFFqvassse :

0x0
_ m28d mmecnpnlt_pd(__m28d a, _ nl28d b)

Compares the two DP FP values of a and b for a not less than b.

ro :
rl :

(a0 < b0) ? Oxff
I'(al < bl) ? Oxff

fEFfffffffffef © OxO
fEffffffffffff : OxO
_ m28d _mmcnpnle_pd(__m28d a, _ nl28d b)

Compares the two DP FP values of a and b for a not less than or equal to b.

ro :
rl :

1'(a0 <= b0) ? Oxffffffffffffffff . OxO
I'(al <= bl) ? Oxffffffffffffffff . OxO
_ m28d _nmmcnpngt _pd(__m28d a, _ nl28d b)

Compares the two DP FP values of a and b for a not greater than b.

ro :
rl :

(a0 > b0) ? Oxffffffffffffffff : OxO
I'(al > bil) Oxffffffffffffffff : OxO
_ ml28d _nm cnpnge_pd(__m28d a, _ nl28d b)

Compares the two DP FP values of a and b for a not greater than or equal to b.

Page 272 of 431

Intel® C++ Compiler User's Guide

ro :
rl ;.

(a0 >= b0) ? Oxffffffffffffffff : OxO
I'(al >= bl) ? Oxffffffffffffffff : OxO

_ ml28d _nmcnpeq_sd(__ nl28d a, _ nl28d b)

Compares the lower DP FP value of a and b for equality. The upper DP FP value is passed
through from a.

ro :
rl .

(a0 == b0) ? Oxffffffffffffffff . OxO
al

_ ml28d mmecnplt_sd(__ nl28d a, _ nl28d b)

Compares the lower DP FP value of a and b for a less than b. The upper DP FP value is
passed through from a.

ro :

(a0 < b0) ? oxffffffffffffffff . OxO
rl :=i1

_ ml28d mmecnple_sd(__nl28d a, _ nl28d b)

Compares the lower DP FP value of a and b for a less than or equal to b. The upper DP FP
value is passed through from a.

ro :
rl .

(a0 <= b0) ? Oxffffffffffffffff . OxO
al

_ ml28d mmcnpgt _sd(__ nl28d a, _ nl28d b)

Compares the lower DP FP value of a and b for a greater than b. The upper DP FP value is
passed through from a.

ro :
rl .

(a0 > b0) ? Oxffffffffffffffff . OxO
al

_ ml28d _mmcnpge_sd(__ nl28d a, _ nl28d b)

Compares the lower DP FP value of a and b for a greater than or equal to b. The upper DP FP
value is passed through from a.

ro :
rl .

(a0 >= b0) ? Oxffffffffffffffff . OxO
al

_ ml28d mmcnpord_sd(__ml28d a, _ nl28d b)

Compares the lower DP FP value of a and b for ordered. The upper DP FP value is passed
through from a.

ro :
rl .

(a0 ord b0) ? Oxffffffffffffffff . OxO
al

_ ml28d _nmm cnpunord_sd(__ nl28d a, _ nl28d b)

Page 273 of 431

Intel® C++ Compiler User's Guide

Compares the lower DP FP value of a and b for unordered. The upper DP FP value is passed
through from a.

ro :
rl :

(a0 unord b0) ? Oxffffffffffffffff . OxO
al

_ ml28d _nm cnpneq_sd(__ml28d a, _ nl28d b)

Compares the lower DP FP value of a and b for inequality. The upper DP FP value is passed
through from a.

ro :
rl :

(a0 '=b0) ? Oxffffffffffffffff . OxO
al

_ m28d mmecnpnlt_sd(__m28d a, _ nl28d b)

Compares the lower DP FP value of a and b for a not less than b. The upper DP FP value is
passed through from a.

ro :
rl :

(a0 < b0) ? Oxffffffffffffffff . OxO
al

_ m28d _mmcnpnle_sd(__m28d a, _ nl28d b)

Compares the lower DP FP value of a and b for a not less than or equal to b. The upper DP FP
value is passed through from a.

ro :
rl :

(a0 <= b0) ? Oxffffffffffffffff . OxO
al

_ m28d _nmcnpngt _sd(__ml28d a, _ nl28d b)

Compares the lower DP FP value of a and b for a not greater than b. The upper DP FP value is
passed through from a.

ro :
rl :

(a0 > b0) ? Oxffffffffffffffff . OxO
al

_ ml28d _nm cnpnge_sd(__ml28d a, _ nl28d b)

Compares the lower DP FP value of a and b for a not greater than or equal to b. The upper DP
FP value is passed through from a.

ro :
rl :

(a0 >= b0) ? Oxffffffffffffffff . OxO
al

int _nmcomeq_sd(__nml28d a, _ nl28d b)

Compares the lower DP FP value of a and b for a equal to b. If a and b are equal, 1 is returned.
Otherwise 0 is returned.

r := (a0 == b0) ? 0x1 : 0xO

Page 274 of 431

Intel® C++ Compiler User's Guide

i nt

i nt

i nt

i nt

i nt

i nt

i nt

_mmcom |t _sd(__ml28d a, _ ml28d b)

Compares the lower DP FP value of a and b for a less than b. If a is less than b, 1 is returned.
Otherwise 0 is returned.

r := (a0 < b0) ? 0Ox1 : 0xO
~mmcom |l e sd(__nl28d a, _ ml28d b)

Compares the lower DP FP value of a and b for a less than or equal to b. If a is less than or
equal to b, 1 is returned. Otherwise 0 is returned.

r := (a0 <= b0) ? 0x1 : 0xO
_mmcomgt_sd(__ml28d a, _ ml28d b)

Compares the lower DP FP value of a and b for a greater than b. If a is greater than b are
equal, 1 is returned. Otherwise 0 is returned.

r := (a0 > b0) ? Ox1 : 0xO
_mmcom ge_sd(__nl28d a, _ ml28d b)

Compares the lower DP FP value of a and b for a greater than or equal to b. If a is greater than
or equal to b, 1 is returned. Otherwise O is returned.

r := (a0 >= b0) ? 0x1 : 0xO
_mm comi neq_sd(__nl28d a, _ nl28d b)

Compares the lower DP FP value of a and b for a not equal to b. If a and b are not equal, 1 is
returned. Otherwise O is returned.

r := (a0 !'= b0) ? Ox1 : 0xO
_mm.ucom eq_sd(__nl28d a, _ nl28d b)

Compares the lower DP FP value of a and b for a equal to b. If a and b are equal, 1 is returned.
Otherwise 0 is returned.

r := (a0 == b0) ? 0x1 : 0xO
_mmucom I t_sd(__nl28d a, _ nl28d b)

Compares the lower DP FP value of a and b for a less than b. If a is less than b, 1 is returned.
Otherwise 0 is returned.

r := (a0 < b0) ? Ox1 : 0xO
_mmucom |l e _sd(__nl28d a, _ nl28d b)

Compares the lower DP FP value of a and b for a less than or equal to b. If a is less than or

Page 275 of 431

Intel® C++ Compiler User's Guide

equal to b, 1 is returned. Otherwise 0 is returned.
r := (a0 <= b0) ? 0x1 : 0xO
int _nmmucom gt_sd(__m28d a, _ ml28d b)

Compares the lower DP FP value of a and b for a greater than b. If a is greater than b are
equal, 1 is returned. Otherwise 0 is returned.

r := (a0 > b0) ? Ox1 : 0xO
int _mmucom ge_sd(__ml28d a, _ ml28d b)

Compares the lower DP FP value of a and b for a greater than or equal to b. If a is greater than
or equal to b, 1 is returned. Otherwise O is returned.

r := (a0 >= b0) ? 0x1 : 0xO
int _nmucom neq_sd(__nl28d a, _ ml28d b)

Compares the lower DP FP value of a and b for a not equal to b. If a and b are not equal, 1 is
returned. Otherwise 0 is returned.

r := (a0 !'=b0) ? Ox1 : 0xO

Page 276 of 431

Intel® C++ Compiler User's Guide

Conversion Operations for Streaming SIMD
Extensions 2

Each conversion intrinsic takes one data type and performs a conversion to a different type. Some
conversions such as _nm cvt pd_ps result in a loss of precision. The rounding mode used in such
cases is determined by the value in the MXCSR register. The default rounding mode is round-to-
nearest. Note that the rounding mode used by the C and C++ languages when performing a type
conversion is to truncate. The _nm cvtt pd_epi 32 and _nmm cvtt sd_si 32 intrinsics use the
truncate rounding mode regardless of the mode specified by the MXCSR register.

The conversion-operation intrinsics for Streaming SIMD Extensions 2 are listed in the following table
followed by detailed descriptions.

The prototypes for Streaming SIMD Extensions 2 intrinsics are in the emmi nt ri n. h header file.

Intrinsic Corresplonding Return Parameters

Name Instruction Type

_mm cvt pd_ps CVTPD2PS _ nl28 | (__ml28d a)

_mm cvt ps_pd CVTPS2PD _ nml28d | (__ml28 a)

_mm cvtepi 32_pd | CVTDQ@PD _ nl28d | (__ml28i a)

_mm cvt pd_epi 32 | CVTPD2DQ _ ml28i | (__ml28d a)
_mmcvtsd_si 32 CvTSD2SI i nt (__m28d a)
_mmcvtsd_ss CVTSD2SS _ nml28 | (__m28 a, _ ml28d b)
_mm cvtsi 32_sd CVTSI 2SD _ nml28d | (__m28d a, int b)
_mm cvtss_sd CVTSS2SD _ nml28d | (__m28d a, _ nl28 b)
_mmcvttpd _epi 32 | CVTITPD2DQ _ nml28i | (__ml28d a)
_mmcvttsd si32 |CVITSD2SI i nt (__m28d a)

_mm cvt pd_pi 32 CVTPD2PI __nb4 (__m28d a)
_mmcvttpd_pi 32 | CVITPD2PI __nb4 (__m28d a)

_mm cvtpi 32_pd CVTPI 2PD _ nml28d | (__nB4 a)

_ ml28 mmcvtpd_ps(__ nml28d a)

Converts the two DP FP values of a to SP FP values.

ro := (float) a0
rl:= (float) al
r2z:=0.0; r3:=0.0

_ ml28d _mm cvtps_pd(__nl28 a)

Converts the lower two SP FP values of a to DP FP values.

Page 277 of 431

Intel® C++ Compiler User's Guide

ro :
rl :

(doubl e) a0
(doubl e) a1

_ ml28d _nm cvtepi 32_pd(__nl28i a)
Converts the lower two signed 32-bit integer values of a to DP FP values.

ro :
rl :

(doubl e) a0
(doubl e) a1

_ ml28i _nm cvtpd_epi 32(__nl28d a)

Converts the two DP FP values of a to 32-bit signed integer values.

ro := (int) a0
rl:=(int) al
r2z :=0x0; r3 :=0x0

int _nmmecvtsd_si32(__m28d a)
Converts the lower DP FP value of a to a 32-bit signed integer value.
r := (int) a0

_ ml28 mmecvtsd_ss(_ ml28 a, _ ml28d b)

Converts the lower DP FP value of b to an SP FP value. The upper SP FP values in a are
passed through.

ro :
rl :

(float) bO
al; r2 := a2 ; r3 := a3

_ ml28d mmecvtsi 32 _sd(__ nl28d a, int b)

Converts the signed integer value in b to a DP FP value. The upper DP FP value in a is passed

through.
ro := (double) b
ri:=al

_ ml28d mmecvtss_sd(__nl28d a, _ nl28 b)

Converts the lower SP FP value of b to a DP FP value. The upper value DP FP value in a is
passed through.

ro :
rl :

(doubl e) b0
al

_ ml28i _mmecvttpd epi 32(__nml28d a)

Converts the two DP FP values of a to 32-bit signed integers using truncate.

Page 278 of 431

Intel® C++ Compiler User's Guide

ro := (int) a0
rl:=(int) al
r2z :=0x0; r3 :=0x0

int _mmecvttsd_si32(__m28d a)
Converts the lower DP FP value of a to a 32-bit signed integer using truncate.
r := (int) a0

__mB64 _mm cvtpd_pi 32(__nl28d a)
Converts the two DP FP values of a to 32-bit signed integer values.

ro :
rl .

(int) a0
(int) a1l

__m64 mmcvttpd_pi 32(__m28d a)
Converts the two DP FP values of a to 32-bit signed integer values using truncate.

ro :
rl .

(int) a0
(int) a1l

_ ml28d _nm cvtpi 32_pd(__nm64 a)
Converts the two 32-bit signed integer values of a to DP FP values.

ro :
rl .

(doubl e) a0
(doubl e) a1l

Page 279 of 431

Intel® C++ Compiler User's Guide

Streaming SIMD Extensions 2 Floating-point
Memory and Initialization Operations

This section describes the | oad, set , and st or e operations, which let you load and store data into
memory. The | oad and set operations are similar in that both initialize __nml28d data. However, the
set operations take a double argument and are intended for initialization with constants, while the

| oad operations take a double pointer argument and are intended to mimic the instructions for loading
data from memory. The st or e operation assigns the initialized data to the address.

f) Note

There is no intrinsic for move operations. To move data from one register to another, a simple
assignment, A = B, suffices, where A and B are the source and target registers for the move
operation.

The prototypes for Streaming SIMD Extensions 2 intrinsics are in the enmi ntri n. h header file.

Page 280 of 431

Intel® C++ Compiler User's Guide

Load Operations for Streaming SIMD Extensions 2

The following load operation intrinsics and their respective instructions are functional in the Streaming
SIMD Extensions 2.

The prototypes for Streaming SIMD Extensions 2 intrinsics are in the emmi nt ri n. h header file.
_ m28d _nmm | oad_pd(doubl e const*dp)
(uses MOVAPD) Loads two DP FP values. The address p must be 16-byte aligned.

ro :
rl :

p[0]
p[1]
_ m28d _nm | oadl_pd(doubl e const*dp)

(uses MOVSD + shuffling) Loads a single DP FP value, copying to both elements. The address p
need not be 16-byte aligned.

ro :
rl :

P
p

_ m28d _nm | oadr _pd(doubl e const*dp)

(uses MOVAPD + shuffling) Loads two DP FP values in reverse order. The address p must be
16-byte aligned.

ro :
rl :

p[1]
p[0]
_ m28d _nm | oadu_pd(doubl e const*dp)
(uses MOVUPD) Loads two DP FP values. The address p need not be 16-byte aligned.

ro :
rl :

p[0]
p[1]
_ m28d _nmm | oad_sd(doubl e const*dp)

(uses MOVSD) Loads a DP FP value. The upper DP FP is set to zero. The address p need not
be 16-byte aligned.

ro :
rl :

p
0.0

_ m28d _nmm | oadh_pd(__nl28d a, doubl e const*dp)

(uses MOVHPD) Loads a DP FP value as the upper DP FP value of the result. The lower DP FP
value is passed through from a. The address p need not be 16-byte aligned.

ro :
rl :

a0
*p

Page 281 of 431

Intel® C++ Compiler User's Guide

_ m28d _nmm | oadl _pd(__nl28d a, double const*dp)

(uses MOVLPD) Loads a DP FP value as the lower DP FP value of the result. The upper DP FP
value is passed through from a. The address p need not be 16-byte aligned.

ro :
rl .

*p
al

Page 282 of 431

Intel® C++ Compiler User's Guide

Set Operations for Streaming SIMD Extensions 2

The following set operation intrinsics and their respective instructions are functional in the Streaming
SIMD Extensions 2.

The prototypes for Streaming SIMD Extensions 2 intrinsics are in the emmi nt ri n. h header file.
_ ml28d _nm set _sd(doubl e w)
(composite) Sets the lower DP FP value to wand sets the upper DP FP value to zero.

ro :
rl :

w
0.0

_ m28d _nm setl1l pd(double w)
(composite) Sets the 2 DP FP values to w.

ro :
rl :

w
w
_ ml28d _nm set _pd(doubl e w, double x)

(composite) Sets the lower DP FP value to x and sets the upper DP FP value to w.

ro :
rl :

X
w

_ m28d _nm setr_pd(doubl e w, double x)
(composite) Sets the lower DP FP value to wand sets the upper DP FP value to x.

ro :
rl :

w
X
_ ml28d _nm setzero_pd(void)

(uses XORPD) Sets the 2 DP FP values to zero.

ro :
rl :

0.0
0.0
_ m28d _nmm nove_sd(_ nl28d a, _ nl28d b)

(uses MOVSD) Sets the lower DP FP value to the lower DP FP value of b. The upper DP FP
value is passed through from a.

ro :
rl .

b0
al

Page 283 of 431

Intel® C++ Compiler User's Guide

Store Operations for Streaming SIMD Extensions 2

The following st or e operation intrinsics and their respective instructions are functional in the
Streaming SIMD Extensions 2.

The prototypes for Streaming SIMD Extensions 2 intrinsics are in the emmi nt ri n. h header file.
void _nmstore_sd(double *dp, _ nl28d a)
(uses MOVSD) Stores the lower DP FP value of a. The address dp need not be 16-byte aligned.
*dp := a0
void nmmstorel pd(double *dp, _ ml28d a)

(uses MOVAPD + shuffling) Stores the lower DP FP value of a twice. The address dp must be
16-byte aligned.

a0
a0

dp[O]
dp[1]
void mmstore pd(double *dp, _ nl28d a)

(uses MOVAPD) Stores two DP FP values. The address dp must be 16-byte aligned.

a0
al

dp[O]
dp[1]
void _nmmstoreu_pd(double *dp, _ ml28d a)

(uses MOVUPD) Stores two DP FP values. The address dp need not be 16-byte aligned.

a0

dp[O]
dp[1] al

void nmmstorer_pd(double *dp, _ ml28d a)

(uses MOVAPD + shuffling) Stores two DP FP values in reverse order. The address dp must be
16-byte aligned.

al

dp[0]
dpl[1] a0

void nmstoreh_pd(double *dp, _ nml28d a)
(uses MOVHPD) Stores the upper DP FP value of a.
*dp 1= al

void _nmmstorel _pd(double *dp, _ nl28d a)

Page 284 of 431

Intel® C++ Compiler User's Guide

(uses MOVLPD) Stores the lower DP FP value of a.

*dp := a0

Page 285 of 431

Intel® C++ Compiler User's Guide

Miscellaneous Operations for Streaming SIMD
Extensions 2
The prototypes for Streaming SIMD Extensions 2 intrinsics are in the enmi nt ri n. h header file.
__ml28d _nmunpackhi _pd(__ml28d a, __ml28d b)

(uses UNPCKHPD) Interleaves the upper DP FP values of a and b.

rO := al
rl := bl

_ ml28d _nmm unpackl o_pd(__nl28d a, _ nl28d b)
(uses UNPCKLPD) Interleaves the lower DP FP values of a and b.

rO := a0
1 := b0

int _nm novermask_pd(__nl28d a)
(uses MOVMSKPD) Creates a two-bit mask from the sign bits of the two DP FP values of a.
r :=sign(al) << 1 | sign(a0)

_ ml28d mmshuffle pd(__ nml28d a, _ ml28d b, int i)

(uses SHUFPD) Selects two specific DP FP values from a and b, based on the mask i . The
mask must be an immediate. See Macro Function for Shuffle for a description of the shuffle
semantics.

Page 286 of 431

Intel® C++ Compiler User's Guide

Integer Arithmetic Operations for Streaming SIMD
Extensions 2

The integer arithmetic operations for Streaming SIMD Extensions 2 are listed in the following table
followed by their descriptions. The packed arithmetic intrinsics for Streaming SIMD Extensions 2 are
listed in the Floating-point Arithmetic Operations topic.

The prototypes for Streaming SIMD Extensions 2 intrinsics are in the enmi nt ri n. h header file.

Intrinsic Instruction | Operation

_mm add_epi 8 PADDB Addition

_mm add_epi 16 PADDW Addition

_mm add_epi 32 PADDD Addition
_mm add_si 64 PADDQ Addition
_mm add_epi 64 PADDQ Addition

_mm adds_epi 8 PADDSB Addition

_mm adds_epi 16 | PADDSW Addition

_mm adds_epu8 PADDUSB | Addition

_mm adds_epul6 | PADDUSW | Addition

_nmm avg_epu8 PAVGB Computes Average

_mm avg_epul6 PAVGWV Computes Average

_mm madd_epi 16 | PMADDWD | Multiplication/Addition

_mm _max_epi 16 PMAXSW Computes Maxima

_nmm_max_epus8 PNVAXUB Computes Maxima

_mm.m n_epi 16 PM NSW Computes Minima

_mm_m n_epu8 PM NUB Computes Minima

_mm rmul hi _epi 16 | PMULHW Multiplication

_mm mul hi _epul6 | PMULHUW | Multiplication

_mmmullo_epi 16 | PMULLW Multiplication

_mm mul _su32 PMULUDQ | Multiplication

_mm_mul _epu32 PMULUDQ | Multiplication

_mm sad_epu8 PSADBW Computes
Difference/Adds
_mm sub_epi 8 PSUBB Subtraction

Page 287 of 431

Intel® C++ Compiler User's Guide

Adds the 16 signed or unsigned 8-bit integers in a to the 16 signed or unsigned 8-bit integers in

Adds the 8 signed or unsigned 16-bit integers in a to the 8 signed or unsigned 16-bit integers in

Adds the 4 signed or unsigned 32-bit integers in a to the 4 signed or unsigned 32-bit integers in

_mm sub_epi 16 PSUBW Subtraction
_mm sub_epi 32 PSUBD Subtraction
_mm sub_si 64 PSUBQ Subtraction
_mm sub_epi 64 PSUBQ Subtraction
_mm subs_epi 8 PSUBSB Subtraction
_mm subs_epi 16 | PSUBSW Subtraction
_mm subs_epu8 PSUBUSB | Subtraction
_mm subs_epul6 | PSUBUSW | Subtraction
__ ml28i _nmm add _epi 8(__ml28i a, _ nl28i b)
b.
ro := a0 + bo
rli:=al + bl
r15 := al5 + bi5
_ ml28i _nmm add _epi 16(__ ml28i a, _ ml28i b)
b.
ro := a0 + bo
rli:=al + bl
(7 1= a7 + b7
__ ml28i _nm add_epi 32(_ml28i a, _ nl28i b)
b.
roO := a0 + bo
rli:=al + bl
r2 := a2 + b2
r3 := a3 + b3
__mb4 nmmadd_si64(__n64 a, _ _nb64 b)

Adds the signed or unsigned 64-bit integer a to the signed or unsigned 64-bit integer b.

r

_ ml28i

= a+b

_mm add_epi 64(__ml28i a,

_ ml28i

b)

Adds the 2 signed or unsigned 64-bit integers in a to the 2 signed or unsigned 64-bit integers in

Page 288 of 431

Intel® C++ Compiler User's Guide

b.
rO := a0 + bo
rl :=al + bl

_ ml28i _nm adds_epi 8(__ml28i a, _ nl28i b)

Adds the 16 signed 8-bit integers in a to the 16 signed 8-bit integers in b using saturating
arithmetic.

ro :
rl .

Si gnedSat urat e(a0 + bO0)
Si gnedSat urate(al + bil)

ri5 := Si gnedSat urate(al5 + bl5)
_ ml28i _nm adds_epi 16(__ml28i a, _ ml28i hb)

Adds the 8 signed 16-bit integers in a to the 8 signed 16-bit integers in b using saturating

arithmetic.

rO := SignedSaturate(a0 + b0)
rl .= SignedSaturate(al + bl)
r7 := Si gnedSaturate(a7 + b7)

__ml28i _nm adds_epu8(_ml28i a, _ nl28i b)

Adds the 16 unsigned 8-bit integers in a to the 16 unsigned 8-bit integers in b using saturating
arithmetic.

ro :
rl ;.

Unsi gnedSat urat e(a0 + b0)
Unsi gnedSaturate(al + bl)

ri5 := Unsi gnedSat urate(al5 + bl5)
_ ml28i _nm adds_epul6(__ ml28i a, __ ml28i b)

Adds the 8 unsigned 16-bit integers in a to the 8 unsigned 16-bit integers in b using saturating
arithmetic.

ro :
rl .

Unsi gnedSat urat e(a0 + b0)
Unsi gnedSaturate(al + bl)

ri5 := Unsi gnedSaturate(a7 + b7)
_ ml28i _nmm avg _epu8(___nl28i a, _ nl28i b)

Computes the average of the 16 unsigned 8-bit integers in a and the 16 unsigned 8-bit integers
in b and rounds.

ro :
rl .

(a0 + bO) / 2
(al + b1) / 2

ri5 := (als5 + bl5) / 2

__ml28i _nmm avg _epul6(___ml28i a, _ nl28i b)

Page 289 of 431

Intel® C++ Compiler User's Guide

Computes the average of the 8 unsigned 16-bit integers in a and the 8 unsigned 16-bit integers
in b and rounds.

ro := (a0 + b0) / 2
ri:=(al + bl) / 2
r7 .= (a7 + b7) | 2

_ ml28i _nm nmadd_epi 16(__ml28i a, _ ml28i b)

Multiplies the 8 signed 16-bit integers from a by the 8 signed 16-bit integers from b. Adds the
signed 32-bit integer results pairwise and packs the 4 signed 32-bit integer results.

ro := (a0 * b0) + (al * bl)
ri:= (a2 * b2) + (a3 * b3)
r2 := (a4 * b4) + (a5 * bhb)
r3 := (a6 * b6) + (a7 * b7)

_ ml28i _nmm max_epi 16(__ml28i a, _ nl28i b)

Computes the pairwise maxima of the 8 signed 16-bit integers from a and the 8 signed 16-bit
integers from b.

ro : = max(a0, bO0)
rl := max(al, bl)
r7 = max(a7, b7)

_ ml28i _nmm max_epu8(__ nl28i a, _ nl28i b)

Computes the pairwise maxima of the 16 unsigned 8-bit integers from a and the 16 unsigned 8-
bit integers from b.

ro :
rl :

max (a0, bO0)
max(al, bl)

ri5 : = max(al5, blb)
_ m28i _mmnin_epil1l6(__m28i a, _ nml28i b)

Computes the pairwise minima of the 8 signed 16-bit integers from a and the 8 signed 16-bit
integers from b.

ro := mn(a0, bO0)
rl:= mn(al, bl)
r7 .= nmin(a7, b7)

_ m28i _mmmnin_epu8(__nl28i a, _ nl28i b)

Computes the pairwise minima of the 16 unsigned 8-bit integers from a and the 16 unsigned 8-
bit integers from b.

ro :
rl :

m n(a0, bO0)
m n(al, bl)

Page 290 of 431

Intel® C++ Compiler User's Guide

ri5 := min(al5, bil5)
_ ml28i _mm ul hi _epi 16(__nl28i a, _ nl28i b)

Multiplies the 8 signed 16-bit integers from a by the 8 signed 16-bit integers from b. Packs the
upper 16-bits of the 8 signed 32-bit results.

ro := (a0 * b0)[31: 16]
ri:=(al * bl)[31:16]
r7 := (a7 * b7)[31: 16]

_ m28i _mm mul hi _epul6(__nl28i a, _ nl28i b)

Multiplies the 8 unsigned 16-bit integers from a by the 8 unsigned 16-bit integers from b. Packs
the upper 16-bits of the 8 unsigned 32-hit results.

ro := (a0 * b0)[31:16]
ri:=(al * bl)[31:16]
r7 := (a7 * b7)[31: 16]

_ m28i _mmnmullo_epi16(__ m28i a, _ ml28i b)

Multiplies the 8 signed or unsigned 16-bit integers from a by the 8 signed or unsigned 16-bit
integers from b. Packs the lower 16-bits of the 8 signed or unsigned 32-bit results.

ro := (a0 * b0)[15:0]
ri:=(al * bl)[15:0]
r7 := (a7 * b7)[15:0]

_mb4 mmmul _su32(__nb4 a, __nmb4 b)

Multiplies the lower 32-bit integer from a by the lower 32-bit integer from b, and returns the 64-
bit integer result.

r := a0 * b0
_ ml28i _nmm nul _epu32(__ml28i a, _ nl28i b)

Multiplies 2 unsigned 32-bit integers from a by 2 unsigned 32-bit integers from b. Packs the 2
unsigned 64-bit integer results.

ro :
rl .

a0 * bO
a2 * b2

_ ml28i _nmm sad_epu8(__nl28i a, _ nl28i b)

Computes the absolute difference of the 16 unsigned 8-bit integers from a and the 16 unsigned
8-bit integers from b. Sums the upper 8 differences and lower 8 differences, and packs the
resulting 2 unsigned 16-bit integers into the upper and lower 64-bit elements.

ro := abs(a0 - b0) + abs(al - bl) +...+ abs(a7 - b7)

Page 291 of 431

Intel® C++ Compiler User's Guide

rl1 :=0x0; r2 :=0x0; r3 := 0x0
rd4 := abs(a8 - b8) + abs(a9 - b9) +...+ abs(al5 - blb)
r5:=0x0; r6 :=0x0 ; r7 := 0x0

_ ml28i _nmmsub_epi 8(__nl28i a, _ nl28i b)

Subtracts the 16 signed or unsigned 8-bit integers of b from the 16 signed or unsigned 8-bit
integers of a.

ro :
rl .

a0 - bO
al - bl

r15 := al5 - bil5
_ ml28i _nmm sub_epi 16(__nl28i a, _ nl28i b)

Subtracts the 8 signed or unsigned 16-bit integers of b from the 8 signed or unsigned 16-bit
integers of a.

rO := a0 - boO
rl :=al - bl
r7 1= a7 - b7

_ ml28i _nmm sub_epi 32(_ml28i a, _ nl28i b)

Subtracts the 4 signed or unsigned 32-bit integers of b from the 4 signed or unsigned 32-bit
integers of a.

rO := a0 - bo
rl :=al - bl
r2 := a2 - b2
r3 := a3 - b3

__m4 mmsub si64 (__nm64 a, _ b4 b)
Subtracts the signed or unsigned 64-bit integer b from the signed or unsigned 64-bit integer a.
r:=a-m>b

_ ml28i _nmm sub_epi 64(__ml28i a, _ nl28i b)

Subtracts the 2 signed or unsigned 64-bit integers in b from the 2 signed or unsigned 64-bit

integers in a.
ro := a0 - bO
rl :=al - bl

_ ml28i _nmm subs_epi 8(__ml28i a, _ nl28i b)

Subtracts the 16 signed 8-bit integers of b from the 16 signed 8-bit integers of a using
saturating arithmetic.

ro :
rl :

Si gnedSat urat e(a0 - bO0)
Si gnedSat urate(al - bil)

Page 292 of 431

Intel® C++ Compiler User's Guide

rl5 : = SignedSaturate(al5 - blb)
_ ml28i _nm subs_epi 16(__ ml28i a, _ ml28i b)

Subtracts the 8 signed 16-bit integers of b from the 8 signed 16-bit integers of a using
saturating arithmetic.

rO := SignedSaturate(a0 - bO)
rl .= SignedSaturate(al - bl)
r7 := Si gnedSaturate(a7 - b7)

_ ml28i _nm subs_epu8(__ml28i a, _ nl28i b)

Subtracts the 16 unsigned 8-bit integers of b from the 16 unsigned 8-bit integers of a using
saturating arithmetic.

ro :

Unsi gnedSat urate(a0 - b0)
ri:

Unsi gnedSaturate(al - bl)

ri5 := Unsi gnedSaturate(al5 - bl5)
_ ml28i _nm subs_epul6(__ ml28i a, __ ml28i b)

Subtracts the 8 unsigned 16-bit integers of b from the 8 unsigned 16-bit integers of a using
saturating arithmetic.

r0 : = UnsignedSaturate(a0 - bO)
rl := UnsignedSaturate(al - bl)
r7 : = Unsi gnedSaturate(a7 - b7)

Page 293 of 431

Intel® C++ Compiler User's Guide

Integer Logical Operations for Streaming SIMD
Extensions 2

The following four logical-operation intrinsics and their respective instructions are functional as part of
Streaming SIMD Extensions 2.

The prototypes for Streaming SIMD Extensions 2 intrinsics are in the enmi nt ri n. h header file.
_ ml28i _mm and_si 128(__ml28i a, _ nl28i b)
(uses PAND) Computes the bitwise AND of the 128-bit value in a and the 128-bit value in b.
r:=aé&hb
_ ml28i _nmm andnot _si 128(__ml28i a, _ ml28i b)

(uses PANDN) Computes the bitwise AND of the 128-bit value in b and the bitwise NOT of the
128-bit value in a.

r :=(~a) &b

_ ml28i _mmor_si128(__nl28i a, _ nl28i b)
(uses POR) Computes the bitwise OR of the 128-bit value in a and the 128-bit value in b.
r:=aj| b

_ ml28i _nm xor_si128(__ml28i a, _ nl28i b)

(uses PXOR) Computes the bitwise XOR of the 128-bit value in a and the 128-bit value in b.

r:=a”"b

Page 294 of 431

Intel® C++ Compiler User's Guide

Integer Shift Operations for Streaming SIMD
Extensions 2

The shift-operation intrinsics for Streaming SIMD Extensions 2 and the description for each are listed
in the following table.

The prototypes for Streaming SIMD Extensions 2 intrinsics are in the enmi nt ri n. h header file.

Intrinsic Shift Shift Corresponding
Direction | Type Instruction

_mmslli_sil28 | Left Logical PSLLDQ
_mmslli_epil6 | Left Logical PSLLW
_mmsl|_epil6 |Left Logical PSLLW
_mmslli_epi 32| Left Logical PSLLD
_mmsll_epi32 |Left Logical PSLLD
_mmslli_epi 64| Left Logical PSLLQ
_mmsl|_epi 64 |Left Logical PSLLQ
_mm srai _epi 16 | Right Arithmetic | PSRAW
_mmsra_epi 16 | Right Arithmetic | PSRAW
_mm srai _epi 32 | Right Arithmetic | PSRAD
_mmsra_epi 32 | Right Arithmetic | PSRAD
_mmsrli_si128 | Right Logical PSRLDQ
_mmsrli_epi 16 | Right Logical PSRLW
_mmsrl_epi 16 |Right Logical PSRLW
_mmsrli_epi 32 | Right Logical PSRLD
_mmsrl _epi 32 |Right Logical PSRLD
_mmsrli_epi 64 | Right Logical PSRLQ
_mmsrl _epi 64 |Right Logical PSRLQ

_ m28i _mmslli_si128(__ml28i a, int imm
Shifts the 128-bit value in a left by i nrmbytes while shifting in zeros. i nrmmust be an immediate.
r:=a<< (imm* 8)

_ ml28i _mmslli_epil16(__m28i a, int count)

Shifts the 8 signed or unsigned 16-bit integers in a left by count bits while shifting in zeros.

Page 295 of 431

Intel® C++ Compiler User's Guide

r0O := a0 << count
rl .= al << count
?7':= a7 << count

_ ml28i _mmsll| _epi16(__m28i a, __ nl28i count)

Shifts the 8 signed or unsigned 16-bit integers in a left by count bits while shifting in zeros.

r0 := a0 << count
rl .= al << count
?7':= a7 << count

_ ml28i _mmslli_epi32(__m28i a, int count)

Shifts the 4 signed or unsigned 32-bit integers in a left by count bits while shifting in zeros.

r0 := a0 << count
rl .= al << count
r2 := a2 << count
r3 := a3 << count

_ ml28i _mmsll| _epi32(__m28i a, __ nml28i count)

Shifts the 4 signed or unsigned 32-bit integers in a left by count bits while shifting in zeros.

r0O := a0 << count
rl .= al << count
r2 := a2 << count
r3 := a3 << count

_ ml28i _mmslli_epi64(__m28i a, int count)
Shifts the 2 signed or unsigned 64-bit integers in a left by count bits while shifting in zeros

ro :
rl .

a0 << count
al << count

_ ml28i _mmsl| _epi 64(__m28i a, __ nl28i count)
Shifts the 2 signed or unsigned 64-bit integers in a left by count bits while shifting in zeros

ro :
rl .

a0 << count
al << count

_ ml28i _mm srai_epi 16(__m28i a, int count)

Shifts the 8 signed 16-bit integers in a right by count bits while shifting in the sign bit.

rO0O := a0 >> count
rl .= al >> count
?7':= a7 >> count

Page 296 of 431

Intel® C++ Compiler User's Guide

_ ml28i _nmmsra_epi16(___m28i a, __ ml28i count)

Shifts the 8 signed 16-bit integers in a right by count bits while shifting in the sign bit.

r0O := a0 >> count
rl := al >> count
r7 = a7 >> count

_ ml28i _nm srai_epi32(__m28i a, int count)

Shifts the 4 signed 32-bit integers in a right by count bits while shifting in the sign bit.

r0O := a0 >> count
rl := al >> count
r2 := a2 >> count
r3 := a3 >> count

_ ml28i _mm sra_epi 32(__m28i a, __ml28i count)

Shifts the 4 signed 32-bit integers in a right by count bits while shifting in the sign bit.

r0O := a0 >> count
rl := al >> count
r2 := a2 >> count
r3 := i3 >> count

_ ml28i _mmsrli_si128(__ml28i a, int im

Shifts the 128-bit value in a right by i mmbytes while shifting in zeros. i nrmmust be an
immediate.

r :=srl(a, imt8)
_ ml28i _mmsrli_epi16(__m28i a, int count)

Shifts the 8 signed or unsigned 16-bit integers in a right by count bits while shifting in zeros.

ro := srl (a0, count)
rl := srl(al, count)
r7 = srl (a7, count)

_ ml28i _mmsrl _epi 16(__m28i a, __ nl28i count)

Shifts the 8 signed or unsigned 16-bit integers in a right by count bits while shifting in zeros.

ro := srl (a0, count)
rl := srl(al, count)
r7 = srl (a7, count)

_ ml28i _mmsrli_epi32(__m28i a, int count)

Page 297 of 431

Intel® C++ Compiler User's Guide

Shifts the 4 signed or unsigned 32-bit integers in a right by count bits while shifting in zeros.

ro := srl (a0, count)
rl := srl(al, count)
r2 :=srl(a2, count)
r3 :=srl(a3, count)

_ ml28i _mmsrl _epi 32(__m28i a, __ml28i count)

Shifts the 4 signed or unsigned 32-bit integers in a right by count bits while shifting in zeros.

ro := srl (a0, count)
rli := srl(al, count)
r2 :=srl(a2, count)
r3 :=srl(a3, count)

_ ml28i _mmsrli_epi64(__m28i a, int count)
Shifts the 2 signed or unsigned 64-bit integers in a right by count bits while shifting in zeros.

ro :
rl :

srl (a0, count)
srl(al, count)

_ ml28i _mmsrl _epi 64(__m28i a, __nml28i count)
Shifts the 2 signed or unsigned 64-bit integers in a right by count bits while shifting in zeros.

ro :
rl :

srl (a0, count)
srl(al, count)

Page 298 of 431

Intel® C++ Compiler User's Guide

Integer Comparison Operations for Streaming SIMD
Extensions 2

The comparison intrinsics for Streaming SIMD Extensions 2 and descriptions for each are listed in the
following table.

The prototypes for Streaming SIMD Extensions 2 intrinsics are in the enmi nt ri n. h header file.

Intrinsic Name Instruction | Comparison | Elements | Size of
Elements

_mm cnpeq_epi 8 | PCMPEQB Equality 16 8
_nm cnpeq_epi 16 | PCMPEQW | Equality 8 16
_nm cnpeq_epi 32 | PCMPEQD | Equality 4 32
_mmcnpgt _epi 8 |PCMPGIB | Greater Than | 16 8
_nmm cnpgt _epi 16 | PCMPGTW | Greater Than | 8 16
_mm cnpgt _epi 32 | PCMPGID | Greater Than | 4 32
_mmecnplt_epi 8 |PCMPGIBr | Less Than 16 8
_mmecnplt_epi 16 | PCMPGTW | Less Than 8 16
_mmecnplt_epi 32 | PCMPGIDr | Less Than 4 32

_ ml28i _nm cnpeq_epi 8(__m28i a, _ ml28i b)

Compares the 16 signed or unsigned 8-bit integers in a and the 16 signed or unsigned 8-bit
integers in b for equality.

ro :
rl :

(a0 == b0) ? Oxff : OxO
(al == bl) ? Oxff : OxO

ri5 := (als == bl5) ? Oxff : OxO
__ ml28i _nmm cnpeq_epi 16(__nl28i a, _ nl28i b)

Compares the 8 signed or unsigned 16-bit integers in a and the 8 signed or unsigned 16-bit
integers in b for equality.

ro := (a0 == b0) ? Oxffff : OxO
rli:=(al == bl) ? Oxffff : OxO
r7 .= (a7 == b7) ? Oxffff : 0xO

__ ml28i _nmm cnpeq_epi 32(__nl28i a, _ nl28i b)

Compares the 4 signed or unsigned 32-bit integers in a and the 4 signed or unsigned 32-bit
integers in b for equality.

Page 299 of 431

Intel® C++ Compiler User's Guide

r0 := (a0 == b0) ? Oxffffffff : OxO
r1:= (al == b1l) ? Oxffffffff : OxO
r2 = (a2 == b2) ? Oxffffffff : OxO
r3 .= (a3 == b3) ? Oxffffffff : OxO

_ ml28i _nmmcnpgt_epi 8(__ml28i a, _ ml28i b)
Compares the 16 signed 8-bit integers in a and the 16 signed 8-bit integers in b for greater than.

ro :
rl ;.

(a0 > b0) ? Oxff : OxO
(al > bl) ? Oxff : OxO

ri5 := (al5 > b15) ? Oxff : 0x0
__ ml28i _mmcnpgt _epi 16(__nl28i a, _ nl28i b)

Compares the 8 signed 16-bit integers in a and the 8 signed 16-bit integers in b for greater than.

ro := (a0 > b0) ? Oxffff : OxO
rl:=(al > bl) ? Oxffff : OxO
r7 := (a7 > b7) ? Oxffff : 0x0

_ ml28i _mmcnpgt _epi 32(__nl28i a, _ nl28i b)

Compares the 4 signed 32-bit integers in a and the 4 signed 32-bit integers in b for greater than.

ro := (a0 > b0) ? Oxffff 0x0
rl :=(al > bl) ? Oxffff 0x0
r2 := (a2 > b2) ? Oxffff 0x0
r3 := (a3 > b3) ? Oxffff 0x0

_ ml28i _mmecnplt_epi8(_ nl28i a, _ nl28i b)
Compares the 16 signed 8-bit integers in a and the 16 signed 8-bit integers in b for less than.

ro :
rl .

(a0 < b0O) ? Oxff : OxO
(al < bl) ? Oxff : OxO

ri5 := (al5 < b15) ? Oxff : 0x0
_ ml28i _mmecnplt_epi 16(_ m28i a, _ ml28i b)

Compares the 8 signed 16-bit integers in a and the 8 signed 16-bit integers in b for less than.

ro := (a0 < b0) ? Oxffff : OxO
rl:=(al < bl) ? Oxffff : OxO
r7 := (a7 < b7) ? Oxffff : 0x0

_ ml28i _mmecnplt_epi32(_ m28i a, _ ml28i b)
Compares the 4 signed 32-bit integers in a and the 4 signed 32-bit integers in b for less than.

ro := (a0 < b0) ? Oxffff : OxO

Page 300 of 431

Intel® C++ Compiler User's Guide

rl:=(al < bl) ? Oxffff : OxO
r2 := (a2 < b2) ? oxffff : OxO
r3 := (a3 < b3) ? oxffff : OxO

Page 301 of 431

Intel® C++ Compiler User's Guide

Conversion Operations for Streaming SIMD
Extensions 2

The following two conversion intrinsics and their respective instructions are functional in the Streaming
SIMD Extensions 2.

The prototypes for Streaming SIMD Extensions 2 intrinsics are in the enmi nt ri n. h header file.
_ ml28i _nmmcvtsi 32 _si128(int a)

(uses MOVD) Moves 32-bit integer a to the least significant 32 bits of an __ml28i object. Copies
the sign bit of a into the upper 96 bits of the __ nl28i object.

ro :

a
rl1 :=0x0; r2 :=0x0; r3 := 0x0

int _mmecvtsi 128 si 32(__ _ml28i a)
(uses MOVD) Moves the least significant 32 bits of a to a 32 bit integer.
r := a0

_ ml28 mmcvtepi 32 _ps(___ml28i a)

Converts the 4 signed 32-bit integer values of a to SP FP values.

ro := (float) a0
rl:= (float) al
r2 := (float) a2
r3 .= (float) a3

_ ml28i _nm cvtps_epi 32(__nl28 a)

Converts the 4 SP FP values of a to signed 32-bit integer values.

ro := (int) a0
rl:=(int) al
r2 :=(int) a2
r3 :=(int) a3

_ ml28i _mmcvttps_epi 32(__ml28 a)

Converts the 4 SP FP values of a to signed 32 bit integer values using truncate.

ro := (int) a0
rl:=(int) al
r2 :=(int) a2
r3 :=(int) a3

Page 302 of 431

Intel® C++ Compiler User's Guide

Macro Function for Shuffle

The Streaming SIMD Extensions 2 provide a macro function to help create constants that describe
shuffle operations. The macro takes two small integers (in the range of 0 to 1) and combines them into
an 2-bit immediate value used by the SHUFPD instruction. See the following example.

Shuffle Function Macro

_M_SHUFFLEZ (=, v)
expands to the vahe of
[=<1) |

You can view the two integers as selectors for choosing which two words from the first input operand
and which two words from the second are to be put into the result word.

View of Original and Result Words with Shuffle Function Macro

i e
i o

mi = _we_staffle_pdiml, md, MM SHUFFLEL (1,00

S

Page 303 of 431

Intel® C++ Compiler User's Guide

Cacheability Support Operations for Streaming SIMD
Extensions 2

The prototypes for Streaming SIMD Extensions 2 intrinsics are in the emmi nt ri n. h header file.

voi d

voi d

voi d

voi d

voi d

voi d

voi d

_mm stream pd(double *p, _ m28d a)

(uses MOVNTPD) Stores the data in a to the address p without polluting caches. The address p
must be 16-byte aligned. If the cache line containing address p is already in the cache, the
cache will be updated.

a0
al

p[O]
p[1]

_mmstreamsi 128(__ml28i *p, _ ml28i a)

Stores the data in a to the address p without polluting the caches. If the cache line containing
address p is already in the cache, the cache will be updated. Address p must be 16-byte
aligned.

*p = a

_mmstreamsi 32(int *p, int a)

Stores the data in a to the address p without polluting the caches. If the cache line containing
address p is already in the cache, the cache will be updated.

*pr=a

~mmcl flush(void const*p)

Cache line containing p is flushed and invalidated from all caches in the coherency domain.

_mm | fence(voi d)

Guarantees that every load instruction that precedes, in program order, the load fence
instruction is globally visible before any load instruction which follows the fence in program
order.

_mm nfence(voi d)

Guarantees that every memory access that precedes, in program order, the memory fence
instruction is globally visible before any memory instruction which follows the fence in program
order.

_mm pause(voi d)

The execution of the next instruction is delayed an implementation specific amount of time. The
instruction does not modify the architectural state. This intrinsic provides especially significant
performance gain and described in more detail below.

Page 304 of 431

Intel® C++ Compiler User's Guide

PAUSE Intrinsic

The PAUSE intrinsic is used in spin-wait loops with the processors implementing dynamic execution
(especially out-of-order execution). In the spin-wait loop, PAUSE improves the speed at which the code
detects the release of the lock. For dynamic scheduling, the PAUSE instruction reduces the penalty of
exiting from the spin-loop.

Example of loop with the PAUSE instruction:
spi n_| oop: pause

cnp eax, A

jne spin_|loop

In the above example, the program spins until memory location A matches the value in register eax.
The code sequence that follows shows a test-and-test-and-set. In this example, the spin occurs only
after the attempt to get a lock has failed.

get lock: nmov eax, 1

xchg eax, A ; Try to get |ock
cnp eax, 0 ; Test if successfu
jne spin_|loop

<critical_section code>

mov A, 0 ; Release |ock

jmp continue

spi n_l oop: pause ; Spin-loop hint
cnp 0, A; Check lock availability
jne spin_|loop

jmp get | ock

conti nue: <other code>

Note that the first branch is predicted to fall-through to the critical section in anticipation of successfully
gaining access to the lock. It is highly recommended that all spin-wait loops include the PAUSE
instruction. Since PAUSE is backwards compatible to all existing IA-32 processor generations, a test for
processor type (a CPUI D test) is not needed. All legacy processors will execute PAUSE as a NOP, but in
processors which use the PAUSE as a hint there can be significant performance benefit.

Page 305 of 431

Intel® C++ Compiler User's Guide

Miscellaneous Operations for Streaming SIMD

Extensions 2

The miscellaneous intrinsics for Streaming SIMD Extensions 2 are listed in the following table followed

by their descriptions.

The prototypes for Streaming SIMD Extensions 2 intrinsics are in the enmi nt ri n. h header file.

Intrinsic Corresponding | Operation
Instruction

_mm packs_epi 16 PACKSSV\B Packed Saturation

_mm packs_epi 32 PACKSSDW Packed Saturation

_mm packus_epi 16 PACKUSV\B Packed Saturation

_mm extract _epi 16 PEXTRW Extraction

_mm.insert_epi 16 Pl NSRW Insertion

_mm nmovenmask_epi 8 PMOVNMSKB Mask Creation

_mm shuffle_epi 32 PSHUFD Shuffle

_mm shuffl ehi _epi 16 PSHUFHW Shuffle

_mmshufflel o_epil6 PSHUFLW Shuffle

_mm unpackhi _epi 8 PUNPCKHBW Interleave

_mm unpackhi _epi 16 PUNPCKHWD Interleave

_mm unpackhi _epi 32 PUNPCKHDQ Interleave

_mm unpackhi _epi 64 PUNPCKHQDQ Interleave

_mm unpackl o_epi 8 PUNPCKLBW Interleave

_mm unpackl o_epi 16 PUNPCKLWD Interleave

_mm unpackl o_epi 32 PUNPCKLDQ Interleave

_mm unpackl o_epi 64 PUNPCKLQDQ Interleave

_mm _novepi 64_pi 64 MOVDQ2Q move

_ml28i _nmm novpi 64_epi 64 | MOVQ2DQ move

_mm _nove_epi 64 MOVQ move

_ ml28i _nmm packs_epi 16(__nl28i a, _ nl28i b)

Packs the 16 signed 16-bit integers from a and b into 8-bit integers and saturates.

Page 306 of 431

Intel® C++ Compiler User's Guide

rO : = SignedSat urate(a0)
rl := SignedSaturate(al)
r7 := Si gnedSat ur at e(a7)
r8 : = SignedSat urate(b0)

. = Si gnedSat urat e(bl)

ri5 := Si gnedSat ur at e(b7)
__ml28i _nmm packs_epi 32(__nl28i a, _ nl28i b)

Packs the 8 signed 32-bit integers from a and b into signed 16-bit integers and saturates.

r0 : = SignedSat urate(a0)
rl := SignedSaturate(al)
r2 := SignedSaturate(a2)
r3 := SignedSaturate(a3)
r4 := SignedSaturate(b0)
r5 := SignedSaturate(bl)
ré := SignedSaturate(b2)
r7 := SignedSaturate(b3)

_ ml28i _mm packus_epi 16(__ml28i a, _ ml28i b)

Packs the 16 signed 16-bit integers from a and b into 8-bit unsigned integers and saturates.

r0 : = Unsi gnedSat ur at e(a0)
rl := UnsignedSaturate(al)
r7 := Unsi gnedSat ur at e(a7)
r8 : = Unsi gnedSat ur at e(b0)

: = Unsi gnedSaturate(bl)

ri5 := Unsi gnedSat ur at e(b7)
int _mmextract _epi 16(__ml28i a, int imm

Extracts the selected signed or unsigned 16-bit integer from a and zero extends. The selector
i mMmmust be an immediate.

r:=(imm==20) ? a0 :
((imm==1) ? al :

(imm==7) 2 a7)
_ ml28i _mm.insert_epi16(__m28i a, int b, int im)

Inserts the least significant 16 bits of b into the selected 16-bit integer of a. The selector i mm
must be an immediate.

ro :=(inm==20) ? b : a0;
rl:=(imm==1) ? b : al;
r7 := (imm==7) ? b : a7:

int _mm novenask_epi 8(__ml28i a)

Page 307 of 431

Intel® C++ Compiler User's Guide

Creates a 16-bit mask from the most significant bits of the 16 signed or unsigned 8-bit integers
in a and zero extends the upper bits.

r ;= alj5[7] << 15 |
ala[7] << 14 |

al[7] << 1 |
a0l 7]
_ ml28i _mmshuffle epi32(__nl28i a, int im

Shuffles the 4 signed or unsigned 32-bit integers in a as specified by i nrm The shuffle value,
i mm must be an immediate. See Macro Function for Shuffle for a description of shuffle
semantics.

_ m28i _mm shufflehi_epi16(__m28i a, int imm
Shuffles the upper 4 signed or unsigned 16-bit integers in a as specified by i mm The shuffle

value, i nm must be an immediate. See Macro Function for Shuffle for a description of shuffle
semantics.

_ ml28i _mmshufflelo_epi16(__m28i a, int imm
Shuffles the lower 4 signed or unsigned 16-bit integers in a as specified by i nrm The shuffle

value, i nm must be an immediate. See Macro Function for Shuffle for a description of shuffle
semantics.

_ ml28i _nmm unpackhi _epi 8(__ml28i a, _ ml28i b)

Interleaves the upper 8 signed or unsigned 8-bit integers in a with the upper 8 signed or
unsigned 8-bit integers in b.

ro :
r2

b8
b9

a8 ; rl:
a9 ; r3:

r14 := als5 ; ri5 := bils
_ ml28i _nmm unpackhi _epi 16(__nl28i a, _ nl28i b)

Interleaves the upper 4 signed or unsigned 16-bit integers in a with the upper 4 signed or
unsigned 16-bit integers in b.

rO :=a4 ; rl := b4
r2 :=ab5 ; r3 := b5
r4 := a6 ; r5 := b6
ré := a7 ; r7 := b7

_ ml28i _nmm unpackhi _epi 32(__nl28i a, _ nl28i b)

Interleaves the upper 2 signed or unsigned 32-bit integers in a with the upper 2 signed or
unsigned 32-bit integers in b.

ro :
r2

b2
b3

a2 ; rl:
a3 ; r3:

Page 308 of 431

Intel® C++ Compiler User's Guide

_ ml28i

_mm unpackhi _epi 64(__nl28i

a!

_ ml28i

b)

Interleaves the upper signed or unsigned 64-bit integer in a with the upper signed or unsigned
64-bit integer in b.

ro

_ mL28i

= al; rl1 :=Dbl

_mm unpackl o_epi 8(_nl28i

a,

_ m28i

b)

Interleaves the lower 8 signed or unsigned 8-bit integers in a with the lower 8 signed or
unsigned 8-bit integers in b.

rO := a0 ; rl1 := b0
r2 :=al; r3 :=Dbl
ri4 := a7 ; r15 := b7
__ml28i _mm unpackl o_epi 16(_nl28i a, _ nl28i b)

Interleaves the lower 4 signed or unsigned 16-bit integers in a with the lower 4 signed or

unsigned 16-bit integers in b.

rO := a0 ; rl1 := b0
r2 :=al; r3 :=Dbl
r4 := a2 ; r5 := b2
ré := a3 ; r7 := b3
__ml28i _mm unpackl o_epi 32(__nl28i a, _ nl28i b)

Interleaves the lower 2 signed or unsigned 32-bit integers in a with the lower 2 signed or
unsigned 32-bit integers in b.

ro:= a0 ; rl := b0
r2 :=al; r3 :=Dbl
__ml28i _nmm unpackl o_epi 64(_nl28i a, _ nl28i b)

Interleaves the lower signed or unsigned 64-bit integer in a with the lower signed or unsigned
64-bit integer in b.
ro:= b0

a0 ; rl1 :=

__mB64 _mm novepi 64_pi 64(__nl28i a)

Returns the lower 64 bits of a as an ___ 64 type.
ro := ao ;
_128i _nmm novpi 64_pi 64(__nbB4 a)

Moves the 64 bits of a to the lower 64 bits of the result, zeroing the upper bits.
ro:= ri:=

a0 ; 0X0 ;

Page 309 of 431

Intel® C++ Compiler User's Guide

_128i _mm nove_epi 64(__128i a)

Moves the lower 64 bits of the lower 64 bits of the result, zeroing the upper bits.

ro :=a0; rl := 0X0 ;
Streaming SIMD Extensions 2 Integer Memory and
Initialization

The integer | oad, set, and st or e intrinsics and their respective instructions provide memory and
initialization operations for the Streaming SIMD Extensions 2.

The prototypes for Streaming SIMD Extensions 2 intrinsics are in the enmi nt ri n. h header file.

e Load Operations
e Set Operations
e Store Operations

Page 310 of 431

Intel® C++ Compiler User's Guide

Integer Load Operations for Streaming SIMD
Extensions 2

The following | oad operation intrinsics and their respective instructions are functional in the Streaming
SIMD Extensions 2.

The prototypes for Streaming SIMD Extensions 2 intrinsics are in the enmi nt ri n. h header file.
_ ml28i _nmmload_si 128(___ml28i const*p)
(uses MOVDQA) Loads 128-bit value. Address p must be 16-byte aligned.
r :=r*p
_ m28i _mm | oadu_si 128(_ nl28i const*p)
(uses MOVDQU) Loads 128-bit value. Address p not need be 16-byte aligned.
r :=*p
__ ml28i _nmm | oadl epi 64(__nl28i const*p)

(uses MOVQ) Load the lower 64 bits of the value pointed to by p into the lower 64 bits of the
result, zeroing the upper 64 bits of the result.

ro: = *p[63: 0]
r1: =0x0

Page 311 of 431

Intel® C++ Compiler User's Guide

Integer Set Operations for Streaming SIMD
Extensions 2

The following set operation intrinsics and their respective instructions are functional in the Streaming
SIMD Extensions 2.

The prototypes for Streaming SIMD Extensions 2 intrinsics are in the enmi nt ri n. h header file.
__ml28i _nmm set _epi 64(__n64 ql, _ nbB4 q0)
Sets the 2 64-bit integer values.

ro :
ril

qo0
ql
_ ml28i _mmset _epi32(int i3, int i2, int i1, int i0)

Sets the 4 signed 32-bit integer values.

roO :=i0
rl :=i1
r2 :=i2
r3 :=1i3

_ ml28i _nm set _epi 16(short wr, short w6, short w5, short w4, short w3,
short w2, short wl, short wO)

Sets the 8 signed 16-bit integer values.

r
r

23

1
g

r

_ ml28i _nm set _epi 8(char bl5, char bl4, char bl1l3, char bl2, char bl1l, char
b10, char b9, char b8, char b7, char b6, char b5, char b4, char b3, char
b2, char bl, char b0)

Sets the 16 signed 8-bit integer values.

__ ml28i _nmm setl _epi 64(__nmb64 Q)
Sets the 2 64-bit integer values to g.

ro :
ril

q
q

Page 312 of 431

Intel® C++ Compiler User's Guide

_ ml28i _nmmsetl epi32(int i)

Sets the 4 signed 32-bit integer values to i .

= ===
WN O

_ ml28i _nmm setl epi 16(short w)
Sets the 8 signed 16-hit integer values to w.

r
r

~N: RO
£ ==

r
_ ml28i _nm setl epi 8(char b)

Sets the 16 signed 8-hit integer values to b.

ro b

ri:=»>ob
ri5 := b

_ ml28i _nmm setr_epi 64(__nm64 g0, _ nb4 ql)

Sets the 2 64-bit integer values in reverse order.

ro :=qo0
ril ql

_ ml28i _mmsetr_epi32(int i0, int i1, int i2, int i3)

Sets the 4 signed 32-bit integer values in reverse order.

I n
WNEFO

= ===
WN RO

_ ml28i _nmm setr_epi 16(short w0, short wl, short w2, short w3, short w4,
short w5, short w6, short wr)

Sets the 8 signed 16-bit integer values in reverse order.

23

r
r

~N: RO
no

1
g

r

_ ml28i _nmm setr_epi 8(char bl5, char bl4, char bl3, char bl2, char bll,
char bl10, char b9, char b8, char b7, char b6, char b5, char b4, char b3,

Page 313 of 431

Intel® C++ Compiler User's Guide

char b2, char bl, char bO0)

Sets the 16 signed 8-bit integer values in reverse order.

r0 := bo
rl ;= bl
ri5 : = b15

__ ml28i _nm setzero_si 128()
Sets the 128-bit value to zero.

r := 0x0

Page 314 of 431

Intel® C++ Compiler User's Guide

Integer Store Operations for Streaming SIMD
Extensions 2

The following st or e operation intrinsics and their respective instructions are functional in the
Streaming SIMD Extensions 2.

The prototypes for Streaming SIMD Extensions 2 intrinsics are in the enmi nt ri n. h header file.
void nmmstore_ si128(__ ml28i *p, _ nl28i b)
(uses MOVDQA) Stores 128-bit value. Address p must be 16 byte aligned.
*Pp := a
void _nmmstoreu_si128(__nml28i *p, _ ml28i b)
(uses MOVDQU) Stores 128-bit value. Address p need not be 16-byte aligned.
*P = a
void _nmm nmasknoveu_si 128(__ nl28i d, _ nl28i n, char *p)

(uses MASKMOVDQU) Conditionally store byte elements of d to address p. The high bit of each
byte in the selector n determines whether the corresponding byte in d will be stored. Address p
need not be 16-byte aligned.

do

if (nO[7]) p[O]
[1] d1

if (n1[7]) p
if (n15[7]) p[15] := d15

void mmstorel epi64(__nml28i *p, _ ml28i q)
(uses MOVQ) Stores the lower 64 bits of the value pointed to by p.

*p[63: 0] : =a0

Page 315 of 431

Intel® C++ Compiler User's Guide

Overview: Intrinsics for Itanium® Instructions

This section lists and describes the native intrinsics for Itanium® instructions. These intrinsics cannot
be used on the 1A-32 architecture. The intrinsics for Itanium instructions give programmers access to
Itanium instructions that cannot be generated using the standard constructs of the C and C++
languages.

The prototypes for these intrinsics are in the i a64i ntri n. h header file.

f) Note

The Intel® C++ Compiler for Itanium-base applications provides intrinsic functions that provide
equivalent functionality as inline assembly without inhibiting compiler optimizations and affecting
instruction scheduling.

Page 316 of 431

Intel® C++ Compiler User's Guide

Native Intrinsics for ltanium® Instructions

The prototypes for these intrinsics are in the i a64i ntri n. h header file.

Integer Operations

Intrinsic Corresponding
Instruction
_int64 nb4 dep nr(__int64 r, dep (Deposit)
__int64 s, const int pos, const int
I en)
__int64 _nb4_dep_nmi(const int v, dep (Deposit)
__int64 s, const int p, const int
[en)
_int64 nb4 dep zr(__int64 s, dep. z (Deposit)
const int pos, const int |en)
__int64 _nb4_dep_zi(const int v, dep. z (Deposit)
const int pos, const int |en)
_int64 nb4 _extr(__int64 r, const extr (Extract)
int pos, const int len)
__int64 _nmb4_extru(__int64 r, const |extr.u (Extract)
int pos, const int len)
__int64 nB4_xnal (__int64 a, xma. | (Fixed-point multiply add using the low 64
__int64 b, __int64 c) bits of the 128-bit result. The result is signed.)

nt64 mb4_xmalu(__int64 a,
nté4 b, _int64 c)

xma. | u (Fixed-point multiply add using the low 64
bits of the 128-bit result. The result is unsigned.)

nt64 nb64_xnmah(__int64 a,
nt64 b, _ int64 c)

xma. h (Fixed-point multiply add using the high 64
bits of the 128-bit result. The result is signed.)

nt64 nb64 xmahu(__int64 a,
nt64 b, _ int64 c)

xma. hu (Fixed-point multiply add using the high
64 bits of the 128-bit result. The result is
unsigned.)

nt64 nb64 _popcnt(__int64 a)

popcnt (Population count)

__int64 _nb4_shladd(__int64 a,

shl add (Shift left and add)

const int count, __int64 b)
__int64 n64_shrp(__int64 a, shr p (Shift right pair)
__int64 b, const int count)

FSR Operations

Page 317 of 431

Intel® C++ Compiler User's Guide

Intrinsic Description

void _fsetc(int Sets the control bits of FPSR. sf 0. Maps to the fsetc.sf0 r, r
amask, int omask) |instruction. There is no corresponding instruction to read the control bits.

Use _mm getfpsr().

void _fclrf(void) |Clears the floating point status flags (the 6-bit flags of FPSR. sf 0). Maps to

the f cl rf. sf O instruction.

nt64 nb4 _dep nr(__int64 r, _ int64 s, const int pos, const int |en)

The right-justified 64-bit value r is deposited into the value in s at an arbitrary bit position and
the result is returned. The deposited bit field begins at bit position pos and extends to the left
(toward the most significant bit) the number of bits specified by | en.

nt64 nb4_dep_m (const int v, __int64 s, const int p, const int |en)

The sign-extended value v (either all 1s or all 0s) is deposited into the value in s at an arbitrary
bit position and the result is returned. The deposited bit field begins at bit position p and extends
to the left (toward the most significant bit) the number of bits specified by | en.

nt64 nb4 _dep zr(__int64 s, const int pos, const int |en)

The right-justified 64-bit value s is deposited into a 64-bit field of all zeros at an arbitrary bit
position and the result is returned. The deposited bit field begins at bit position pos and extends
to the left (toward the most significant bit) the number of bits specified by | en.

nt 64 _nb4_dep_zi(const int v, const int pos, const int |en)

The sign-extended value v (either all 1s or all 0s) is deposited into a 64-bit field of all zeros at an
arbitrary bit position and the result is returned. The deposited bit field begins at bit position pos
and extends to the left (toward the most significant bit) the number of bits specified by | en.

nt64 nb4_extr(__int64 r, const int pos, const int |en)

A field is extracted from the 64-bit value r and is returned right-justified and sign extended. The
extracted field begins at position pos and extends | en bits to the left. The sign is taken from
the most significant bit of the extracted field.

nt64 nb4_extru(__int64 r, const int pos, const int |en)

A field is extracted from the 64-bit value r and is returned right-justified and zero extended. The
extracted field begins at position pos and extends | en bits to the left.

nt64 nb4 _xmal (__int64 a, __int64 b, __int64 c)

The 64-bit values a and b are treated as signed integers and multiplied to produce a full 128-bit
signed result. The 64-bit value c is zero-extended and added to the product. The least
significant 64 bits of the sum are then returned.

nt64 nb4 xmalu(__int64 a, __int64 b, __int64 c)

Page 318 of 431

Intel® C++ Compiler User's Guide

The 64-bit values a and b are treated as signed integers and multiplied to produce a full 128-bit
unsigned result. The 64-bit value c is zero-extended and added to the product. The least
significant 64 bits of the sum are then returned.

_int64 _nb4 _xmah(__int64 a, _ int64 b, _ int64 c)

The 64-bit values a and b are treated as signed integers and multiplied to produce a full 128-bit
signed result. The 64-bit value c is zero-extended and added to the product. The most
significant 64 bits of the sum are then returned.

_int64 _nb4_xmahu(__int64 a, __int64 b, __int64 c)

The 64-bit values a and b are treated as unsigned integers and multiplied to produce a full 128-
bit unsigned result. The 64-bit value c is zero-extended and added to the product. The most
significant 64 bits of the sum are then returned.

__int64 _nb4_popcnt(__int64 a)

The number of bits in the 64-bit integer a that have the value 1 are counted, and the resulting
sum is returned.

_int64 nb4 _shladd(__int64 a, const int count, __int64 b)
a is shifted to the left by count bits and then added to b. The result is returned.
_int64 nb4 _shrp(__int64 a, __int64 b, const int count)

a and b are concatenated to form a 128-bit value and shifted to the right count bits. The least
significant 64 bits of the result are returned.

Page 319 of 431

Intel® C++ Compiler User's Guide

Lock and Atomic Operation Related Intrinsics

The prototypes for these intrinsics are in the i a64i ntri n. h header file.

Intrinsic

Description

unsi gned __int64 _InterlockedExchange8
(vol atile unsigned char *Target, unsigned
__int64 val ue)

Map to the xchg1l instruction.
Atomically write the least significant
byte of its 2nd argument to address
specified by its 1st argument.

unsi gned __int64

_Interl ockedConpar eExchange8 rel (vol atile
unsi gned char *Destination, unsigned
__int64 Exchange, unsigned __int64

Conpar and)

Compare and exchange atomically the
least significant byte at the address
specified by its 1st argument. Maps to
the cmpxchgl. r el instruction with
appropriate setup.

unsi gned __int64

_Interl ockedConpar eExchange8 acq(vol atile
unsi gned char *Destination, unsigned
__int64 Exchange, unsigned __int64

Conpar and)

Same as above, but using acqui re
semantic.

unsigned __int64 _InterlockedExchangel6
(vol atile unsigned short *Target, unsigned
__int64 val ue)

Map to the xchg2 instruction.
Atomically write the least significant
word of its 2nd argument to address
specified by its 1st argument.

unsi gned __int64

_Interl ockedConpar eExchangel6_rel (vol atile
unsi gned short *Destination, unsigned
__int64 Exchange, unsigned __int64

Conpar and)

Compare and exchange atomically the
least significant word at the address
specified by its 1st argument. Maps to
the cmpxchg?2. r el instruction with
appropriate setup.

unsi gned __int64

_Interl ockedConpar eExchangel6_acq(vol atil e
unsi gned short *Destination, unsigned
__int64 Exchange, unsigned __int64

Conpar and)

Same as above, but using acqui re
semantic.

int _Interlockedl ncrement(volatile int
*addend)

Atomically increment by one the value
specified by its argument. Maps to the
f et chadd4 instruction.

int _InterlockedDecrement(volatile int
*addend)

Atomically decrement by one the value
specified by its argument. Maps to the
f et chadd4 instruction.

int _InterlockedExchange(volatile int
*Target, int val ue)

Do an exchange operation atomically.
Maps to the xchg4 instruction.

int _InterlockedConpareExchange(vol atile
int *Destination, int Exchange, int
Conpar and)

Page 320 of 431

Maps to the crmpxchg4 instruction with
appropriate setup. Atomically compare
and exchange the value specified by
the first argument (a 32-bit pointer).

Intel® C++ Compiler User's Guide

int _InterlockedExchangeAdd(volatile int
*addend, int increnent)

Use compare and exchange to do an
atomic add of the increment value to
the addend. Maps to a loop with the
cnpxchg4 instruction to guarantee
atomicity.

int InterlockedAdd(volatile int *addend,
int increment)

Same as above; but returns new value,
not the original one.

void * _Interl ockedConpar eExchangePoi nt er
(void * volatile *Destination, void
*Exchange, voi d *Conpar and)

Map the exch8 instruction; Atomically
compare and exchange the pointer
value specified by its first argument (all
arguments are pointers)

unsigned __int64 _InterlockedExchangeU
(volatile unsigned int *Target, unsigned
__int64 val ue)

Atomically exchange the 32-bit quantity
specified by the 1st argument. Maps to
the xchg4 instruction.

unsi gned __int64

_Interl ockedConpar eExchange_rel (vol atil e
unsi gned int *Destination, unsigned
__int64 Exchange, unsigned __int64
Conpar and)

Maps to the crpxchg4. r el instruction
with appropriate setup. Atomically
compare and exchange the value
specified by the first argument (a 64-bit
pointer).

unsi gned __int64

_Interl ockedConpar eExchange_acq(vol atil e
unsi gned int *Destination, unsigned
__int64 Exchange, unsigned __int64
Conpar and)

Same as above; but map the
cnpxchg4. acq instruction.

voi d _Rel easeSpi nLock(volatile int *x)

Release spin lock.

__int64 _Interl ockedl ncrement64(vol atile
__int64 *addend)

Increment by one the value specified by
its argument. Maps to the f et chadd
instruction.

nt64 _Interl ockedDecrenent64(vol atile
nt 64 *addend)

Decrement by one the value specified
by its argument. Maps to the
f et chadd instruction.

nt 64 _Interl ockedExchange64(vol atile
__int64 *Target, _ int64 val ue)

Do an exchange operation atomically.
Maps to the xchg instruction.

unsigned __int64 _Interl ockedExchangeUs4

Same as | nt er | ockedExchange64

Page 321 of 431

(volatile unsigned __int64 *Target, (for unsigned quantities).

unsi gned __int64 val ue)

unsi gned __int 64) Maps to the cnpxchg. r el instruction
_Interl ockedConpar eExchange64_rel (vol atile | with appropriate setup. Atomically
unsigned __int64 *Destination, unsigned compare and exchange the value
__int64 Exchange, unsigned __int64 specified by the first argument (a 64-bit
Conpar and) pointer).

unsi gned __int 64) Maps to the cnpxchg. acq instruction
_Interl ockedConpar eExchange64_acq(vol atile | with appropriate setup. Atomically
unsigned __int64 *Destination, unsigned compare and exchange the value
__int64 Exchange, unsigned __int64 specified by the first argument (a 64-bit
Conpar and)

pointer).

Intel® C++ Compiler User's Guide

__int64 _InterlockedConpareExchange64 Same as above for signed quantities.
(volatile __int64 *Destination, _ int64
Exchange, __int64 Conparand)

__int64 _Interl ockedExchangeAdd64(vol atil e | Use compare and exchange to do an
__int64 *addend, __int64 increnent) atomic add of the increment value to
the addend. Maps to a loop with the
cnpxchg instruction to guarantee

atomicity
__int64 _InterlockedAdd64(volatile __int64 |Same as above. Returns the new
*addend, __int64 increnent); value, not the original value. See Note
below.

Z-) Note

_Interl ockedSub64 is provided as a macro definition based on _I nt er| ockedAdd64.
#define _InterlockedSub64(target, incr) _InterlockedAdd64((target), (-
(incr))).

Uses crpxchg to do an atomic sub of the i ncr value to the t ar get . Maps to a loop with the
cnpxchg instruction to guarantee atomicity.

Page 322 of 431

Intel® C++ Compiler User's Guide

Load and Store

You can use the | oad and st or e intrinsic to force the strict memory access ordering of specific data
objects. This intended use is for the case when the user suppresses the strict memory access ordering
by using the —mmo- seri al i ze-vol ati | e option.

Intrinsic Prototype Description
_stl rel |void __stl rel(void *dst, const char Generates an st 1. r el
val ue); instruction.
_st2 rel |void __st2 rel(void *dst, const short Generates an st 2. r el
val ue); instruction.
__std4 rel |void __st4 rel(void *dst, const int Generates an st 4. r el
val ue); instruction.
_st8 rel |void st8 rel(void *dst, const i nt 64 | Generates an st 8. rel
val ue); instruction.
__1d1_acq |unsigned char _ Idl _acq(void *src); Generates an | d1. acq
instruction.
__1d2_acq |unsigned short _ 1d2 _acq(void *src); Generates an | d2. acq
instruction.
__|1d4_acq |unsigned int _ 1d4 _acq(void *src); Generates an | d4. acq
instruction.
__1d8_acq |unsigned __int64 _ 1d8 acq(void *src); Generates an | d8. acq
instruction.

Page 323 of 431

Intel® C++ Compiler User's Guide

Operating System Related Intrinsics for Itanium®-

based Systems

The prototypes for these intrinsics are in the i a64i ntri n. h header file.

Intrinsic

Description

unsigned __int64 _ getReg
(const int whichReg)

Gets the value from a hardware register based on the index
passed in. Produces a corresponding nov = r instruction.
Provides access to the following registers:

See Register Names for getReg() and setReg().

void _ setReg(const int
whi chReg, unsi gned
__int64 val ue)

Sets the value for a hardware register based on the index
passed in. Produces a corresponding nov = r instruction.
See Register Names for getReg() and setReg().

unsi gned __int64
__getlndReg(const int
whi chl ndReg, __int64
i ndex)

Return the value of an indexed register. The index is the 2nd
argument; the register file is the first argument.

void _ setlndReg(const

i nt whichlndReg, _ int64
i ndex, unsigned __int64
val ue)

Copy a value in an indexed register. The index is the 2nd
argument; the register file is the first argument.

void * rdteb(void)

Gets TEB address. The TEB address is kept in r 13 and maps
to the move r =t p instruction

void __isrlz(void)

Executes the serialize instruction. Maps to the srl z. i
instruction.

void _ dsrlz(void)

Serializes the data. Maps to the sr | z. d instruction.

unsi gned __int64
__fetchadd4_acq(unsi gned
int *addend, const int

i ncrenent)

Map the f et chadd4. acq instruction.

unsi gned __int64
__fetchadd4_rel (unsi gned
int *addend, const int

i ncrenent)

Map the f et chadd4. r el instruction.

unsi gned __int64
__fetchadd8_acq(unsi gned
__int64 *addend, const

int increment)

Map the f et chadd8. acq instruction.

unsi gned __int64
__fetchadd8_rel (unsi gned
__int64 *addend, const

t increment)

Map the f et chadd8. r el instruction.

in
void _ fwb(void)

Flushes the write buffers. Maps to the f wb instruction.

void _|dfs(const int
whi chFl oat Reg, void *src)

Page 324 of 431

Map the | df s instruction. Load a single precision value to the
specified register.

Intel® C++ Compiler User's Guide

void _|dfd(const int
whi chFl oat Reg, void *src)

Map the | df d instruction. Load a double precision value to the
specified register.

void | dfe(const int
whi chFl oat Reg, void *src)

Map the | df e instruction. Load an extended precision value to
the specified register.

void _|df8(const int
whi chFl oat Reg, void *src)

Map the | df 8 instruction.

void _|Idf fill(const int
whi chFl oat Reg, void *src)

Map the I df . fi || instruction.

void stfs(void *dst,
const int whi chFl oat Reg)

Map the sf t s instruction.

void stfd(void *dst,
const int whi chFl oat Reg)

Map the st f d instruction.

void stfe(void *dst,
const int whi chFl oat Reg)

Map the st f e instruction.

void stf8(void *dst,

Map the st f 8 instruction.

const int whi chFl oat Reg)

void __stf_spill(void Map the st f. spi | | instruction.

*dst, const int

whi chFl oat Reg)

void _ nf(void) Executes a memory fence instruction. Maps to the nf
instruction.

void _ nfa(void) Executes a memory fence, acceptance form instruction. Maps
to the nf . a instruction.

void __synci (void) Enables memory synchronization. Maps to the sync. i

instruction.

void __ thash(__int64) Generates a translation hash entry address. Maps to the
thash r = r instruction.

void _ ttag(__int64) Generates a translation hash entry tag. Maps tothettag r=r
instruction.

void __itcd(__int64 pa) Insert an entry into the data translation cache (Mapitc. d
instruction).

void __itci(__int64 pa) Insert an entry into the instruction translation cache (Map

itc.i).

void __itrd(__int64
whi chTransReg, __int64
pa)

Map the i tr. d instruction.

void __itri(__int64
whi chTransReg, _ int64
pa)

Map thei tr.i instruction.

void _ ptce(__int64 va)

Map the pt c. e instruction.

void __ptcl(__int64 va,
__int64 pagesz)

Page 325 of 431

Purges the local translation cache. Maps to the pt c. |
instruction.

r, r

Intel® C++ Compiler User's Guide

void ptcg(__int64 va,
__int64 pagesz)

Purges the global translation cache. Mapstotheptc.g r, r
instruction.

void ptcga(__int64 va,
__int64 pagesz)

Purges the global translation cache and ALAT. Maps to the
ptc.ga r, r instruction.

void _ptri(__int64 va,
__int64 pagesz)

Purges the translation register. Mapstothe ptr.i r, r
instruction.

void ptrd(__int64 va,
__int64 pagesz)

Purges the translation register. Mapstothe ptr.d r, r
instruction.

_int64 _tpa(__int64 va)

Map the t pa instruction.

i nt whi chGener al Reg)

void __inval at (void) Invalidates ALAT. Maps to the i nval a instruction.
void __invala (void) Same asvoi d __inval at (voi d)
void __invala_gr(const whi chGener al Reg = 0-127

void __invala fr(const
i nt whi chFl oat Reg)

whi chFl oat Reg = 0-127

void _ break(const int)

Generates a break instruction with an immediate.

void _ nop(const int)

Generate a nop instruction.

void _ debugbreak(voi d)

Generates a Debug Break Instruction fault.

void _ fc(__int64)

Flushes a cache line associated with the address given by the
argument. Maps to the f cr instruction.

void _ sun(int mask) Sets the user mask bits of PSR. Maps to the sum i nm24
instruction.

void _ rum(int mask) Resets the user mask.

void __ssm(int mask) Sets the system mask.

void _ rsn(int mask) Resets the system mask bits of PSR. Maps to the r sm i m24

instruction.

__int64 _ReturnAddress

Get the caller's address.

(void)

void __Ifetch(int Ifhint, |Generatethelfetch.Ifhint instruction. The value of the
void * first argument specifies the hint type.

void __Ifetch_fault(int Generate the | f et ch. faul t. | f hi nt instruction. The value
I fhint, void *y) of the first argument specifies the hint type.

unsi gned int _ cacheSi ze
(unsigned int cachelevel)

__cacheSi ze(n) returns the size in bytes of the cache at
level n. 1 represents the first-level cache. 0 is returned for a
non-existent cache level. For example, an application may
guery the cache size and use it to select block sizes in
algorithms that operate on matrices.

void _ nmenory barrier
(voi d)

Creates a barrier across which the compiler will not schedule
any data access instruction. The compiler may allocate local
data in registers across a memory barrier, but not global data.

Page 326 of 431

Intel® C++ Compiler User's Guide

Conversion Intrinsics Itanium®-based Systems

The prototypes for these intrinsics are in the i a64i ntri n. h header file.

Intrinsic

Description

_int64 mto_int64(__nmb4 a)

Converta of type 64 totype i nt 64. Translates to
nop since both types reside in the same register on
Itanium-based systems.

a)

_ B4 mfromint64(__int64

Converta of type i nt 64 to type ___nB64. Translates to
nop since both types reside in the same register on
Itanium-based systems.

__inte4
(doubl e d)

__round_doubl e _to_int64

Convert its double precision argument to a signed integer.

unsi gned __int64
(doubl e d)

__getf _exp

Map the get f . exp instruction and return the 16-bit
exponent and the sign of its operand.

Page 327 of 431

Intel® C++ Compiler User's Guide

Register Names for getReg() and setReg()

The prototypes for getReg() and setReg() intrinsics are in the i a64r egs. h header file.

Name whichReg

_IAG4_REG | P 1016

_I A64_REG PSR 1019

_1A64_REG PSR L | 1019

General Integer Registers

Name whichReg

1 A64_REG GP | 1025

_I A64_REG SP | 1036

_I A64_REG TP | 1037

Application Registers

Name whichReg
_1 A64_REG AR KRO 3072
_1 A64_REG AR KR1 3073
_1 A64_REG AR KR2 3074
_1 A64_REG AR KR3 3075
_1 A64_REG AR KR4 3076
_1 A64_REG AR KR5 3077
_1 A64_REG AR KR6 3078
_1 A64_REG AR KRY 3079
_1 A64_REG AR RSC 3088
_1 A64_REG AR BSP 3089
_1 A64_REG AR BSPSTORE | 3090
_1 A64_REG AR RNAT 3091
_1 A64_REG AR FCR 3093
_1 A64_REG AR EFLAG 3096
_1 A64_REG AR CSD 3097

Page 328 of 431

Intel® C++ Compiler User's Guide

_1A64_REG AR SSD 3098
_1A64_REG AR CFLAG 3099
_1A64_REG AR FSR 3100
_1A64_REG AR FIR 3101
_1A64_REG AR FDR 3102
_1A64_REG AR CCV 3104
_1A64_REG AR UNAT 3108
_1A64_REG AR FPSR 3112
_1A64_REG AR | TC 3116
_1A64_REG AR PFS 3136
_1A64_REG AR LC 3137
_1A64_REG AR EC 3138

Control Registers

Name whichReg

_1 A64_REG CR DCR | 4096

_1A64_REG CR I TM | 4097

_1A64_REG CR I VA | 4098

_1A64_REG CR PTA | 4104

_1A64_REG CR | PSR | 4112

_1A64_REG CR ISR |4113

_1A64_REG CR 1P |4115

_1A64_REG CR IFA |4116

_1A64_REG CR I TIR | 4117

_1A64_REG CR || PA | 4118

_1A64_REG CR IFS |4119

_1A64_REG CR IIM | 4120

_1A64_REG CR IHA |4121

_1A64_REG CR LID |4160

_1A64_REG CR I VR |4161*

_1A64_REG CR TPR | 4162

_1A64_REG CR EO | 4163

Page 329 of 431

Intel® C++ Compiler User's Guide

_1A64_REG CR | RRO | 4164 *

_1A64_REG CR | RRL | 4165 *

_1A64_REG CR | RR2 | 4166 *

_1A64_REG CR | RR3 | 4167 *

_1A64_REG CR I TV |4168

_1 A64_REG CR PW | 4169

_1 A64_REG CR CMCV | 4170

_1 A64_REG CR LRRO | 4176

_1A64_REG CR _LRR1 | 4177
* get Reg only

Indirect Registers for getindReg() and setindReg()

Name whichReg

_I A64_REG_| NDR_CPUI D 9000 *

_1A64_REG | NDR_DBR 9001
_1A64_REG | NDR | BR 9002
_1A64_REG | NDR_PKR 9003
_1A64_REG | NDR_PMC 9004
_1A64_REG | NDR_PMD 9005
_1A64_REG | NDR_RR 9006

_1 A64_REG_| NDR_RESERVED | 9007
* get | ndReg only

Page 330 of 431

Intel® C++ Compiler User's Guide

Multimedia Additions for Itanium®-based Systems

The prototypes for these intrinsics are in the i a64i ntri n. h header file.

Intrinsic Corresponding Instruction

__int64 _nm64_czx1ll (__n64 a) czx1l.| (Compute Zero Index)

__int64 nb4_czxlr(__nb4 a) czx1.r (Compute Zero Index)

_int64 _nmb64_czx2l (__n64 a) czx2.| (Compute Zero Index)

__int64 nb4_czx2r(__nb4 a) czx2.r (Compute Zero Index)

b4 b4 _mixll (__mb4 a, __ b4 b) m x1. 1 (Mix)

__ n64 nb64_mxlr(__nbd a, __nb4 b) m x1.r (Mix)

b4 b4 _mix2l (__nmb4 a, __mb4 b) m x2. 1 (Mix)

_ n64 nb64_mx2r(__nb4d a, __nb4 b) m x2. r (Mix)

__nBb4 64 _m x4l (__nm64 a, __ 64 b) m x4. | (Mix)

_ n64 nb64_mx4r(__nbd a, __nb4 b) m x4. r (Mix)

__nb4 _nb64_nuxl(__nb4 a, const int n) mux1 (Mux)

__nb4 _nb4_nux2(__nb4 a, const int n) mux2 (Mux)

__nb4 _nb4_paddluus(__n64 a, _ nb64 b) paddl. uus (Parallel add)

__n64 _nb64_padd2uus(__nm64 a, _ nb64 b) padd2. uus (Parallel add)

__nm64 _nb64_pavgl nraz(__nmb4 a, _ nbd b) pavgl (Parallel average)

__n64 nb64 _pavg2 nraz(__nb4 a, _ _nbd b) pavg?2 (Parallel average)

__nmb4 _nb4_pavgsubl(__nm64 a, _ nb64 b) pavgsubl (Parallel average
subtract)

__n64 _nb4_pavgsub2(__nm64 a, _ nb64 b) pavgsub?2 (Parallel average
subtract)

__mb4 _nb4_pnpy2r(__nb4 a, __nb4 b) prpy2. r (Parallel multiply)

__n64 _nb64_pnpy2l (__nb4 a, _ _nb4 b) pnmpy2. | (Parallel multiply)

__nb4 _nb64_pnpyshr2(__nb4 a, _ n64 b, const pnmpyshr 2 (Parallel multiply and shift

int count) right)

__nmb4 _nmb4_pnpyshr2u(__nb4 a, __n64 b, const |pnpyshr2. u (Parallel multiply and

int count) shift right)

__nb4 _nb64_pshl add2(__nbB4 a, const int pshl add2 (Parallel shift left and

count, __nb4 b) add)

Page 331 of 431

Intel® C++ Compiler User's Guide

__n64 _nb64_pshradd2(__nm64 a, const int pshradd2 (Parallel shift right and
count, _ 64 b) add)

__nb4 _nb4_psubluus(__n64 a, _ nb64 b) psubl. uus (Parallel subtract)
__nm64 _nb64_psub2uus(__nm64 a, _ nb64 b) psub2. uus (Parallel subtract)

_int64 _nb4_czx1l (__nbB4 a)

The 64-bit value a is scanned for a zero element from the most significant element to the least
significant element, and the index of the first zero element is returned. The element width is 8
bits, so the range of the result is from 0 - 7. If no zero element is found, the default result is 8.

__int64 nb4 _czxlr(__nb4 a)

The 64-bit value a is scanned for a zero element from the least significant element to the most
significant element, and the index of the first zero element is returned. The element width is 8
bits, so the range of the result is from O - 7. If no zero element is found, the default result is 8.

_int64 _nb4_czx2l (__nb4 a)

The 64-bit value a is scanned for a zero element from the most significant element to the least
significant element, and the index of the first zero element is returned. The element width is 16
bits, so the range of the result is from 0 - 3. If no zero element is found, the default result is 4.

__int64 nb4 _czx2r(__nb4 a)

The 64-bit value a is scanned for a zero element from the least significant element to the most
significant element, and the index of the first zero element is returned. The element width is 16
bits, so the range of the result is from O - 3. If no zero element is found, the default result is 4.

B4 _nb4_nmixll (__nmB4 a, __ b4 b)

Interleave 64-bit quantities a and b in 1-byte groups, starting from the left, as shown in Figure 1,
and return the result.

EEEE| O

wE NN Fg

B4 _nBA_mixlr(__nmB4 a, _ b4 b)

Interleave 64-bit quantities a and b in 1-byte groups, starting from the right, as shown in Figure
2, and return the result.

NERR 'HEEM
gy ST Fig 2

B4 _nb4_m x2l (__nB4 a, __nb4 b)

Page 332 of 431

Intel® C++ Compiler User's Guide

Interleave 64-bit quantities a and b in 2-byte groups, starting from the left, as shown in Figure 3,
and return the result.

e
-

B rga

B4 _nB4_mix2r(__ne4 a, __nb4 b)

Interleave 64-bit quantities a and b in 2-byte groups, starting from the right, as shown in Figure
4, and return the result.

.

-

- Fig 4

__nb4 _nb4_mi x4l (__nb4d a, __nb4 b)

Interleave 64-bit quantities a and b in 4-byte groups, starting from the left, as shown in Figure 5,
and return the result.

-

__:’ Fig 5

__nb4 _nb4_mix4r(__nb4 a, __nb4 b)

Interleave 64-bit quantities a and b in 4-byte groups, starting from the right, as shown in Figure
6, and return the result.

Fig 6

__mb64 nb64 _nuxl(__nmb64 a, const int n)

Based on the value of n, a permutation is performed on a as shown in Figure 7, and the result is
returned. Table 1 shows the possible values of n.

ey D i

Page 333 of 431

Intel® C++ Compiler User's Guide

ahrest

Table 1. Values of n for m64_mux1Operation

n
@rcst |0
@i x 8
@huf |9
@l t OxA
@ ev 0xB

__mB64 b4 _nmux2(__mnb4 a, const int n)

Based on the value of n, a permutation is performed on a as shown in Figure 8, and the result is

returned.
. z/ T r _,.-*'“'-.--
z}&x >‘\ H“'::}é-"'
o "/-l \ -f_d____.-z,- \‘-\--\""'\-\.____
mux2 ri = r2, OxBh (shufile 1000 11 01) muee? el = 12, 0xib (reverse 00071 10 11)
GR | |
GR iy

muxd ¢1 =2, Oxed (altemata 11 01 10 00} mux2 r1 =12, Oxaa (broadeast 10 10 10 10)

Fig 8

Page 334 of 431

Intel® C++ Compiler User's Guide

__mb64 _nb4_pavgsubl(__nm64 a, _ nmb64 b)

The unsigned data elements (bytes) of b are subtracted from the unsigned data elements
(bytes) of a and the results of the subtraction are then each independently shifted to the right by

one position. The high-order bits of each element are filled with the borrow bits of the
subtraction.

__mb64 _nb4_pavgsub2(__nm64 a, _ nb4 b)

The unsigned data elements (double bytes) of b are subtracted from the unsigned data
elements (double bytes) of a and the results of the subtraction are then each independently

shifted to the right by one position. The high-order bits of each element are filled with the borrow
bits of the subtraction.

__mb4 64 _pnpy2l (__nb4 a, __nb4 b)

Two signed 16-bit data elements of a, starting with the most significant data element, are

multiplied by the corresponding two signed 16-bit data elements of b, and the two 32-bit results
are returned as shown in Figure 9.

Fig 9
__mb64 _n64_pnpy2r(__nb4d a, __nb4 b)

Two signed 16-bit data elements of a, starting with the least significant data element, are

multiplied by the corresponding two signed 16-bit data elements of b, and the two 32-bit results
are returned as shown in Figure 10.

m mE

1Y 1Y

__mb64 _n64_pnpyshr2(__nm64 a, _ nmb4 b, const int count)

Page 335 of 431

Intel® C++ Compiler User's Guide

The four signed 16-bit data elements of a are multiplied by the corresponding signed 16-bit data
elements of b, yielding four 32-bit products. Each product is then shifted to the right count bits
and the least significant 16 bits of each shifted product form 4 16-bit results, which are returned
as one 64-bit word.

__mb4 _nb64_pnpyshr2u(__nb4 a, _ nb4d b, const int count)

The four unsigned 16-bit data elements of a are multiplied by the corresponding unsigned 16-bit
data elements of b, yielding four 32-bit products. Each product is then shifted to the right count
bits and the least significant 16 bits of each shifted product form 4 16-bit results, which are
returned as one 64-bit word.

__mb64 _nb4_pshl add2(__nm64 a, const int count, _ n64 b)

a is shifted to the left by count bits and then is added to b. The upper 32 bits of the result are
forced to 0, and then bits [31:30] of b are copied to bits [62:61] of the result. The result is
returned.

__mb64 _nb64 _pshradd2(__nm64 a, const int count, _ n64 b)

The four signed 16-bit data elements of a are each independently shifted to the right by count
bits (the high order bits of each element are filled with the initial value of the sign bits of the data
elements in a); they are then added to the four signed 16-bit data elements of b. The result is
returned.

__mb64 _nb4_paddluus(__nm64 a, _ nmb64 b)

a is added to b as eight separate byte-wide elements. The elements of a are treated as
unsigned, while the elements of b are treated as signed. The results are treated as unsigned
and are returned as one 64-bit word.

__mb64 _nb64_padd2uus(__nm64 a, _ nb4 b)

a is added to b as four separate 16-bit wide elements. The elements of a are treated as
unsigned, while the elements of b are treated as signed. The results are treated as unsigned
and are returned as one 64-bit word.

__mB64 _nb4_psubluus(__nm64 a, _ nmb4 b)

a is subtracted from b as eight separate byte-wide elements. The elements of a are treated as
unsigned, while the elements of b are treated as signed. The results are treated as unsigned
and are returned as one 64-bit word.

__mb64 _nb64 _psub2uus(__nm64 a, _ nmb4 b)

a is subtracted from b as four separate 16-bit wide elements. The elements of a are treated as
unsigned, while the elements of b are treated as signed. The results are treated as unsigned
and are returned as one 64-bit word.

__mb64 nb4_pavgl nraz(__nb4 a, __nb4 b)

The unsigned byte-wide data elements of a are added to the unsigned byte-wide data elements
of b and the results of each add are then independently shifted to the right by one position. The

Page 336 of 431

Intel® C++ Compiler User's Guide

high-order bits of each element are filled with the carry bits of the sums.
__nmB4 _nb4_pavg2_nraz(__nb4 a, _ nb4 b)

The unsigned 16-bit wide data elements of a are added to the unsigned 16-bit wide data
elements of b and the results of each add are then independently shifted to the right by one
position. The high-order bits of each element are filled with the carry bits of the sums.

Overview: Data Alignment, Memory Allocation
Intrinsics, and Inline Assembly

This book describes features that support usage of the intrinsics. The following topics are described:

e Alignment Support
e Allocating and Freeing Aligned Memory Blocks
e Inline Assembly

Page 337 of 431

Intel® C++ Compiler User's Guide

Alignment Support

To improve intrinsics performance, you need to align data. For example, when you are using the
Streaming SIMD Extensions, you should align data to 16 bytes in memory operations to improve
performance. Specifically, you must align __ 28 objects as addresses passed to the _nm | oad and
__nmm st or e intrinsics. If you want to declare arrays of floats and treat them as __ml28 objects by
casting, you need to ensure that the float arrays are properly aligned.

Use _ decl spec(al i gn) to direct the compiler to align data more strictly than it otherwise does on
both IA-32 and Itanium®-based systems. For example, a data object of type int is allocated at a byte
address which is a multiple of 4 by default (the size of an int). However, by using __decl spec

(al i gn), you can direct the compiler to instead use an address which is a multiple of 8, 16, or 32 with
the following restrictions on 1A-32:

e 32-byte addresses must be statically allocated
e 16-byte addresses can be locally or statically allocated

You can use this data alignment support as an advantage in optimizing cache line usage. By clustering
small objects that are commonly used together into a st r uct , and forcing the st r uct to be allocated
at the beginning of a cache line, you can effectively guarantee that each object is loaded into the cache
as soon as any one is accessed, resulting in a significant performance benefit.

The syntax of this extended-attribute is as follows:
al i gn(n)

where n is an integral power of 2, less than or equal to 32. The value specified is the requested
alignment.

.& Caution

In this release, __decl spec(al i gn(8)) does not function correctly. Use __decl spec(al i gn
(16)) instead.

f) Note

If a value is specified that is less than the alignment of the affected data type, it has no effect. In other
words, data is aligned to the maximum of its own alignment or the alignment specified with
__decl spec(align).

You can request alignments for individual variables, whether of static or automatic storage duration.
(Global and static variables have static storage duration; local variables have automatic storage
duration by default.) You cannot adjust the alignment of a parameter, nor a field of a st r uct or

cl ass. You can, however, increase the alignment of a st ruct (or uni on or cl ass), in which case
every object of that type is affected.

As an example, suppose that a function uses local variables i andj as subscripts into a 2-
dimensional array. They might be declared as follows:

int i, j;

Page 338 of 431

Intel® C++ Compiler User's Guide

These variables are commonly used together. But they can fall in different cache lines, which could be
detrimental to performance. You can instead declare them as follows:

__decl spec(align(8)) struct { int i, j; } sub;

The compiler now ensures that they are allocated in the same cache line. In C++, you can omit the
struct variable name (written as sub in the above example). In C, however, it is required, and you
must write referencestoi andj as sub.i andsub.j.

If you use many functions with such subscript pairs, it is more convenient to declare and use a st r uct
type for them, as in the following example:

typedef struct __declspec(align(8)) { int i, j; } Sub;

By placing the __decl spec(al i gn) after the keyword st r uct , you are requesting the appropriate
alignment for all objects of that type. However, that allocation of parameters is unaffected by

__decl spec(align). (If necessary, you can assign the value of a parameter to a local variable with
the appropriate alignment.)

You can also force alignment of global variables, such as arrays:

__decl spec(align(16)) float array[1000];

Allocating and Freeing Aligned Memory Blocks

Use the _mm nal | oc and _nm f r ee intrinsics to allocate and free aligned blocks of memory. These
intrinsics are based on mal | oc and f r ee, which are in the | i bi r c. a library. You need to include
mal | oc. h. The syntax for these intrinsics is as follows:

void* _mmmalloc (int size, int align)

void mmfree (void *p)

The _mm nal | oc routine takes an extra parameter, which is the alignment constraint. This constraint

must be a power of two. The pointer that is returned from _nmm nal | oc is guaranteed to be aligned on
the specified boundary.

f) Note

Memory that is allocated using _nm nal | oc must be freed using _nm free . Callingfree on
memory allocated with _mm mal | oc or calling _mm f r ee on memory allocated with nal | oc will
cause unpredictable behavior.

Page 339 of 431

Intel® C++ Compiler User's Guide

Inline Assembly

By default, the compiler inlines a number of standard C, C++, and math library functions. This usually
results in faster execution of your program.

Sometimes inline expansion of library functions can cause unexpected results. The inlined library
functions do not set the er r no variable. So, in code that relies upon the setting of the er r no variable,
you should use the - nol i b_i nl i ne option, which turns off inline expansion of library functions. Also,
if one of your functions has the same name as one of the compiler's supplied library functions, the
compiler assumes that it is one of the latter and replaces the call with the inlined version.
Consequently, if the program defines a function with the same name as one of the known library
routines, you must use the - nol i b_i nl i ne option to ensure that the program's function is the one
used.

E/] Note

Automatic inline expansion of library functions is not related to the inline expansion that the compiler
does during interprocedural optimizations. For example, the following command compiles the program
sum.c without expanding the library functions, but with inline expansion from interprocedural
optimizations (IPO):

e |A-32 Systems: pronmpt>icc -ip -nolib_inline sumc

e Itanium®-based Systems: pronpt >ecc -ip -nolib_inline sumc
For details on IPO, see Interprocedural Optimizations.
MASM* Style Inline Assembly

The Intel® C++ Compiler supports MASM style inline assembly with the - use_nsasmoption. See your
MASM documentation for the proper syntax.

GNU*-like Style Inline Assembly
The Intel® C++ Compiler supports GNU-like style inline assembly. The syntax is as follows:

asm keyword [volatile-keyword] (asmtenplate [asminterface]) ;

Syntax Description

Element

asm asmstatements begin with the keyword asm Alternatively, either __asmor __asm

keywor d may be used for compatibility.

vol atil e- |Ifthe optional keyword vol ati | e is given, the asmis volatile. Two vol atil e asm

keywor d statements will never be moved past each other, and a reference toa vol ati |l e
variable will not be moved relative to a volatile asm Alternate keywords
__volatileand __volatile__ may be used for compatibility.

Page 340 of 431

Intel® C++ Compiler User's Guide

asm
templ ate

The asmt enpl at e is a C language ASCII string which specifies how to output the
assembly code for an instruction. Most of the template is a fixed string; everything
but the substitution-directives, if any, is passed through to the assembler. The syntax
for a substitution directive is a %followed by one or two characters. The supported
substitution directives are specified in a subsequent section.

asm
i nterface

The asm i nt er f ace consists of three parts:

1. an optional out put - | i st

2. an optional i nput - | i st

3. an optional cl obber -1 i st

These are separated by colon (:) characters. If the out put -1i st is missing, but an
i nput -1i st is given, the input list may be preceded by two colons (::)to take the
place of the missing out put - 1i st. Ifthe asm i nt er f ace is omitted altogether,
the asmstatement is considered vol at i | e regardless of whether a vol ati | e-
keywor d was specified.

out put -
list

An out put -1 i st consists of one or more out put - specs separated by commas.
For the purposes of substitution in the asm t enpl at e, each out put - spec is
numbered. The first operand in the out put - 1 i st is numbered 0, the second is 1,
and so on. Numbering is continuous through the out put - 1 i st and into the

i nput -1i st. The total number of operands is limited to 10 (i.e. 0-9).

i nput-1ist

Similar to an out put -1 i st,ani nput -1i st consists of one or more i nput -
specs separated by commas. For the purposes of substitution in the asm

t enpl at e, each i nput - spec is humbered, with the numbers continuing from
those in the out put - | i st .

cl obber -
list

A cl obber - 1i st tells the compiler that the asmuses or changes a specific
machine register that is either coded directly into the asmor is changed implicitly by
the assembly instruction. The cl obber -1i st is a comma-separated list of

cl obber - specs.

i nput - spec

The i nput - specs tell the compiler about expressions whose values may be
needed by the inserted assembly instruction. In order to describe fully the input
requirements of the asm you can listi nput - specs that are not actually referenced
inthe asmt enpl at e.

cl obber -
spec

Each cl obber - spec specifies the name of a single machine register that is
clobbered. The register name may optionally be preceded by a % The following are
the valid register names: eax, ebx, ecx, edx, esi, edi, ebp, esp, ax, bx, cx, dx, si, di,
bp, sp, al, b, cl, dl, ah, bh, ch, dh, st, st(1) — st(7), mm0 — mm7, xmmO — xmm7, and
cc. ltis also legal to specify “memory” in a cl obber - spec. This prevents the
compiler from keeping data cached in registers across the asmstatement.

Page 341 of 431

Intel® C++ Compiler User's Guide

Intrinsics Cross-processor Implementation

This section provides a series of tables that compare intrinsics performance across architectures.
Before implementing intrinsics across architectures, please note the following.

e Instrinsics may generate code that does not run on all IA processors. Therefore the programmer
is responsible for using CPUI D to detect the processor and generating the appropriate code.

e Implement intrinsics by processor family, not by specific processor. The guiding principle for
which family—IA-32 or Itanium® processors—the intrinsic is implemented on is performance, not
compatibility. Where there is added performance on both families, the intrinsic will be identical.

Page 342 of 431

Intel® C++ Compiler User's Guide

Intrinsics for Implementation Across All IA

Key to the table entries

e A = Expected to give significant performance gain over non-intrinsic-based code equivalent.

e B = Non-intrinsic-based source code would be better; the intrinsic's implementation may map
directly to native instructions, but they offer no significant performance gain.

e C = Requires contorted implementation for particular microarchitecture. Will result in very poor
performance if used.

Intrinsic Across | MMX(TM) Streaming | Streaming | ltanium®

All'IA | Technology | SIMD SIMD Architecture
Extensions | Extensions

int abs(int) A

| ong | abs(| ong) A

unsigned long __Irotl A

(unsi gned | ong val ue,

int shift)

unsigned long _ lrotr A A A A A

(unsi gned | ong val ue,

int shift)

unsigned int _ rotl A A A A A

(unsigned int val ue,

int shift)

unsigned int _ rotr A A A A A

(unsi gned int val ue,

int shift)

_int64 __i64 rotl A A A A A

(__int64 value, int

shift)

_int64 __i64 rotr A A A A A

(__int64 value, int

shift)

doubl e fabs(doubl e) A A A A A

doubl e | og(doubl e) A A A A A

float |ogf(float) A A A A A

doubl e | 0g10(doubl e) A A A A A

float |oglOf (float) A A A A A

doubl e exp(doubl e) A A A A A

float expf(float) A A A A A

doubl e pow(doubl e, A A A A A

doubl e)

Page 343 of 431

Intel® C++ Compiler User's Guide

fl oat powf (fl oat,
float)

>

>

>

>

>

doubl e si n(doubl e)

float sinf(float)

doubl e cos(doubl e)

float cosf(float)

doubl e tan(doubl e)

float tanf(float)

doubl e acos(doubl e)

fl oat acosf(float)

doubl e acosh(doubl e)

fl oat acoshf (float)

doubl e asi n(doubl e)

float asinf(float)

doubl e asi nh(doubl e)

fl oat asinhf(float)

doubl e at an(doubl e)

float atanf(float)

doubl e at anh(doubl e)

fl oat atanhf(float)

fl oat cabs(double)*

doubl e ceil (doubl e)

float ceilf(float)

doubl e cosh(doubl e)

float coshf(float)

float fabsf(float)

doubl e fl oor (doubl e)

float floorf(float)

doubl e fnod(doubl e)

float fnodf(float)

doubl e hypot (doubl e,
doubl e)

> ||| > 2> > >\ > > >|> > >>>> > > > P> > >

||| > > >|>|>|>|> > >>>>>> > > > > > >

||| 2> > > >|>|>|>> > > >>>>> > >>>>> > > > >

||| > > > >|>|>>|> > > >>>>> > > > > > >

||| > > > >|>|>>|> > >>>>>> > >>>>> > > > >

float hypotf(float)

Page 344 of 431

>

>

>

>

>

Intel® C++ Compiler User's Guide

doubl e ri nt (doubl e)

float rintf(float)

doubl e si nh(doubl e)

float sinhf(float)

float sqrtf(float)

doubl e tanh(doubl e)

float tanhf(float)

char * strset(char *,
_int32)

> > || > |>| > > >

||| > > > > >

||| > > > > >

||| > > > > >

||| > > > > >

voi d *nencnp(const
void *cs, const void
*ct, size t n)

>

>

>

>

>

void *nencpy(void *s,
const void *ct, sizet

n)

void *nenmset (void * s,
int c, size_t n)

char *Strcat(char * s,
const char * ct)

int *strcnp(const char
*, const char *)

char *strcpy(char * s,
const char * ct)

size_t strlen(const
char * cs)

int strncnp(char *,
char *, int)

int strncpy(char *,
char *, int)

>

>

>

>

>

void * alloca(int)

int _setjnp(jnmp_buf)

_exception_code(voi d)

_exception_info(void)

_abnormal _termnation
(void)

>|> | > | > | >

>|>|>|>| >

>|>|>|>| >

>|> | > | > | >

>|>|>|>| >

voi d _enabl e()

voi d _disable()

int _bswap(int)

int _in_byte(int)

Page 345 of 431

> > | > | >

> > | > | >

> > | > | >

> > | > | >

> > | > | >

Intel® C++ Compiler User's Guide

int _in_dword(int) A A A A A
int _in_word(int) A A A A A
int _inp(int) A A A A A
int _inpd(int) A A A A A
int _inpw(int) A A A A A
int _out_byte(int, A A A A A
i nt)

int _out_dword(int, A A A A A
i nt)

int _out_word(int, A A A A A
i nt)

int _outp(int, int) A A A A
int _outpd(int, int)

int _outpw(int, int) A A A A

Page 346 of 431

Intel® C++ Compiler User's Guide

MMX(TM) Technology Intrinsics Implementation

Key to the table entries

e A = Expected to give significant performance gain over non-intrinsic-based code equivalent.
e B = Non-intrinsic-based source code would be better; the intrinsic's implementation may map
directly to native instructions, but they offer no significant performance gain.

e C = Requires contorted implementation for particular microarchitecture. Will result in very poor

performance if used.

Page 347 of 431

Intrinsic Alternate Across | MMX(TM Streaming | Streaming | It:
Name Name All 1A | Technology | SIMD _ SIMD _ Al
Extensions | Extensions
_menpty _mm_ enpty N/A A A A B
_mfromint _mm cvtsi 32_si 64 | N/A A A A A
_mto_int _mmcvtsi 64_si32 |N/A A A A A
_m packsswb _mm packs_pi 16 N/A A A A A
_m packssdw _mm packs_pi 32 N/A A A A A
_m packuswb _mm packs_pul6 N/A A A A A
_m punpckhbw _mm unpackhi _pi 8 |N/A A A A A
_m punpckhwd _mm unpackhi _pi 16 | N/A A A A A
_m punpckhdq _mm unpackhi _pi 32 | N/A A A A A
_m punpckl bw _mm unpackl o_pi 8 |N/A A A A A
_m punpckl wd _mm unpackl o_pi 16 | N/A A A A A
_m punpckl dq _mm unpackl o_pi 32 | N/A A A A A
_m paddb _mm add_pi 8 N/A A A A A
_m paddw _mm add_pi 16 N/A A A A A
_m paddd _mm add_pi 32 N/A A A A A
_m paddshb _mm adds_pi 8 N/A A A A A
_m paddsw _mm adds_pi 16 N/A A A A A
_m paddusb _mm adds_pu8 N/A A A A A
_m paddusw _mm adds_pul6 N/A A A A A
_m psubb _mm sub_pi 8 N/A A A A A
_m psubw _mm sub_pi 16 N/A A A A A
_m psubd _mm sub_pi 32 N/A A A A A

Intel® C++ Compiler User's Guide

Page 348 of 431

_m psubsb _mm subs_pi 8 N/A A A A A
_m psubsw _mm subs_pi 16 N/A A A A A
_m psubusb _mm subs_pu8 N/A A A A A
_m psubusw _mm subs_pul6 N/A A A A A
_m pmaddwd _mm madd_pi 16 N/A A A A C
~m pmul hw _mm nul hi _pi 16 N/A A A A A
—mpmul | w ~mmnullo_pil6 N/A A A A A
—mpsllw _mmsll _pil6 N/A A A A A
_mpsl | wi ~mmslli_pil6 N/A A A A A
_mpslld _mmsl| _pi32 N/A A A A A
_m psl | di ~mmslli_pi32 N/A A A A A
—mpsllqg _mmsll _si64 N/A A A A A
_m pslqi ~mmslli_si64 N/A A A A A
_m psraw _mm sra_pil6 N/A A A A A
_m _psrawi _mmsrai_pil6 N/A A A A A
_m psrad _mm sra_pi 32 N/A A A A A
_m psr adi _mm srai_pi32 N/A A A A A
_mpsrilw _mmsrl _pil6 N/A A A A A
_mpsrlwi _mmsrli_pil6 N/A A A A A
_mpsrld _mmsrl_pi 32 N/A A A A A
_m psrldi _mmsrli_pi32 N/A A A A A
_mpsrlg _mmsrl_si64 N/A A A A A
_m psrl qi _mmsrli_si64 N/A A A A A
_m pand _mm and_si 64 N/A A A A A
_m pandn _mm andnot _si 64 N/A A A A A
_m por _mm or_si 64 N/A A A A A
_m pxor _mm xor _si 64 N/A A A A A
_m pcnpeqb _mm cnpeq_pi 8 N/A A A A A
_m pcnpeqw _mm cnpeq_pi 16 N/A A A A A
_m pcnpeqd _mm cnpeq_pi 32 N/A A A A A
_m pcnpgtb _mmcnpgt _pi 8 N/A A A A A
_m pcnpgt w _mm cnpgt _pi 16 N/A A A A A

Intel® C++ Compiler User's Guide

_m pcnpgtd _mm cnpgt _pi 32 N/A A A A A

nmm set zero si 64 N/A A A A A
_mm set _pi 32 N/A A A A A
_mm set_pi 16 N/A A A A C
_mmset _pi 8 N/A A A A C
_mmsetl pi32 N/A A A A A
_mmsetl pil6 N/A A A A A
_mmsetl pi8 N/A A A A A
_mmsetr_pi 32 N/A A A A A
_mmsetr_pi 16 N/A A A A C
_mmsetr_pi 8 N/A A A A C

_mm enpty is implemented in Itanium® instructions as a NOP for source compatibility only.

Page 349 of 431

Intel® C++ Compiler User's Guide

Streaming SIMD Extensions Intrinsics
Implementation

Regular Streaming SIMD Extensions intrinsics work on 4 32-bit single precision values. On Itanium®-
based systemsbasic operations like add or compare will require two SIMD instructions. Both can be
executed in the same cycle so the throughput is one basic Streaming SIMD Extensions operation per
cycle or 4 32-bit single precision operations per cycle.

Key to the table entries

e A = Expected to give significant performance gain over non-intrinsic-based code equivalent.

e B = Non-intrinsic-based source code would be better; the intrinsic's implementation may map
directly to native instructions but they offer no significant performance gain.

e C = Requires contorted implementation for particular microarchitecture. Will result in very poor
performance if used.

Page 350 of 431

Intrinsic Alternate Across | MMX(TM Streaming | Streaming | It:
Name Name All 1A | Technology | SIMD SIMD Al
Extensions | Extensions
2
_mm add_ss N/A N/A B B B
_mm add_ps N/A N/A A A A
_mm sub_ss N/A N/A B B B
_mm sub_ps N/A N/A A A A
_mmmul _ss N/A N/A B B B
_mm mul _ps N/A N/A A A A
_mmdiv_ss N/A N/A B B B
_mmdiv_ps N/A N/A A A A
_mmsqrt_ss N/A N/A B B B
_mmsqrt_ps N/A N/A A A A
_mmrcp_ss N/A N/A B B B
_mm.rcp_ps N/A N/A A A A
_mmrsqrt_ss N/A N/A B B B
_mmrsqrt_ps N/A N/A A A A
_mmmn_ss N/A N/A B B B
_mm.mn_ps N/A N/A A A A
_mm_max_ss N/A N/A B B B
_mm_max_ps N/A N/A A A A

Intel® C++ Compiler User's Guide

_mm and_ps N/A N/A A A A
_mm andnot _ps N/A N/A A A A
_mm.or_ps N/A N/A A A A
_mm _xor _ps N/A N/A A A A
_mm _cnpeq_ss N/A N/A B B B
_mm _cnpeq_ps N/A N/A A A A
_mmecnplt_ss N/A N/A B B B
_mmecnplt_ps N/A N/A A A A
_mmcnpl e_ss N/A N/A B B B
_mmcnpl e_ps N/A N/A A A A
_mm cnpgt _ss N/A N/A B B B
_mm cnpgt _ps N/A N/A A A A
_mm _cnpge_ss N/A N/A B B B
_mm _cnpge_ps N/A N/A A A A
_mm _cnpneq_sSs N/A N/A B B B
_mm _cnpneq_ps N/A N/A A A A
_mmecnpnlt_ss N/A N/A B B B
_mmcnpnlt_ps N/A N/A A A A
_mmcnpnl e_ss N/A N/A B B B
_mm cnpnl e_ps N/A N/A A A A
_mm cnpngt _ss N/A N/A B B B
_mm cnpngt _ps N/A N/A A A A
_mm cnpnge_ss N/A N/A B B B
_mm _cnpnge_ps N/A N/A A A A
_mmcnpord_ss N/A N/A B B B
_mm cnpord_ps N/A N/A A A A
_mm cnpunord_ss N/A N/A B B B
_mm cnpunord_ps N/A N/A A A A
_mm coni eq_ss N/A N/A B B B
_mmeconilt_ss N/A N/A B B B
_mmconile_ss N/A N/A B B B
_mmconigt_ss N/A N/A B B B

Page 351 of 431

Intel® C++ Compiler User's Guide

_nmm coni ge_ss N/A N/A B B B
_mm com neq_ss N/A N/A B B B
_mm ucom eq_ss N/A N/A B B B
_mmucom | t_ss N/A N/A B B B
_mm.ucom | e_ss N/A N/A B B B
_mm ucom gt _ss N/A N/A B B B
_mm ucom ge_ss N/A N/A B B B
_mm_ucom neq_ss N/A N/A B B B
_mm cvt_ss2si _mmcvtss_si 32 N/A N/A A A B
_mm cvt _ps2pi _mm cvt ps_pi 32 N/A N/A A A A
_mmcvtt_ss2si _mmcvttss_si 32 N/A N/A A A B
_mmcvtt_ps2pi _mmcvttps_pi 32 N/A N/A A A A
_mmcvt _si 2ss _mm cvtsi32_ss N/A N/A A A B
_mm cvt _pi 2ps _mm cvtpi 32_ps N/A N/A A A C
_mm cvtpi 16_ps N/A N/A A A C
_mm _cvt pul6_ps N/A N/A A A C
_mm cvt pi 8_ps N/A N/A A A C
_mm cvt pu8_ps N/A N/A A A C
_mm cvt pi 32x2_ps N/A N/A A A C
_mmcvtps_pi 16 N/A N/A A A C
_mmcvtps_pi 8 N/A N/A A A C
_mm _nove_ss N/A N/A A A A
_mm shuffle_ps N/A N/A A A A
_mm unpackhi _ps N/A N/A A A A
_mm unpackl o_ps N/A N/A A A A
_mm novehl ps N/A N/A A A A
_mm novel h_ps N/A N/A A A A
_mm novenmask_ps N/A N/A A A C
_mm get csr N/A N/A A A A
_mm set csr N/A N/A A A A
_mm | oadh_pi N/A N/A A A A
_mm | oadl _pi N/A N/A A A A

Page 352 of 431

Intel® C++ Compiler User's Guide

Page 353 of 431

_mm | oad_ss N/A N/A A A B
_mm | oad_psl _mm | oadl_ps N/A N/A A A A
_mm | oad_ps N/A N/A A A A
_mm | oadu_ps N/A N/A A A A
_mm | oadr _ps N/A N/A A A A
_mm storeh_pi N/A N/A A A A
_mm storel _pi N/A N/A A A A
_mm store_ss N/A N/A A A A
_mm store_ps N/A N/A A A A
_mm store_psl _mm storel_ps N/A N/A A A A
_mm storeu_ps N/A N/A A A A
_mm storer_ps N/A N/A A A A
_mm set _ss N/A N/A A A A
_mm set _psl _mmsetl ps N/A N/A A A A
_mm set _ps N/A N/A A A A
_mmsetr_ps N/A N/A A A A
_mm set zero_ps N/A N/A A A A
_mm prefetch N/A N/A A A A
_mm st ream pi N/A N/A A A A
_mm stream ps N/A N/A A A A
_mm sfence N/A N/A A A A
_m pextrw _mmextract_pi 16 | N/A N/A A A A
_mpinsrw _mminsert _pil6 N/A N/A A A A
M _pmaxsw _mm max_pi 16 N/A N/A A A A
_m pmaxub _mm _nmax_pus8 N/A N/A A A A
_m pm nsw _mm min_pi 16 N/A N/A A A A
_m pm nub _mm mi n_pu8 N/A N/A A A A
_m pnovnskb _mm novenmask _pi 8 | N/A N/A A A C
_m pnul huw _mm nul hi _pul6 N/A N/A A A A
_m pshufw _mmshuffle_pi1l6 |N/A N/A A A A
_m masknovq _mm nmasknove_si 64 | N/A N/A A A C
_m pavgb _mm avg_pu8 N/A N/A A A A

Intel® C++ Compiler User's Guide

_m _pavgw

_mm avg_pulé

N/A

N/A

_m psadbw

_mm sad_pu8

N/A

N/A

Page 354 of 431

Intel® C++ Compiler User's Guide

Streaming SIMD Extensions 2 Intrinsics
Implementation

Streaming SIMD Extensions 2 operate on 128-bit quantities with 64-bit double precision floating-point
values. The Intel® Itanium® processor does not support parallel double precision computation, so
Streaming SIMD Extensions 2 are not implemented on Itanium-based systems.

Key to the table entries:

e A = Expected to give significant performance gain over non-intrinsic-based code equivalent.

e B = Non-intrinsic-based source code would be better; the intrinsic's implementation may map
directly to native instructions, but they offer no significant performance gain.

e C = Requires contorted implementation for particular microarchitecture. Will result in very poor
performance if used.

Intrinsic Across | MMX(TM Streaming Pentium® 4 ltanium®
All 1A | Technology | SIMD Processor Architecture
Extenions Streaming
SIMD
Extensions 2
_mm add_sd N/A N/A N/A A N/A
_mm add_pd N/A N/A N/A A N/A
_mm sub_sd N/A N/A N/A A N/A
_mm sub_pd N/A N/A N/A A N/A
_mm nul _sd N/A N/A N/A A N/A
_mm nul _pd N/A N/A N/A A N/A
_mmsqrt_sd N/A N/A N/A A N/A
_mmsqrt_pd N/A N/A N/A A N/A
_mmdiv_sd N/A N/A N/A A N/A
_mmdi v_pd N/A N/A N/A A N/A
_mmm n_sd N/A N/A N/A A N/A
_mm.m n_pd N/A N/A N/A A N/A
_mm nmax_sd N/A N/A N/A A N/A
_mm _nmax_pd N/A N/A N/A A N/A
_mm and_pd N/A N/A N/A A N/A
_mm andnot _pd N/A N/A N/A A N/A
_mmor_pd N/A N/A N/A A N/A
_mm xor _pd N/A N/A N/A A N/A

Page 355 of 431

Intel® C++ Compiler User's Guide

_mm cnpeq_sd N/A N/A N/A A N/A
_mm cnpeq_pd N/A N/A N/A A N/A
_mmecnplt_sd N/A N/A N/A A N/A
_mmecnplt_pd N/A N/A N/A A N/A
_mm_cnpl e_sd N/A N/A N/A A N/A
_mm cnpl e_pd N/A N/A N/A A N/A
_mm cnpgt _sd N/A N/A N/A A N/A
_mm _cnpgt _pd N/A N/A N/A A N/A
_mm cnpge_sd N/A N/A N/A A N/A
_mm cnpge_pd N/A N/A N/A A N/A
_mm cnpneq_sd N/A N/A N/A A N/A
_mm cnpneg_pd N/A N/A N/A A N/A
_mmcnpnlt_sd N/A N/A N/A A N/A
_mmcnpnlt_pd N/A N/A N/A A N/A
_mm_cnpnl e_sd N/A N/A N/A A N/A
_mm_cnpnl e_pd N/A N/A N/A A N/A
_mm cnpngt _sd N/A N/A N/A A N/A
_mm cnpngt _pd N/A N/A N/A A N/A
_mm cnpnge_sd N/A N/A N/A A N/A
_mm cnpnge_pd N/A N/A N/A A N/A
_mm cnpord_pd N/A N/A N/A A N/A
_mm cnpord_sd N/A N/A N/A A N/A
_mm cnpunord_pd N/A N/A N/A A N/A
_mm cnpunord_sd N/A N/A N/A A N/A
_mm _coni eq_sd N/A N/A N/A A N/A
_mmconilt_sd N/A N/A N/A A N/A
_mm_conile_sd N/A N/A N/A A N/A
_mm _coni gt _sd N/A N/A N/A A N/A
_mm_coni ge_sd N/A N/A N/A A N/A
_mm coni neq_sd N/A N/A N/A A N/A
_mm_ucomi eq_sd N/A N/A N/A A N/A
_mm_ucomi | t_sd N/A N/A N/A A N/A

Page 356 of 431

Intel® C++ Compiler User's Guide

_mm_uconi | e_sd N/A N/A N/A A N/A
_mm ucomi gt _sd N/A N/A N/A A N/A
_mm uconi ge_sd N/A N/A N/A A N/A
_mm_ucomi neq_sd N/A N/A N/A A N/A
_mm cvt epi 32_pd N/A N/A N/A A N/A
_nm cvt pd_epi 32 N/A N/A N/A A N/A
_nm cvttpd_epi 32 N/A N/A N/A A N/A
_mm cvt epi 32_ps N/A N/A N/A A N/A
_nm cvt ps_epi 32 N/A N/A N/A A N/A
_nm cvttps_epi 32 N/A N/A N/A A N/A
_mm_cvt pd_ps N/A N/A N/A A N/A
_mmcvtps_pd N/A N/A N/A A N/A
_mm cvtsd_ss N/A N/A N/A A N/A
_mm cvtss_sd N/A N/A N/A A N/A
_mm cvt sd_si 32 N/A N/A N/A A N/A
_mmcvttsd_si32 N/A N/A N/A A N/A
_mm cvtsi 32_sd N/A N/A N/A A N/A
_mm_cvt pd_pi 32 N/A N/A N/A A N/A
_nmm cvttpd_pi 32 N/A N/A N/A A N/A
_mm_cvt pi 32_pd N/A N/A N/A A N/A
_mm_unpackhi _pd N/A N/A N/A A N/A
_mm unpackl o_pd N/A N/A N/A A N/A
_mm unpackl o_pd N/A N/A N/A A N/A
_mm shuffle_pd N/A N/A N/A A N/A
_mm | oad_pd N/A N/A N/A A N/A
_mm | oadl_pd N/A N/A N/A A N/A
_mm | oadr _pd N/A N/A N/A A N/A
_mm | oadu_pd N/A N/A N/A A N/A
_mm | oad_sd N/A N/A N/A A N/A
_mm | oadh_pd N/A N/A N/A A N/A
_mm | oadl _pd N/A N/A N/A A N/A
_mm set_sd N/A N/A N/A A N/A

Page 357 of 431

Intel® C++ Compiler User's Guide

_mm set1_pd N/A N/A N/A A N/A
_mm set_pd N/A N/A N/A A N/A
_mm setr_pd N/A N/A N/A A N/A
_mm set zero_pd N/A N/A N/A A N/A
_mm_nove_sd N/A N/A N/A A N/A
_mm store_sd N/A N/A N/A A N/A
_mm storel pd N/A N/A N/A A N/A
_mm store_pd N/A N/A N/A A N/A
_mm storeu_pd N/A N/A N/A A N/A
_mm storer_pd N/A N/A N/A A N/A
_mm storeh_pd N/A N/A N/A A N/A
_mm storel _pd N/A N/A N/A A N/A
_mm add_epi 8 N/A N/A N/A A N/A
_mm add_epi 16 N/A N/A N/A A N/A
_mm add_epi 32 N/A N/A N/A A N/A
_mm add_si 64 N/A N/A N/A A N/A
_mm add_epi 64 N/A N/A N/A A N/A
_mm adds_epi 8 N/A N/A N/A A N/A
_mm adds_epi 16 N/A N/A N/A A N/A
_mm adds_epu8 N/A N/A N/A A N/A
_mm adds_epul6 N/A N/A N/A A N/A
_mm avg_epu8 N/A N/A N/A A N/A
_mm avg_epul6 N/A N/A N/A A N/A
_mm_nadd_epi 16 N/A N/A N/A A N/A
_mm _max_epi 16 N/A N/A N/A A N/A
_mm_nax_epu8 N/A N/A N/A A N/A
_mm.m n_epi 16 N/A N/A N/A A N/A
_mm.m n_epu8 N/A N/A N/A A N/A
_mm_nul hi _epi 16 N/A N/A N/A A N/A
_mm_nul hi _epul6 N/A N/A N/A A N/A
_mm_nul | o_epi 16 N/A N/A N/A A N/A
_mm_nmul _su32 N/A N/A N/A A N/A

Page 358 of 431

Intel® C++ Compiler User's Guide

_mm_nul _epu32 N/A N/A N/A A N/A
_mm sad_epu8 N/A N/A N/A A N/A
_mm sub_epi 8 N/A N/A N/A A N/A
_mm_sub_epi 16 N/A N/A N/A A N/A
_mm_sub_epi 32 N/A N/A N/A A N/A
_mm sub_si 64 N/A N/A N/A A N/A
_mm_sub_epi 64 N/A N/A N/A A N/A
_mm _subs_epi 8 N/A N/A N/A A N/A
_mm_subs_epi 16 N/A N/A N/A A N/A
_mm_subs_epu8 N/A N/A N/A A N/A
_mm_subs_epul6 N/A N/A N/A A N/A
_mm and_si 128 N/A N/A N/A A N/A
_mm andnot _si 128 N/A N/A N/A A N/A
_mm.or_si 128 N/A N/A N/A A N/A
_mm xor _si 128 N/A N/A N/A A N/A
_mmslli_si128 N/A N/A N/A A N/A
_mmslli_epi16 N/A N/A N/A A N/A
_mm.sl | _epil6 N/A N/A N/A A N/A
_mmslli_epi32 N/A N/A N/A A N/A
_mm.sl | _epi32 N/A N/A N/A A N/A
_mmslli_epi64 N/A N/A N/A A N/A
_mm sl | _epi 64 N/A N/A N/A A N/A
_mm srai_epil6 N/A N/A N/A A N/A
_mm sra_epi 16 N/A N/A N/A A N/A
_mm srai_epi 32 N/A N/A N/A A N/A
_mm sra_epi 32 N/A N/A N/A A N/A
_mm.srli_si128 N/A N/A N/A A N/A
_mm.srli_epi16 N/A N/A N/A A N/A
_mm.srl_epi 16 N/A N/A N/A A N/A
_mm.srli_epi32 N/A N/A N/A A N/A
_mm.srl_epi 32 N/A N/A N/A A N/A
_mm.srli_epi64 N/A N/A N/A A N/A

Page 359 of 431

Intel® C++ Compiler User's Guide

_mm.srl_epi 64 N/A N/A N/A A N/A
_mm_cnpeq_epi 8 N/A N/A N/A A N/A
_mm _cnpeq_epi 16 N/A N/A N/A A N/A
_mm _cnpeq_epi 32 N/A N/A N/A A N/A
_mm_cnpgt _epi 8 N/A N/A N/A A N/A
_mm cnpgt _epi 16 N/A N/A N/A A N/A
_mm cnpgt _epi 32 N/A N/A N/A A N/A
_mmecnplt_epi8 N/A N/A N/A A N/A
_mmecnplt_epi 16 N/A N/A N/A A N/A
_mmecnplt_epi 32 N/A N/A N/A A N/A
_mmecvtsi32_sil128 | N/A N/A N/A A N/A
_mmecvtsi128 si32 | N/A N/A N/A A N/A
_mm packs_epi 16 N/A N/A N/A A N/A
_mm packs_epi 32 N/A N/A N/A A N/A
_mm packus_epi 16 N/A N/A N/A A N/A
_mm extract _epi 16 N/A N/A N/A A N/A
_mm.insert_epi 16 N/A N/A N/A A N/A
_mm _novenmask_epi 8 N/A N/A N/A A N/A
_mm shuffle_epi 32 N/A N/A N/A A N/A
_mm shufflehi _epi 16 | N/A N/A N/A A N/A
_mm shufflel o_epi16 | N/A N/A N/A A N/A
_mm_unpackhi _epi 8 N/A N/A N/A A N/A
_mm unpackhi _epi 16 | N/A N/A N/A A N/A
_mm_unpackhi _epi 32 | N/A N/A N/A A N/A
_mm unpackhi _epi 64 | N/A N/A N/A A N/A
_mm_unpackl o_epi 8 N/A N/A N/A A N/A
_mm unpackl o_epi 16 | N/A N/A N/A A N/A
_mm unpackl o_epi 32 | N/A N/A N/A A N/A
_mm unpackl o_epi 64 | N/A N/A N/A A N/A
_mm nove_epi 64 N/A N/A N/A A N/A
_nm novpi 64_epi 64 | N/A N/A N/A A N/A
_mm_novepi 64_pi 64 | N/A N/A N/A A N/A

Page 360 of 431

Intel® C++ Compiler User's Guide

_nm | oad_si 128 N/A N/A N/A A N/A
_nm | oadu_si 128 N/A N/A N/A A N/A
_nmm | oadl _epi 64 N/A N/A N/A A N/A
_nm set _epi 64 N/A N/A N/A A N/A
_nm set _epi 32 N/A N/A N/A A N/A
_nm set_epi 16 N/A N/A N/A A N/A
_nm set_epi 8 N/A N/A N/A A N/A
_mm set 1_epi 64 N/A N/A N/A A N/A
_nm set 1 _epi 32 N/A N/A N/A A N/A
_nm set1l _epil6 N/A N/A N/A A N/A
_nmmsetl epi8 N/A N/A N/A A N/A
_mm setr_epi 64 N/A N/A N/A A N/A
_mm setr_epi 32 N/A N/A N/A A N/A
_mm setr_epi 16 N/A N/A N/A A N/A
_nmsetr_epi 8 N/A N/A N/A A N/A
_nmm set zero_si 128 N/A N/A N/A A N/A
_nm store_si 128 N/A N/A N/A A N/A
_mm storeu_si 128 N/A N/A N/A A N/A
_mm st orel _epi 64 N/A N/A N/A A N/A
_mm _masknoveu_si 128 | N/A N/A N/A A N/A
_mm st ream pd N/A N/A N/A A N/A
_mm st ream si 128 N/A N/A N/A A N/A
_mmcl flush N/A N/A N/A A N/A
_mm | fence N/A N/A N/A A N/A
_nm nf ence N/A N/A N/A A N/A
_mm st ream si 32 N/A N/A N/A A N/A
_mm_pause N/A N/A N/A A N/A

Page 361 of 431

Intel® C++ Compiler User's Guide

Welcome to the Class Libraries

The Intel® C++ Class Libraries enable Single-Instruction, Multiple-Data (SIMD) operations. The
principle of SIMD operations is to exploit microprocessor architecture through parallel processing. The
effect of parallel processing is increased data throughput using fewer clock cycles. The objective is to
improve application performance of complex and computation-intensive audio, video, and graphical
data bit streams.

Hardware and Software Requirements

You must have the Intel® C++ Compiler version 4.0 or higher installed on your system to use the class
libraries. The Intel® C++ Class Libraries are functions abstracted from the instruction extensions
available on Intel processors as specified in the table that follows.

Processor Requirements for Use of Class Libraries

Header Extension Set Available on These Processors

File

ivec.h MMX(TM) Pentium® with MMX(TM) technology, Pentium I, Pentium I,
technology Pentium 4, Intel® Xeon(TM), and Itanium® processors

fvec. h | Streaming SIMD Pentium Ill, Pentium 4, Intel Xeon, and Itanium processors
Extensions

dvec. h Streaming SIMD Pentium 4 and Intel Xeon processors
Extensions 2

Page 362 of 431

Intel® C++ Compiler User's Guide

About the Classes

The Intel® C++ Class Libraries for SIMD Operations include:

e Integer vector classes (I vec)
e Floating-point vector classes (Fvec)

You can find the definitions for these operations in three header files: i vec. h, f vec. h, and dvec. h.
The classes themselves are not partitioned like this. The classes are named according to the
underlying type of operation. The header files are partitioned according to architecture:

e ivec. h is specific to architectures with MMX(TM) technology
e fvec. h is specific to architectures with Streaming SIMD Extensions
e dvec. h is specific to architectures with Streaming SIMD Extensions 2

Streaming SIMD Extensions 2 intrinsics cannot be used on Itanium®-based systems. The mmtl ass. h
header file includes the classes that are usable on the Itanium architecuture.

This documentation is intended for programmers writing code for the Intel architecture, particularly
code that would benefit from the use of SIMD instructions. You should be familiar with C++ and the use
of C++ classes.

Page 363 of 431

Intel® C++ Compiler User's Guide

Details About the Libraries

The Intel® C++ Class Libraries for SIMD Operations provide a convenient interface to access the
underlying instructions for processors as specified in Processor Requirements for Use of Class
Libraries. These processor-instruction extensions enable parallel processing using the single
instruction-multiple data (SIMD) technique as illustrated in the following figure.

SIMD Data Flow

A3 A= A1l AO

L I
4

lA3opB3AZopB2A10pB1/A0CPBO

Performing four operations with a single instruction improves efficiency by a factor of four for that
particular instruction.

These new processor instructions can be implemented using assembly inlining, intrinsics, or the C++
SIMD classes. Compare the coding required to add four 32-bit floating-point values, using each of the
available interfaces:

Comparison Between Inlining, Intrinsics and Class Libraries

Assembly Inlining Intrinsics SIMD Class Libraries
.. __m28 a,b,c; __asm #include <mmintrin.h> ... |#include

{ movaps xmmD, b novaps _ ml28 a,b,c; a = <fvec.h> ...

xmml, ¢ addps xmm0, xnml _mm add_ps(b,c); ... F32vec4 a,b,c; a =

novaps a, xmmD } ... b +c; .

The table above shows an addition of two single-precision floating-point values using assembly
inlining, intrinsics, and the libraries. You can see how much easier it is to code with the Intel C++ SIMD
Class Libraries. Besides using fewer keystrokes and fewer lines of code, the notation is like the
standard notation in C++, making it much easier to implement over other methods.

Page 364 of 431

Intel® C++ Compiler User's Guide

C++ Classes and SIMD Operations

The use of C++ classes for SIMD operations is based on the concept of operating on arrays, or vectors
of data, in parallel. Consider the addition of two vectors, A and B, where each vector contains four
elements. Using the integer vector (I vec) class, the elements Al i] and B[i] from each array are
summed as shown in the following example.

Typical Method of Adding Elements Using a Loop

short a[4], b[4], c[4];
for (i=0; i<4; 1++) /* needs four iterations */
c[i] = a[i] + b[i]; /* returns c[0], c[1], c[2], c[3] *

The following example shows the same results using one operation with | vec Classes.
SIMD Method of Adding Elements Using Ivec Classes

ivec C, /*needs one iteration */
/*returns ivecCO, ivecCl, ivecC2,

sl sl6vec4 ivecA, ivecB,

ivecC = ivecA + ivecB; i vecC3 */

Available Classes

The Intel® C++ SIMD classes provide parallelism, which is not easily implemented using typical
mechanisms of C++. The following table shows how the Intel C++ SIMD classes use the classes and

libraries.

SIMD Vector Classes

Page 365 of 431

Instruction Set Class Signedness | Data Size | Elements | Header
Type File

MMX(TM) technology | 64vecl | unspecified |__nb64 64 1 ivec.h

(available for

IA-32- and Itanium®-based

systems)
I 32vec2 | unspecified |int 32 |2 ivec.h
I s32vec?2 | signed i nt 32 |2 ivec.h
 u32vec2 | unsigned i nt 32 |2 ivec.h
I 16vec4 | unspecified |short 16 |4 ivec.h
I sl6vec4 | signed short 16 |4 ivec.h
lulévec4 | unsigned short 16 |4 ivec.h
| 8vec8 unspecified | char 8 8 ivec.h
I s8vec8 | signed char 8 8 ivec.h
lu8vec8 | unsigned char 8 8 ivec.h

Intel® C++ Compiler User's Guide

Streaming SIMD Extensions | F32vec4 | signed f1 oat 32 |4 fvec. h
(available for
IA-32 and ltanium-based
systems)
F32vecl | signed f1 oat 32 |1 fvec. h
Streaming SIMD Extensions | F64vec2 | signed double |64 |2 dvec. h
2 (available for
IA-32-based systems only)
I 128vecl | unspecified |__nml28i |128 |1 dvec. h
I 64vec2 | unspecified || o?g 64 |4 dvec. h
in
I s64vec?2 | signed ! o?g 64 |4 dvec. h
in
l'u64vec?2 | unsigned ! o?g 32 |4 dvec. h
in
I 32vec4 | unspecified |int 32 |4 dvec. h
I s32vec4 | signed i nt 32 |4 dvec. h
I u32vec4 | unsigned i nt 32 |4 dvec. h
I 16vec8 | unspecified |int 16 |8 dvec. h
I sl6vec8 | signed i nt 16 |8 dvec. h
lulévec8 | unsigned i nt 16 |8 dvec. h
I 8vecl6 | unspecified |char 8 16 dvec. h
I s8vecl6 | signed char 8 16 dvec. h
I u8vecl6 | unsigned char 8 16 dvec. h

Most classes contain similar functionality for all data types and are represented by all available
intrinsics. However, some capabilities do not translate from one data type to another without suffering
from poor performance, and are therefore excluded from individual classes.

ﬂ Note

Intrinsics that take immediate values and cannot be expressed easily in classes are not implemented.
(For example, _mm shuffle_ps, _mm shuffle_pi 16, mm extract_pi 16,
_mm.insert_pi 16).

Access to Classes Using Header Files

The required class header files are installed in the include directory with the Intel® C++ Compiler. To
enable the classes, use the #i ncl ude directive in your program file as shown in the table that follows.

Include Directives for Enabling Classes

Page 366 of 431

Intel® C++ Compiler User's Guide

Instruction Set Extension Include Directive

MMX Technology #i ncl ude <ivec. h>

Streaming SIMD Extensions | #i ncl ude <fvec. h>

Streaming SIMD Extensions 2 | #i ncl ude <dvec. h>

Each succeeding file from the top down includes the preceding class. You only need to include
fvec. h if you want to use both the | vec and Fvec classes. Similarly, to use all the classes including
those for the Streaming SIMD Extensions 2, you need only to include the dvec. h file.

Usage Precautions

When using the C++ classes, you should follow some general guidelines. More detailed usage rules
for each class are listed in Integer Vector Classes, and Floating-point Vector Classes.

Clear MMX Registers

If you use both the | vec and Fvec classes at the same time, your program could mix MMX
instructions, called by | vec classes, with Intel x87 architecture floating-point instructions, called by
Fvec classes. Floating-point instructions exist in the following Fvec functions:

e fvec constructors
e debug functions (cout and element access)
e rsqrt_nr

E/J Note

MMX registers are aliased on the floating-point registers, so you should clear the MMX state with the
EMMS instruction intrinsic before issuing an x87 floating-point instruction, as in the following example.

ivecA = ivecA & /* Ivec |ogical operation that uses MW instructions
i vecB; */
empty (); /* clear state */
cout << f32vecda; /* F32vec4 operation that uses x87 floating-point
i nstructions */

.& Caution

Failure to clear the MMX registers can result in incorrect execution or poor performance due to an
incorrect register state.

Follow EMMS Instruction Guidelines

Intel strongly recommends that you follow the guidelines for using the EMMS instruction. Refer to this
topic before coding with the | vec classes.

Page 367 of 431

Intel® C++ Compiler User's Guide

Capabilities
The fundamental capabilities of each C++ SIMD class include:

Computation

Horizontal data motion

Branch compression/elimination
Caching hints

Understanding each of these capabilities and how they interact is crucial to achieving desired results.

Computation

The SIMD C++ classes contain vertical operator support for most arithmetic operations, including
shifting and saturation.

Computation operations include: +, -, *, / , reciprocal (r cp and r cp_nr), square root (sqrt),
reciprocal square root (rsqrt andrsqrt_nr).

Operations r cp and r sqrt are new approximating instructions with very short latencies that produce
results with at least 12 bits of accuracy. Operationsrcp_nrand rsqrt _nr use software refining
techniques to enhance the accuracy of the approximations, with a minimal impact on performance.
(The "nr " stands for Newton-Raphson, a mathematical technique for improving performance using an
approximate result.)

Horizontal Data Support

The C++ SIMD classes provide horizontal support for some arithmetic operations. The term
"horizontal" indicates computation across the elements of one vector, as opposed to the vertical,
element-by-element operations on two different vectors.

The add_hori zont al , unpack_I owand pack_sat functions are examples of horizontal data
support. This support enables certain algorithms that cannot exploit the full potential of SIMD
instructions.

Shuffle intrinsics are another example of horizontal data flow. Shuffle intrinsics are not expressed in
the C++ classes due to their immediate arguments. However, the C++ class implementation enables
you to mix shuffle intrinsics with the other C++ functions. For example:

F32vec4 fveca, fvecb, fvecd;
fveca += fvecb;

fvecd = _mm shuffle_ps(fveca, fvech, 0);

Typically every instruction with horizontal data flow contains some inefficiency in the implementation. If
possible, implement your algorithms without using the horizontal capabilities.

Branch Compression/Elimination

Branching in SIMD architectures can be complicated and expensive, possibly resulting in poor
predictability and code expansion. The SIMD C++ classes provide functions to eliminate branches,

Page 368 of 431

Intel® C++ Compiler User's Guide

using logical operations, max and min functions, conditional selects, and compares. Consider the
following example:

short a[4], b[4], c[4];
for (i=0; i<4; |++)
c[i] = a[i] > b[i] ? a[i] : b[i];

This operation is independent of the value of i . For each i , the result could be either A or B depending
on the actual values. A simple way of removing the branch altogether is to use the sel ect _gt
function, as follows:

I sl6vecd a, b, c
c = select_gt(a, b, a, b)

Caching Hints

Streaming SIMD Extensions provide prefetching and streaming hints. Prefetching data can minimize
the effects of memory latency. Streaming hints allow you to indicate that certain data should not be
cached. This results in higher performance for data that should be cached.

Page 369 of 431

Intel® C++ Compiler User's Guide

Overview: Integer Vector Classes

The | vec classes provide an interface to SIMD processing using integer vectors of various sizes. The
class hierarchy is represented in the following figure.

Ivec Class Hierarchy

132vac2 | [évecs| [1Bveca | [l28vact| [16svac | [lazveed] [11eveca] [iavectc]

Is32vecd| |luddvec? Is32vecd | |ludvacd

ez

| |Bdwac] |

e

The M64 and ML28 classes define the __n64 and __nl28i data types from which the rest of the

| vec classes are derived. The first generation of child classes are derived based solely on bit sizes of
128, 64, 32, 16, and 8 respectively for the | 128vecl, | 64vecl, 164vec?2, | 32vec?2, | 32vec4,

| 16vec4, | 16vec8, |1 8vecl6, and | 8vec8 classes. The latter seven of the these classes require
specification of signedness and saturation.

.& Caution

Do not intermix the M64 and ML28 data types. You will get unexpected behavior if you do.
The signedness is indicated by the s and u in the class names:

| s64vec?2
|l uédvec?
| s32vec4
lu32vec4
| sl6vec8
lulévec8
| s8vecl6
|l u8vecl6
| s32vec?2
lu32vec?2
| slévec4
lulévec4
| s8vec8

| u8vec8

Page 370 of 431

Intel® C++ Compiler User's Guide

Terms, Conventions, and Syntax

The following are special terms and syntax used in this chapter to describe functionality of the classes
with respect to their associated operations.

Ivec Class Syntax Conventions

The name of each class denotes the data type, signedness, bit size, number of elements using the
following generic format:

<t ype><si gnedness><bi t s>vec<el enent s>

{F] 1} {s|] u}) {64 32| 16 | 8}y vec { 8| 4| 2| 1}
where
type indicates floating point (F) or

integer (1)

si gnedness | indicates signed (s) or
unsigned (u). For the Ivec
class, leaving this field blank
indicates an intermediate class.
There are no unsigned Fvec
classes, therefore for the Fvec
classes, this field is blank.

bits specifies the number of bits per
element
el enent s specifies the number of elements

Special Terms and Conventions

The following terms are used to define the functionality and characteristics of the classes and
operations defined in this manual.

e Nearest Common Ancestor -- This is the intermediate or parent class of two classes of the
same size. For example, the nearest common ancestor of | u8vec8 and | s8vec8is | 8vec8.
Also, the nearest common ancestor between | u8vec8 and | 16vec4 is Mo4.

e Casting -- Changes the data type from one class to another. When an operation uses different
data types as operands, the return value of the operation must be assigned to a single data
type. Therefore, one or more of the data types must be converted to a required data type. This
conversion is known as a typecast. Sometimes, typecasting is automatic, other times you must
use special syntax to explicitly typecast it yourself.

e Operator Overloading -- This is the ability to use various operators on the same user-defined
data type of a given class. Once you declare a variable, you can add, subtract, multiply, and
perform a range of operations. Each family of classes accepts a specified range of operators,
and must comply by rules and restrictions regarding typecasting and operator overloading as
defined in the header files. The following table shows the notation used in this documention to
address typecasting, operator overloading, and other rules.

Page 371 of 431

Intel® C++ Compiler User's Guide

Class Syntax Notation Conventions

Class Name Description

I[s|u]l[N]vec[N] | Any value except| 128vec1 nor| 64vecl
| 64vecl ___nB4 data type

I[s]u] 64vec?2 two 64-bit values of any signedness

I [s] u] 32vec4 four 32-bit values of any signedness

I [s]u] 8vecl6 eight 16-bit values of any signedness
I[s|u] 16vec8 sixteen 8-bit values of any signedness
I[s]u]32vec2 two 32-bit values of any signedness

I [s]u] l6vec4 four 16-bit values of any signedness
I[s|u] 8vec8 eight 8-bit values of any signedness

Page 372 of 431

Intel® C++ Compiler User's Guide

Rules for Operators

To use operators with the | vec classes you must use one of the following three syntax conventions:
[lvec CQass] R=] lvec_Class] AJ[operator][Ilvec_ Class] B

Example 1: | 64vecl R = | 64vecl A & |64vecl B;

[Ilvec_Cass] R=[operator] ([Ivec_Cass] A[lIvec_Cass] B)

Example 2: | 64vecl R = andnot (1 64vecl A, 164vecl B);

[ITlvec_ Cass] R[operator]=[lvec Cass] A

Example 3: | 64vecl R &= | 64vecl A

[oper at or]an operator (for example, &, |, or)

[Ivec_O ass]an | vec class

R, A, B variables declared using the pertinent | vec classes

The table that follows shows automatic and explicit sign and size typecasting. "Explicit" means that it is
illegal to mix different types without an explicit typecasting. "Automatic" means that you can mix types
freely and the compiler will do the typecasting for you.

Summary of Rules Major Operators

Operators Sign Size Other Typecasting Requirements
Typecasting | Typecasting
Assignment N/A N/A N/A
Logical Automatic Automatic Explicit typecasting is required for different
(to left) types used in non-logical expressions on the

right side of the assignment.
See Syntax Usage for Logical Operators

example.
Addition and Automatic Explicit N/A
Subtraction
Multiplication Automatic Explicit N/A
Shift Automatic Explicit Casting Required to ensure arithmetic shift.
Compare Automatic Explicit Explicit casting is required for signed classes
for the less-than or greater-than operations.
Conditional Automatic Explicit Explicit casting is required for signed classes
Select for less-than or greater-than operations.

Page 373 of 431

Intel® C++ Compiler User's Guide

Data Declaration and Initialization

The following table shows literal examples of constructor declarations and data type initialization for all
class sizes. All values are initialized with the most significant element on the left and the least
significant to the right.

Declaration and Initialization Data Types for Ivec Classes

Operation Class Syntax

Declaration ML28 | 128vecl A, lu8vecl6 A

Declaration M54 | 64vecl A; lu8vecl6 A

_ nl28 ML28 | 128vecl A(__ml28 m); lul6vec8(__m28 m;
Initialization

___nB4 Initialization | Mb4 | 64vecl A(__nB4 m; luBvec8 A(__ b4 nj;
_int64 M4 | 64vecl A = __int64 m lu8vec8 A =_int64 m
Initialization

i nt i Initialization | M4 | 64vecl A =int i; lu8vec8 A =int i;

i nt initialization I 32vec2 | 132vec2 A(int Al, int AQ);

I s32vec2 A(signed int Al, signed int AQ0);
lu32vec2 A(unsigned int Al, unsigned int A0);

i nt Initialization | 32vec4 | 132vecd A(short A3, short A2, short Al, short
AO0) ;
I s32vec4 A(signed short A3, ..., signed short
AO) ;
lu32vec4 A(unsigned short A3, ..., unsigned
short A0);
short int | 16vec4 |1 16vecd A(short A3, short A2, short Al, short
Initialization A0) ; _ _
I slévec4 A(signed short A3, ..., signed short
A0) ;
lulévec4 A(unsigned short A3, ..., unsigned
short A0);
short int | 16vec8 |1 16vec8 A(short A7, short A6, ..., short A1l,
Initialization short AO); :
| sl6évec8 A(signed A7, ..., signed short AQ);
lulévec8 A(unsigned short A7, ..., unsigned
short AQ);
char | 8vec8 |18vec8 A(char A7, char A6, ..., char Al, char
Initialization A0) ; _ _
| s8vec8 A(signed char A7, ..., signed char AQ);
I u8vec8 A(unsigned char A7, ..., unsigned char
A0) ;
char | 8vecl6 | 18vecl6 A(char Al5, ..., char A0);
Initialization | s8vecl6 A(signed char Al5, ..., signed char
A0) ;
I u8vecl6 A(unsigned char Al5, ..., unsigned char
A0) ;

Page 374 of 431

Intel® C++ Compiler User's Guide

Assignment Operator

Any | vec object can be assigned to any other | vec object; conversion on assignment from one | vec
object to another is automatic.

Assignment Operator Examples

| sl6évecd A,

| s8vec8 B;

| 64vecl C

A =B; /* assign Is8vec8 to |Isl6vecd */

B=2C /* assign |64vecl to |s8vec8 */

B=A&C /* assign M64 result of '& to |s8vec8 */

Page 375 of 431

Intel® C++ Compiler User's Guide

Logical Operators

The logical operators use the symbols and intrinsics listed in the following table.

Bitwise Operation | Operator Symbols | Syntax Usage Corresponding Intrinsic
Standard | w/assign | Standard w/assign
AND & &= R=A&B R&=A |_nmand_si 64

~mm and_si 128

OR | |= R=A|B RI=A _mm and_si 64
_mm and_si 128

XOR A A= R = A’B RA= A _mm and_si 64
_mm and_si 128

ANDNOT andnot N/A R = A andnot B | N/A _mm and_si 64
_mm and_si 128

Logical Operators and Miscellaneous Exceptions.
/* A and B converted to M4. Result assigned to lu8vec8. */

| 64vecl A
| s8vec8 B;
Il u8vec8 C,
C=A&B;

/* Same size and signedness operators return the nearest conmon ancestor.*/
| 32vec2 R = 1s32vec2 A * |u32vec?2 B;

/* A&B returns M64, which is cast to |uBvec8.*/

C = lu8vec8(A&B)+ C

When A and B are of the same class, they return the same type. When A and B are of different
classes, the return value is the return type of the nearest common ancestor.

The logical operator returns values for combinations of classes, listed in the following tables, apply
when A and B are of different classes.

Page 376 of 431

Intel® C++ Compiler User's Guide

Ivec Logical Operator Overloading

Return (R) | AND | OR | XOR | NAND | A Operand B Operand

| 64vecl R|& | n andnot | I [s| u] 64vec2 A |I[s|u] 64vec2 B
| 64vec2 R|& | n andnot | I [s| u] 64vec2 A |I[s|u] 64vec2 B
| 32vec2 R|& | n andnot | 1 [s] u] 32vec2 A |I[s|u] 32vec2 B
| 32vecd R|& | n andnot | 1 [s|] u] 32vec4 A |I[s|u] 32vecd4 B
| 16vecd R|& | n andnot | I [s|] u] 16vec4 A |I[s|u] 16vecd B
| 16vec8 R | & | n andnot | I [s|] u] 16vec8 A |I[s|u] 16vec8 B
| 8vec8 R | & | n andnot |1 [s|] u] 8vec8 A |I[s|u]8vec8 B

| Bveclt R | & | n andnot | I [s| u] 8vecl6 A |I[s|u] 8vecl6 B

For logical operators with assignment, the return value of Ris always the same data type as the pre-

declared value of R as listed in the table that follows.

Ivec Logical Operator Overloading with Assignment

Return Type | Left Side (R) AND | OR | XOR | Right Side (Any Ivec Type)
| 128vecl | 128vecl R &= ||= | 7= I[s|ul][NJvec[N A
| 64vecl | 64vecl R &= ||= |7= I[s|ul][NJvec[N A
| 64vec2 | 64vec2 R &= ||= |7= I[s|ul][NJvec[N A
I[x]32vec4 |1[x]32vecd R &= ||= |~= I[s|ul][NJvec[N A
I[x]32vec2 |I[x]32vec2 R &= ||= |~= [[s|ul][NJvec[N A
I[x]16vec8 |I[x] 16vec8 R &= ||= |~= [[s|ul][NJvec[N A
I[x]16vec4 |I[x] 16vecd R &= ||= |~= I[s|ul][NJvec[N A
I[x]8vecl6 |I[x] 8veclt R &= ||= |~= I[s|ul][NJvec[N A
I[x]8vec8 |I[x]8vec8 R &= ||= |~= I[s|ul][NJvec[N A

Page 377 of 431

Intel® C++ Compiler User's Guide

Addition and Subtraction Operators

The addition and subtraction operators return the class of the nearest common ancestor when the
right-side operands are of different signs. The following code provides examples of usage and
miscellaneous exceptions.

Syntax Usage for Addition and Subtraction Operators

/* Return nearest comopn ancestor type, |16vecd */
| sl6vecd A

| ulévecd B;

| 16vec4 C

C=A+ B

/* Returns type |eft-hand operand type */

| sl6vecd A,

| ulévec4d B;

A += B;

/* Explicitly convert B to |Isl6vecd */
I slévecd A, C

lu32vec24 B;

C=A+C

C

A + (lslévecd)B;

Page 378 of 431

Intel® C++ Compiler User's Guide

Addition and Subtraction Operators with Corresponding Intrinsics

Operation | Symbols | Syntax Corresponding Intrinsics

Addition + R=A+B|_mm add_epi 64
+= R+=A _mm add_epi 32
_mm add_epi 16
_mm add_epi 8
_mm add_pi 32
_mm add_pi 16
_mm add_pi 8

=A-B |_nm sub_epi 64
=A _mm sub_epi 32
_mm sub_epi 16
_mm sub_epi 8
_mm sub_pi 32
_mm sub_pi 16
_mmsub_pi 8

Subtraction | -

The following table lists addition and subtraction return values for combinations of classes when the
right side operands are of different signedness. The two operands must be the same size, otherwise
you must explicitly indicate the typecasting.

Addition and Subtraction Operator Overloading

Return Value | Available Operators | Right Side Operands

R Add Sub A B

| 64vec2 R |+ - I[s|u] 64vec2 A|I[s|u] 64vec2 B
| 32vecd R |+ - I[s|u] 32vecd A |I[s|u]32vecd B
| 32vec2 R |+ - I[s|u] 32vec2 A|I[s|u]32vec2 B
| 16vec8 R |+ - I[s|u] 16vec8 A|I[s|u] 16vec8 B
| 16vecd R |+ - I[s|u] 16vecd A|I[s|u] 16vecd B
| 8vec8 R + - I[s|u] 8vec8 A |I[s|u]8vec8 B

| 8vecl6 R |+ - I[s|u] 8vec2 A |I[s|u]8vecl6 B

The following table shows the return data type values for operands of the addition and subtraction
operators with assignment. The left side operand determines the size and signedness of the return
value. The right side operand must be the same size as the left operand; otherwise, you must use an
explicit typecast.

Addition and Subtraction with Assignment

Page 379 of 431

Intel® C++ Compiler User's Guide

Return Value (R)

Left Side (R)

Right Side (A)

I [x] 32vec4

I[x]32vec2 R

I[s|u] 32vecd A;

I[x]32vec2 R

I[x]32vec2 R

I[s]|u] 32vec2 A;

I [x] 16vec8 I [x] 16vec8 += | -= I[s|u] 16vec8 A;
I [x] 16vec4 I [x] 16vec4 += | -= I[s|u] 16vecd A;
I [x] 8vecl6 I [x] 8vecl6 += | -= I[s|u] 8Bvecl6 A;
I [x] 8vec8 I [x] 8vec8 += | -= I[s|u] 8Bvec8 A

Page 380 of 431

Intel® C++ Compiler User's Guide

Multiplication Operators

The multiplication operators can only accept and return data types from the | [s| u] 16vec4 or |

[s| u] 16vec8 classes, as shown in the following example.

Syntax Usage for Multiplication Operators

/* Explicitly convert B to |Isl6vecd */
I slévecd A, C

I u32vec?2 B;

C

A* C

C

A * (Isle6vecd)B;

/* Return nearest comobn ancestor type
| sl6vecd A,
| ulévecd B;
| 16vec4 C,

A + B;

/* The mul _high and mul _add functions take |sl6vec4 data only */

| slévecd4 A B, C D,

C = mul _hi gh(A B);

D

nmul _add(A, B);

| 16vecd */

Multiplication Operators with Corresponding Intrinsics

Symbols Syntax Usage Intrinsic
* * |R=A*B ~mmnullo_pil6
R *= A _mmmull o_epi 16
mul _high |N/A|R = mul _hi gh(A, B) |_mmmul hi _pi 16
_mm rul hi _epi 16
mul _add |N/A|R = mul _high(A B) |_nm nadd_pi 16
_mm nmadd_epi 16

The multiplication return operators always return the nearest common ancestor as listed in the table
that follows. The two operands must be 16 bits in size, otherwise you must explicitly indicate

typecasting.

Page 381 of 431

Intel® C++ Compiler User's Guide

Multiplication Operator Overloading

R Mul A B

| 16vecd R |* I[s|u] 16vecd A|I[s|u]l6vecd B
| 16vec8 R |* I[s|u] 16vec8 A|I[s|u]1l6vec8 B
Isl6évecd4 R|nmul _add |Isl6vecd A | slévec4 B

| sl6vec8 mul _add |Isl6vec8 A | sl6évec8 B

I s32vec2 R | mul _high |lIsl6vecd A | sl6évec4d B

| s32vec4 R | mul _high |sl6vec8 A | sl6évec8 B

The following table shows the return values and data type assignments for operands of the
multiplication operators with assignment. All operands must be 16 bytes in size. If the operands are not

the right size, you must use an explicit typecast.

Multiplication with Assignment

Return Value (R)

Left Side (R)

Right Side (A)

I [x] 16vec8

I [x] 16vec8 | *=

I [s|u] 16vec8 A;

I [x] 16vec4

I [x] 16vec4

I [s|u] 16vecd A;

Page 382 of 431

Intel® C++ Compiler User's Guide

Shift Operators

The right shift argument can be any integer or Ivec value, and is implicitly converted to a M64 data
type. The first or left operand of a << can be of any type except| [s| u] 8vec|[8| 16] .

Example Syntax Usage for Shift Operators

/* Automatic size and sign conversion */

I slévecd A, C

lu32vec?2 B;

C=A

/* A&B returns |16vec4, which nust be cast to lul6vec4
to ensure logical shift, not arithnmetic shift */

I sl6évecd A, C

lulévecd B, R

R = (lul6vecd) (A & B) C;

/* A&B returns |16vec4, which nust be cast to |Isl6vec4
to ensure arithnetic shift, not |ogical shift */

R = (Isl6vecd4)(A & B) G

Shift Operators with Corresponding Intrinsics

Operation | Symbols | Syntax Usage | Intrinsic

Shift Left << R=A<<B
&= R&=A

333333

Shift Right | >> R=A>>B rl_
R>>= A ~mmsrli_sib64
rl

_mmsrai_pi 32
_mmsra_pi 16
_mmsrai_pil6

Page 383 of 431

Intel® C++ Compiler User's Guide

Right shift operations with signed data types use arithmetic shifts. All unsigned and intermediate
classes correspond to logical shifts. The table below shows how the return type is determined by the

first argument type.

Shift Operator Overloading

Operation | R Right Shift | Left Shift | A B

Logical | 64vecl |>> |>>= |<< |<<= |l64vecl A; |l64vecl B;

Logical 1 32vec2 |>> |>>= |<< |<<= |132vec2 A |I132vec?2 B;
Arithmetic |1 s32vec2 |>> |>>= |<< |<<= |Is32vec2 A|I[s|u][Nvec[N B;
Logical lu32vec2 |>> |>>= |<< |<<= |lu32vec2 A |I[s|u][Nvec[N B;
Logical | 16vecd |>> |>>= |<< |<<= |l1l6vecd A |l1l6vecd4 B
Arithmetic || s16vecd |>> |>>= |<< |<<= |Isl6vecd A |I[s|u][Nvec[N B;
Logical lulbvecd |>> |>>= |<< |<<= |lul6vecd A|I[s|u][Nvec[N B;

Page 384 of 431

Intel® C++ Compiler User's Guide

Comparison Operators

The equality and inequality comparison operands can have mixed signedness, but they must be of the
same size. The comparison operators for less-than and greater-than must be of the same sign and
size.

Example of Syntax Usage for Comparison Operator

/* The nearest comon ancestor is returned for conpare
for equal / not-equal operations */

| u8vec8 A

| s8vec8 B;

| 8vec8 C

C = cnpneq(A B);

/* Type cast needed for different-sized elenments for
equal / not - equal conparisons */

lu8vec8 A C

| sl6vecd B;

C = cnpeq(A, (lu8vec8)B);

/* Type cast needed for sign or size differences for
| ess-than and greater-than conparisons */

lulévecsd A

I slévecd B, C

C

cnpge((1 s16vecd) A B);

C = cmpgt (B, O;

Page 385 of 431

Intel® C++ Compiler User's Guide

Inequality Comparison Symbols and Corresponding Intrinsics

Compare For: | Operators | Syntax Intrinsic
Equality cnpeq R = cnpeq(A, B) |_nmcnpeq_pi 32
_mm cnpeqg_pi 16
_mm cnpeq_pi 8
Inequality cnpneq R = cnpneq(A, B) |_nmm cnpeq_pi 32 | _nm andnot _si 64
_mm cnpeq_pi 16
_mm cnpeq_pi 8
Greater Than | cnpgt R = cnpgt (A, B) |_nmcnpgt_pi 32
_mm cnpgt _pi 16
_mm cnpgt _pi 8
Greater Than | cnpge R = cnpge(A, B) |_nmcnpgt_pi 32 | _nmm andnot _si 64
or Equal To _mm cnpgt _pi 16
_mm cnpgt _pi 8
Less Than cnpl t R =cnplt(A B) |_nmcnpgt_pi 32
_mm cnpgt _pi 16
_mm cnpgt _pi 8
Less Than cmpl e R = cnple(A B) |_nmcnpgt_pi 32 | _nmm andnot _si 64
or Equal To _mm cnpgt _pi 16
_mm cnpgt _pi 8

Comparison operators have the restriction that the operands must be the size and sign as listed in the

Compare Operator Overloading table.

Compare Operator Overloading

R Comparison | A B

| 32vec2 R|cnpeq I[s|u]32vec2 B |I[s|u]32vec2 B
cnpne

| 16vecd R I[s|u] 16vecd B |I[s|u] 16vecd B

| 8vec8 R I[s|u]8vec8 B |I[s|u]8vec8 B

| 32vec2 R |cnpgt I s32vec2 B I s32vec2 B
cnpge

I 16vec4 R|cnplt I'slévec4 B I'slévec4 B
crpl e

| 8vec8 R | s8vec8 B | s8vec8 B

Page 386 of 431

Intel® C++ Compiler User's Guide

Conditional Select Operators

For conditional select operands, the third and fourth operands determine the type returned. Third and
fourth operands with same size, but different signedness, return the nearest common ancestor data

type.

Conditional Select Syntax Usage

/* Return the nearest conmon ancestor data type if third and fourth
operands are of the sane size, but different signs */

| 16vec4 R = sel ect _neq(lsl6vec4, |sl6vecd, |sl6vecd, lulbvecd);
/* Conditional Select for Equality */

RO := (A0 == B0O) ? C0 : DO;

RlL := (A1 == Bl1) ? ClL : Di;

R2 := (A2 == B2) ? C : D2

R3 := (A3 ==B3) ? C3: D3;

/* Conditional Select for Inequality */

RO := (A0 !'=B0) ? C0 : DO;
RlL := (Al !'=B1) ? C1L : D1;
R := (A2 '=B2) ? C: D2
R3 := (A3 != B3) ? C3 : DB;

Conditional Select Symbols and Corresponding Intrinsics

sel ect _neq(A,
B, C, D)

_mm cnpeq_pi 16
_mm cnpeq_pi 8

Conditional Operators Syntax Corresponding Additional Intrinsic
Select For: Intrinsic (Applies to All)
Equality select_eq |R=select_eq |_mmcnpeq_pi32 |_nmand_si64
(A, B, C, D) _mmcnpeq_pi 16 | _mmor_si 64
_mm cnpeq_pi 8 _mm andnot _si 64
Inequality select_neq |R= _nm cnpeq_pi 32

or Equal To

Page 387 of 431

(A,B,C,D)

Greater Than |select_gt |R=select_gt |_nmcnpgt_pi32
(A, B, C, D) _mm_cnpgt _pi 16

_mmcnpgt _pi 8
Greater Than select_ge |R=select gt |_mmcnpge_pi 32

_mm cnpge_pi 16
_mm cnpge_pi 8

Intel® C++ Compiler User's Guide

Less Than select |t R=select_It |_mmcnplt_pi32
(A, B, C, D) _mmecnpl t_pi 16
_mmecnplt _pi8
Less Than select_le |R=select_|le |_mmcnple_pi32
or Equal To (A, B,C,D) _nm cnpl e_pi 16
_mmcnpl e_pi 8

All conditional select operands must be of the same size. The return data type is the nearest common
ancestor of operands C and D. For conditional select operations using greater-than or less-than
operations, the first and second operands must be signed as listed in the table that follows.

Conditional Select Operator Overloading

R Comparison | A and B C D
| 32vec2 R|select_eq |I[s|u]32vec2 |I[s]|u]32vec2 |I[s]|u]32vec2
sel ect _ne
| 16vecd R I[s|u] 16vecd |I[s|u] 16vecd |I1[s|u] 16vec4
| 8vec8 R I[s|u]8vec8 |I[s|u]8vec8 |I[s]|u]8vec8
| 32vec2 R|select_gt |l1s32vec?2 | s32vec?2 | s32vec?2
sel ect _ge
select It
select le
| 16vec4 R | slévec4 | slévec4 | slévec4
| 8vec8 R | s8vec8 | s8vec8 | s8vec8

The table below shows the mapping of return values from RO to R7 for any number of elements. The
same return value mappings also apply when there are fewer than four return values.

Conditional Select Operator Return Value Mapping

Return Value | A and B Operands C and D operands
A0 | Available Operators | BO
RO:= A0 |==|I=|>|>=|<|<=|B0|?C0:DO;
R1:= AO |==|I=|>|>=|<|<=|B0|?C1:D1;
R2:= A0 |==|I=|>|>=|<|<=|B0|?C2:D2;
R3:= AO |==|1=|>|>=|<|<=|B0|?C3:D3;
R4:= A0 |==|I1=|>|>=|<|<=|B0 | ?C4:D4;
R5:= A0 |==|I=|>|>=|<|<=|B0|?C5:D5;
R6:= A0 |==|I=|>|>=|<|<=|B0|?C6:D6;
R7:= A0 |==|I=|>|>=|<|<=|B0|?C7:DT7;

Page 388 of 431

Intel® C++ Compiler User's Guide

Debug

The debug operations do not map to any compiler intrinsics for MMX(TM) instructions. They are
provided for debugging programs only. Use of these operations may result in loss of performance, so
you should not use them outside of debugging.

Output

The four 32-bit values of A are placed in the output buffer and printed in the following format (default in

decimal):
cout
cout
cout

"[3]:

<< |s32vec4d A
<< lu32vec4d A
<< hex << |u32vec4 A; /* print in hex format */

A3 [2]:A2 [1]:Al [0]: AD"

Corresponding Intrinsics: none

The two 32-bit values of A are placed in the output buffer and printed in the following format (default in

decimal):
cout
cout

cout

"[1]:

<< |s32vec2 A
<< lu32vec2 A
<< hex << |u32vec2 A; /* print in hex format */

Al [0] : AO"

Corresponding Intrinsics: none

The eight 16-

in decimal):
cout
cout

cout

"[7]:

bit values of A are placed in the output buffer and printed in the following format (default

<< | sl6vec8 A;
<< |ul6vec8 A
<< hex << lul6vec8 A, /* print in hex format */

A7 [6]:A6 [5]:A5 [4]:A4 [3]:A3 [2]:A2 [1]:Al [0]: A0"

Corresponding Intrinsics: none

The four 16-bit values of A are placed in the output buffer and printed in the following format (default in

decimal):
cout

cout

<< | sl6vecd A

<< lul6bvecd A

Page 389 of 431

Intel® C++ Compiler User's Guide

cout << hex << lul6vec4 A; /* print in hex format */

"[3]:A3 [2]:A2 [1]: Al [0]: A0"
Corresponding Intrinsics: none

The sixteen 8-bit values of A are placed in the output buffer and printed in the following format (default
is decimal):

cout << |s8vecl6 A; cout << |u8vecl6 A; cout << hex << |u8vec8 A;
[* print in hex format instead of decinmal*/

"[15]:Al5 [14]: Al4 [13]:A13 [12]:A12 [11]:Al11 [10]:A10 [9]:A9 [8]:A8
[7]:A7 [6]:A6 [5]:A5 [4]:A4 [3]:A3 [2]:A2 [1]: A1 [O]: AQ"
Corresponding Intrinsics: none

The eight 8-bit values of A are placed in the output buffer and printed in the following format (default is
decimal):

cout << |s8vec8 A; cout << |u8vec8 A cout << hex << |u8vec8 A
[* print in hex format instead of decimal*/

"[7]:A7 [6]:A6 [5]:A5 [4]:A4 [3]:A3 [2]:A2 [1]:Al [0O]: AO"
Corresponding Intrinsics: none

Element Access Operators
int R=1s64vec2 Ali];
unsi gned int R = lu64vec2 Ali];
int R=1s32vecd Ali];
unsigned int R = lu32vecd Ali];
int R=1s32vec2 Ali];
unsigned int R = lu32vec2 Ali];
short R = Isl6vec8 Ali];
unsi gned short R = lul6vec8 Ali];
short R = Isl6vecd Ali];
unsi gned short R = lul6vecd Ali];

signed char R = I1s8vecl6 Ali];

Page 390 of 431

Intel® C++ Compiler User's Guide

unsi gned char R = luB8vecl6 Ali];
signed char R = 1s8vec8 Ali];
unsi gned char R = lu8vec8 Ali];

Access and read element i of A. If DEBUG is enabled and the user tries to access an element
outside of A, a diagnostic message is printed and the program aborts.

Corresponding Intrinsics: none
Element Assignment Operators

| s64vec2 Ali] int R

I s32vecd Ali]

int R

lu32vec4 Ali] = unsigned int R
Is32vec2 Ali] =int R

lu32vec2 Ali] = unsigned int R

I sl6vec8 Ali] = short R;

lulévec8 Ali] = unsigned short R
I sl6vecd Ali] = short R;

lulévecd4 Ali] = unsigned short R
I s8vecl6 Ali] = signed char R

lu8vecl6 Ali] = unsigned char R;

| s8vec8 Ali] signed char R
lu8vec8 A[i] = unsigned char R

Assign Rto element i of A. If DEBUG is enabled and the user tries to assign a value to an
element outside of A, a diagnostic message is printed and the program aborts.

Corresponding Intrinsics: none

Page 391 of 431

Intel® C++ Compiler User's Guide

Unpack Operators

Interleave the 64-bit value from the high half of A with the 64-bit value from the high half of B.
| 364vec?2 unpack_hi gh(1 64vec2 A, 164vec2 B);
| s64vec2 unpack_hi gh(1ls64vec2 A, |s64vec2 B);
| uédvec?2 unpack_hi gh(lu64vec2 A, |u64vec2 B);

RO
R1

Al;
B1;

Corresponding intrinsic: _mm unpackhi _epi 64

Interleave the two 32-bit values from the high half of A with the two 32-bit values from the high half of
B.

I 32vec4 unpack_hi gh(132vec4 A, [|32vec4 B);
I s32vec4 unpack_hi gh(1s32vecd4 A, 1s32vec4 B);

I u3d2vec4 unpack_hi gh(lu32vecd4 A, 1u32vec4d B);

RO = Al;
R1 = BI1;
R2 = A2;
R3 = B2;

Corresponding intrinsic: _mm unpackhi _epi 32
Interleave the 32-bit value from the high half of A with the 32-bit value from the high half of B.
I 32vec2 unpack_hi gh(132vec2 A, [32vec2 B);
I s32vec2 unpack_hi gh(1s32vec2 A, 1s32vec2 B);
I u3d2vec?2 unpack_hi gh(lu32vec2 A, 1u32vec2 B);

RO
R1

Al;
B1;

Corresponding intrinsic: _mm unpackhi _pi 32

Interleave the four 16-bit values from the high half of A with the two 16-bit values from the high half of
B.

| 16vec8 unpack_hi gh(l 16vec8 A, |16vec8 B);

| sl6vec8 unpack_hi gh(lsl6vec8 A, |1sl6vec8 B);

Page 392 of 431

Intel® C++ Compiler User's Guide

I ulévec8 unpack_hi gh(lul6bvec8 A, 1ul6vec8 B);

RO = A2;
R1 = B2;
R2 = AS3;
R3 = B3;

Corresponding intrinsic: _mm unpackhi _epi 16

Interleave the two 16-bit values from the high half of A with the two 16-bit values from the high half of
B.

I 16vec4 unpack_hi gh(l 16vec4 A, |16vec4 B);
I si6vec4 unpack_hi gh(lsl6vecd4 A, |1sl6vecd B);
lulévec4 unpack_hi gh(lul6vecd A, lul6vec4d B);

RO A2; R1 B2;
R2 A3; R3 B3;
Corresponding intrinsic: _mm unpackhi _pi 16

Interleave the four 8-bit values from the high half of A with the four 8-bit values from the high half of B.
| 8vec8 unpack_hi gh(18vec8 A, 18vec8 B);
I s8vec8 unpack_hi gh(l1s8vec8 A, [8vec8 B);

I u8vec8 unpack_hi gh(lu8vec8 A, |8vec8 B);

RO = A4;
R1 = B4;
R2 = Ab5;
R3 = B5;
R4 = AG6;
R5 = BE6;
R6 = A7;
R7 = B7;

Corresponding intrinsic: _nmm unpackhi _pi 8

Interleave the sixteen 8-bit values from the high half of A with the four 8-bit values from the high half of
B.

| 8vecl6 unpack_hi gh(l18vecl6 A, [|8vecl6 B);
| s8vecl16 unpack_hi gh(1s8vecl6 A, 18vecl6 B);

I u8vecl6 unpack_hi gh(lu8vecl6 A, |8vecl6 B);

RO = A8;
R1 = BS;
R2 = A9;
R3 = B9;
R4 = A10;
R5 = B10;

Page 393 of 431

Intel® C++ Compiler User's Guide

R6 = Al1;
R7 = B11;
R8 = Al12;
R8 = B12;
R2 = Al13;
R3 = B13;
R4 = Al4;
R5 = B14;
R6 = Al5;
R7 = B15;

Corresponding intrinsic: _mm unpackhi _epi 16

Interleave the 32-bit value from the low half of A with the 32-bit value from the low half of B.
RO = AO;
Rl = BO;
Corresponding intrinsic: _mm unpackl o_epi 32

Interleave the 64-bit value from the low half of A with the 64-bit values from the low half of B
| 64vec2 unpack_| ow(| 64vec2 A, |64vec2 B);

| s64vec2 unpack | ow(|I s64vec2 A, |1s64vec2 B);

| uédvec?2 unpack_| owm |l u6dvec2 A, lubdvec?2 B);

RO = AOQ;
R1 = BO;
R2 = Al;
R3 = B1;

Corresponding intrinsic: _mm unpackl o_epi 32

Interleave the two 32-bit values from the low half of A with the two 32-bit values from the low half of B
I 32vec4 unpack_| ow(| 32vec4 A, |32vecd B);
I s32vec4 unpack | ow(I s32vec4 A, 1s32vecd B);

lu3d2vec4 unpack_| owm(Il u32vecd4 A, 1u32vec4d B);

RO = AQ;
R1 = BO;
R2 = Al;
R3 = B1;

Corresponding intrinsic: _mm unpackl o_epi 32

Interleave the 32-bit value from the low half of A with the 32-bit value from the low half of B.
I 32vec2 unpack_| ow(l32vec2 A, |32vec2 B);
I s32vec2 unpack_| om(I s32vec2 A, 1s32vec2 B);

lu32vec2 unpack | ow(lu32vec2 A, 1u32vec2 B);

Page 394 of 431

Intel® C++ Compiler User's Guide

RO = AOQ;
Rl = BO;
Corresponding intrinsic: _mm unpackl o_pi 32
Interleave the two 16-bit values from the low half of A with the two 16-bit values from the low half of B.
| 16vec8 unpack | ow(| 16vec8 A, |16vec8 B);
I s16vec8 unpack_| owm(| s16vec8 A, 1sl6vec8 B);

lulévec8 unpack | ow(lul6vec8 A, lul6bvec8 B);

RO = AO;
R1 = BO;
R2 = Al
R3 = BI,
R4 = A2,
R5 = B2,
R6 = A3;
R7 = BS;

Corresponding intrinsic: _mm unpackl o_epi 16

Interleave the two 16-bit values from the low half of A with the two 16-bit values from the low half of B.
| 16vec4 unpack_ | ow(I| 16vecd4 A, |16vecd B);
I sl6vec4 unpack_| ow(| s16vecd A, |1sl6vecd B);

lulévec4 unpack | ow(lul6vecd A, lul6bvecd B);

RO = AO;
R1 = BO;
R2 = Al,
R3 = B1,

Corresponding intrinsic: _mm unpackl o_pi 16

Interleave the four 8-bit values from the high low of A with the four 8-bit values from the low half of B.
| 8vecl6 unpack | ow(l8vecl6 A, |8vecl6 B);
| s8vecl6 unpack_ | ow(I s8vecl6 A, 1s8vecl6 B);

I u8vecl6 unpack | ow(lu8vecl6 A, 1u8vecl6 B);

RO = AO;
R1 = BO;
R2 = Al
R3 = B1,
R4 = A2,
R5 = Bz,
R6 = A3;
R7 = BS;
R8 = A4,

Page 395 of 431

Intel® C++ Compiler User's Guide

RO = B4;
R10 = A5;
R11 = BS5;
R12 = AG6;
R13 = B6;
R14 = A7;
R15 = B7;

Corresponding intrinsic: _mm unpackl o_epi 8

Interleave the four 8-bit values from the high low of A with the four 8-bit values from the low half of B.
| 8vec8 unpack | ow(18vec8 A |[8vec8 B);
| s8vec8 unpack_| ow(|s8vec8 A, |s8vec8 B);

| u8vec8 unpack | ow(lu8vec8 A, |uBvec8 B);

RO = AOQ;
R1 = BO;
R2 = Al
R3 = B1,
R4 = A2,
R5 = Bz,
R6 = A3;
R7 = BS;

Corresponding intrinsic: _mm unpackl o_pi 8

Page 396 of 431

Intel® C++ Compiler User's Guide

Pack Operators

Pack the eight 32-bit values found in A and B into eight 16-bit values with signed saturation.

| sl6vec8 pack_sat (1s32vec2 A, I1s32vec2 B);
Corresponding intrinsic: _mm packs_epi 32

Pack the four 32-bit values found in A and B into eight 16-bit values with signed saturation.

| sl6vec4 pack_sat (1s32vec2 A, 1s32vec2 B);
Corresponding intrinsic: _mm packs_pi 32

Pack the sixteen 16-bit values found in A and B into sixteen 8-bit values with signed saturation.

| s8vecl6 pack _sat(lsl6vecd A, Isl6vecd B);
Corresponding intrinsic: _nmm packs_epi 16

Pack the eight 16-bit values found in A and B into eight 8-bit values with signed saturation.

| s8vec8 pack_sat (I sl6vecd A |Islévecsd B);
Corresponding intrinsic: _mm packs_pi 16

Pack the sixteen 16-bit values found in A and B into sixteen 8-bit values with unsigned saturation .

I u8vecl6 packu_sat (lIsl6vec4 A |Isl6vecd B);
Corresponding intrinsic: _nmm packus_epi 16

Pack the eight 16-bit values found in A and B into eight 8-bit values with unsigned saturation.

| u8vec8 packu_sat (1sl6vecd A Isl6vecd B);
Corresponding intrinsic: _mm packs_pul6

Page 397 of 431

Intel® C++ Compiler User's Guide

Clear MMX(TM) Instructions State Operator

Empty the MMX(TM) registers and clear the MMX state. Read the guidelines for using the EMMS
instruction intrinsic.

voi d enpty(void);
Corresponding intrinsic: _nmm enpty

Page 398 of 431

Intel® C++ Compiler User's Guide

Integer Intrinsics for Streaming SIMD Extensions
@Note

You must include f vec. h header file for the following functionality.
Compute the element-wise maximum of the respective signed integer words in A and B.

I sl6vec4 sind_nmax(lsl6vecd A, |sl6vecd B);
Corresponding intrinsic: _mm max_pi 16

Compute the element-wise minimum of the respective signed integer words in A and B.

I sl6vec4 sind_min(lsl6évecd A, 1|sl6vecd B);
Corresponding intrinsic: _mm mi n_pi 16

Compute the element-wise maximum of the respective unsigned bytes in A and B.

I u8vec8 sind_nmax(lu8vec8 A |u8vec8 B);
Corresponding intrinsic: _mm max_pu8

Compute the element-wise minimum of the respective unsigned bytes in A and B.

I u8vec8 simd_min(lu8vec8 A |u8vec8 B);
Corresponding intrinsic: _mm m n_pu8

Create an 8-bit mask from the most significant bits of the bytes in A.

int move_nask(18vec8 A);
Corresponding intrinsic: _nmm novenask_pi 8

Conditionally store byte elements of A to address p. The high bit of each byte in the selector B
determines whether the corresponding byte in A will be stored.

voi d mask_mnove(l 8vec8 A, |8vec8 B, signed char *p);
Corresponding intrinsic: _mm masknove_si 64

Store the data in A to the address p without polluting the caches. A can be any | vec type.

void store_nta(__nm64 *p, M4 A);
Corresponding intrinsic: _nmm st r eam pi

Compute the element-wise average of the respective unsigned 8-bit integers in A and B.

I u8vec8 sinmd_avg(lu8vec8 A |u8vec8 B);
Corresponding intrinsic: _mm avg_pu8

Compute the element-wise average of the respective unsigned 16-bit integers in A and B.

lulévec4 sind_avg(lulévecd A, lul6vecd B);

Page 399 of 431

Intel® C++ Compiler User's Guide

Corresponding intrinsic: _mm avg_pul6

Page 400 of 431

Intel® C++ Compiler User's Guide

Conversions Between Fvec and Ivec

Convert the lower double-precision floating-point value of A to a 32-bit integer with truncation.
i nt F64vec2Tol nt (F64vec42 A);
r := (int)A0;

Convert the four floating-point values of A to two the two least significant double-precision floating-point
values.

F64vec2 F32vec4ToF64vec2(F32vecd A);

ro :
rl ;.

(doubl e) AO;
(doubl e) A1;

Convert the two double-precision floating-point values of A to two single-precision floating-point values.
F32vec4 F64vec2ToF32vec4(F64vec2 A);

ro :
rl :

(fl oat) AO;
(float) Al;

Convert the signed i nt in B to a double-precision floating-point value and pass the upper double-
precision value from A through to the result.

F64vec2 I nttoF64vec2(F64vec2 A, int B);

ro :
rl :

(doubl e) B;
Al;

Convert the lower floating-point value of A to a 32-bit integer with truncation.
i nt F32vec4Tol nt (F32vec4d A);
r := (int)A0;

Convert the two lower floating-point values of A to two 32-bit integer with truncation, returning the
integers in packed form.

I s32vec2 F32vec4Tol s32vec2 (F32vec4 A);

ro :
rl :

(int)AO0;
(int)A1;

Convert the 32-bit integer value B to a floating-point value; the upper three floating-point values are
passed through from A.

F32vec4 | nt ToF32vec4(F32vec4 A, int B);

ro := (float)B;

Page 401 of 431

Intel® C++ Compiler User's Guide

rl .= Al
r2 .= A2;
r3 := A3;

Convert the two 32-bit integer values in packed form in B to two floating-point values; the upper two
floating-point values are passed through from A.

F32vec4 |s32vec2ToF32vec4(F32vec4 A, 1s32vec2 B);

ro := (fl oat) BO;
ri := (float)B1;
r2 := Az,
r3 := A3

Page 402 of 431

Intel® C++ Compiler User's Guide

Overview: Floating-point Vector Classes

The floating-point vector classes, F64vec?2, F32vec4, and F32vecl, provide an interface to SIMD
operations. The class specifications are as follows:

F64vec2 A(doubl e x, double y);
F32vec4 A(float z, float y, float x, float w;
F32vecl B(float w);

The packed floating-point input values are represented with the right-most value lowest as shown in
the following table.

Single-Precision Floating-point Elements

High Value A3 A2 Al AD Low Value
Operands II f : :
B3 B2 B1 BO
T T T T
Operations I:
Return [RB* th R1 Y RD*
127 63 m JR?]].
I
128 bits F32vecd (RO, R1, B2, and R3)

F32vecd returns four packed single-precision floating point values (R0, R1, R2, and R3).
F3Z2vec? returns one single-precision floating point value {00

Page 403 of 431

Intel® C++ Compiler User's Guide

Fvec Notation Conventions

This reference uses the following conventions for syntax and return values.
Fvec Classes Syntax Notation

Fvec classes use the syntax conventions shown the following examples:
[Fvec_Class] R = [Fvec_Class] A [operator][lvec_C ass] B;
Example 1: F64vec2 R = F64vec2 A & F64vec2 B;

[Fvec_Class] R = [operator] ([Fvec_d ass] A, [Fvec_C ass] B);
Example 2: F64vec2 R = andnot (F64vec2 A, F64vec2 B);
[Fvec_Class] R [operator]= [Fvec_O ass] A

Example 3: F64vec2 R &= F64vec2 A

where

[oper at or] is an operator (for example, &, |, or)

[Fvec_d ass] is any Fvec class (F64vec2, F32vec4, or F32vecl)

R, A, B are declared Fvec variables of the type indicated

Return Value Notation

Because the Fvec classes have packed elements, the return values typically follow the conventions
presented in the Return Value Convention Notation Mappings table below. F32vec4 returns four
single-precision, floating-point values (RO, R1, R2, and R3); F64vec?2 returns two double-precision,
floating-point values, and F32vec1 returns the lowest single-precision floating-point value (RO).

Return Value Convention Notation Mappings

Example Example 2: Example |F32vec4 | F64vec2 | F32vecl
1 3:

RO :=A0 & |RO := A0 andnot .

BO: BO: RO &= AO0; |x X X
R1:=A1 & |R1:=A1l andnot aa.

B1: B1: R1 &= A1; |x X N/A

R2 :=A2 & |R2:= A2 andnot CnA.

B2: B2: R2 &= A2; |x N/A N/A
R3:=A3 & |R3:= A3 andhot Cna.

B3 B3: R3 &= A3; |x N/A N/A

Page 404 of 431

Intel® C++ Compiler User's Guide

Data Alignment

Memory operations using the Streaming SIMD Extensions should be performed on 16-byte-aligned
data whenever possible.

F32vec4 and F64vec?2 object variables are properly aligned by default. Note that floating point arrays
are not automatically aligned. To get 16-byte alignment, you can use the alignment __decl spec:

__decl spec(align(16)) float Al4];

Conversions
_ ml28d mm = A & B; /* where A B are F64vec2 object variables */
_ m28 m= A & B; /* where A B are F32vec4 object variables */

A & B; /* where A B are F32vecl object variables */

__ml28 mm
All Fvec object variables can be implicitly converted to __ ml 28 data types. For example, the results of

computations performed on F32vec4 or F32vecl object variables can be assigned to __ml28 data
types.

Page 405 of 431

Intel® C++ Compiler User's Guide

Constructors and Initialization

The following table shows how to create and initialize F32vec objects with the Fvec classes.

Constructors and Initialization for Fvec Classes

Example Intrinsic Returns

Constructor Declaration

F64vec2 A N/A N/A
F32vec4 B;
F32vecl C,

__m128 Object Initialization

F64vec2 A(_ nl28d nm; N/A N/A
F32vec4 B(__nml28 mm);
F32vecl C(__ml28 nm;

Double Initialization

/* Initializes two doubles. */ _mm set_pd A0 :=dO;
F64vec2 A(doubl e dO, double dl); Al :=d1;
F64vec2 A = F64vec2(doubl e dO, double dil);

F64vec2 A(doubl e dO); _mmsetl pd A0 :=dO;
/* Initializes both return val ues Al :=dO;

with the same doubl e precision value */.

Float Initialization

F32vec4 A(float f3, float f2, _mm set _ps A0 := fO;
float f1, float fO); Al :=f1;
F32vec4 A = F32vec4(float f3, float f2, A2 = 2
float f1, float fO); A3 = f3-
F32vec4 A(float fO0); _mmsetl ps A0 = f0;
/* Initializes all return val ues Al :=fO;
with the sanme floating point value. */ A2 = fO:

A3 = f0;
F32vec4 A(doubl e d0); _mmsetl_ps(d) | AO:=dO;
/* Initialize all return values with Al :=dO;
t he sane doubl e-precision value. */ A2 = dO;

A3 :=dO;
F32vecl A(doubl e d0); _mmset_ss(d) |A0:=do;
/* Initializes the | owest value of A Al :=0;
with dO and the other values with 0.*/ A2 :=0;

A3 :=0;
F32vecl B(float fO0); _mm set _ss BO :=f0;
/* Initializes the | owest value of B B1:=0;
with fO and the other values with 0.*/ B2 := 0:

B3 :=0;

Page 406 of 431

Intel® C++ Compiler User's Guide

F32vecl B(int 1);
/* Initializes the | owest value of B
with f0, other val ues are undefined. */

_mmcvtsi32_ss

BO :=f0
Bl:={}
B2 :={}
B3 :={}

Page 407 of 431

Intel® C++ Compiler User's Guide

Arithmetic Operators

The following table lists the arithmetic operators of the Fvec classes and generic syntax. The
operators have been divided into standard and advanced operations, which are described in more
detall later in this section.

Fvec Arithmetic Operators

Category | Operation Operators | Generic Syntax
Standard | Addition + R=A+B;
+= R+=A;
Subtraction - R=A-B;
-= R-=A;
Multiplication * R=A*B;
= R = A'
Division / R=A/B;
/= R/=A;
Advanced | Square Root sqrt R =sqgrt (A);
Reciprocal rcp R =rcp(A);
(Newton-Raphson) rcp_nr R =rcp_nr (A);
Reciprocal Square Root | rsqrt R=rsqgrt (A);
(Newton-Raphson) rsqrt_nr |R=rsqrt_nr (A);

Standard Arithmetic Operator Usage

The following two tables show the return values for each class of the standard arithmetic operators,
which use the syntax styles described earlier in the Return Value Notation section.

Standard Arithmetic Return Value Mapping

R A | Operators | B | F32vec4 | F64vec2 | F32vecl

RO:=|AO0 |+ |- |* |/ |BO

R1=|A1|+ |-|*|/|Bl N/A
R2:=|A2 |+ |- |*|/|B2 N/A N/A
R3:=|A3 |+ |- |*|/|B3 N/A N/A

Arithmetic with Assighment Return Value Mapping

Page 408 of 431

Intel® C++ Compiler User's Guide

R Operators A | F32vec4 | F64vec2 | F32vecl
RO:= | +=|-=|*=|/= | AO

Rl=|+=|-=|*=|/=|Al N/A
R2:=|+=|-=|*=|/=| A2 N/A N/A
R3:=|+=|-=|*=|/=| A3 N/A N/A

The table below lists standard arithmetic operator syntax and intrinsics.

Standard Arithmetic Operations for Fvec Classes

Operation Returns | Example Syntax Usage Intrinsic
Addition 4 floats F32vec4 R = F32vec4 A + F32vec4d B; _mm add_ps
F32vec4 R += F32vec4d A
2 doubles | F64vec2 R = F64vec2 A + F32vec2 B; _mm add_pd
F64vec2 R += F64vec2 A
1 float F32vecl R = F32vecl A + F32vecl B; _mm add_ss
F32vecl R += F32vecl A
Subtraction | 4 floats F32vec4 R = F32vec4 A - F32vec4 B; _mm sub_ps
F32vec4 R -= F32vecd A
2 doubles | F64vec2 R - F64vec2 A + F32vec2 B; _mm sub_pd
F64vec2 R -= F64vec2 A
1 float F32vecl R = F32vecl A - F32vecl B; _mm sub_ss
F32vecl R -= F32vecl A
Multiplication | 4 floats F32vec4 R = F32vec4 A * F32vec4 B; _mm_rmul _ps
F32vec4 R *= F32vecd A
2 doubles | F64vec2 R = F64vec2 A * F364vec2 B; |_mm nul _pd
F64vec2 R *= F64vec2 A
1 float F32vecl R = F32vecl A * F32vecl B; _mm nul _ss
F32vecl R *= F32vecl A
Division 4 floats F32vec4 R = F32vec4 A/ F32vec4 B; _mmdi v_ps
F32vec4 R /= F32vecd A
2 doubles | F64vec2 R = F64vec2 A / F64vec2 B; _mmdi v_pd
F64vec2 R /= F64vec2 A,
1 float F32vecl R = F32vecl A/ F32vecl B; _mmdiv_ss
R

F32vecl /= F32vecl A

Advanced Arithmetic Operator Usage

The following table shows the return values classes of the advanced arithmetic operators, which use
the syntax styles described earlier in the Return Value Notation section.

Advanced Arithmetic Return Value Mapping

Page 409 of 431

Intel® C++ Compiler User's Guide

R Operators A | F32vec4 | F64vec2 | F32vecl
RO:= | sqrt rcp|rsqrt |rcp_nr rsqrt_nr | AO
R1:=|sqrt rcp|rsqrt |rcp_nr rsqrt_nr [Al N/A
R2:= | sqrt rcp|rsqrt [rcp_nr rsqrt_nr | A2 N/A N/A
R3:=|sqrt rcp|rsqrt [rcp_nr rsqrt_nr | A3 N/A N/A
f:= | add_horizontal (A0 + Al + N/A N/A
A2 + A3)
d := | add_horizontal (A0 + A1) N/A N/A
The table below shows examples for advanced arithmetic operators.
Advanced Arithmetic Operations for Fvec Classes
Returns | Example Syntax Usage Intrinsic

Square Root

4 floats F32vec4 R = sqrt(F32vec4 A); _mmsqrt_ps
2 doubles | F64vec2 R = sqrt(F64vec2 A); _mmsqrt_pd
1 float F32vecl R = sqrt(F32vecl A); _mmsqrt_ss
Reciprocal

4 floats F32vecd4 R = rcp(F32vecd A); _mmrcp_ps

2 doubles | F64vec2 R = rcp(F64vec2 A); _mmrcp_pd

1 float F32vecl R = rcp(F32vecl A); _nmmrcp_ss
Reciprocal Square Root

4 floats F32vecd4 R = rsqrt(F32vec4 A); _mmrsqrt_ps
2 doubles | F64vec2 R = rsqrt(F64vec2 A); _mmrsqrt_pd
1 float F32vecl R = rsqrt(F32vecl A); _mmrsqrt_ss

Reciprocal Newton Raphson

4 floats

F32vec4 R

rcp_nr(F32vecd4 A);

_mm sub_ps
_mm add_ps
_mm mul _ps
_nmrcp_ps

2 doubles

F64vec2 R

rcp_nr(F64vec2 A);

_mm sub_pd
_mm add_pd
~mm nmul _pd
_mmrcp_pd

1 float

F32vecl R

Page 410 of 431

rcp_nr(F32vecl A);

_mm sub_ss
_mm add_ss
_mm mul _ss
_nmrcp_ss

Intel® C++ Compiler User's Guide

Reciprocal Square Root Newton Raphson

4 float F32vecd4 R = rsqrt_nr(F32vecd A); _nmm sub_pd
_mm_nul _pd
_mmrsqrt_ps

2 doubles | F64vec2 R = rsqrt_nr(F64vec2 A); _mm sub_pd
~mm nmul _pd
_mmrsqrt_pd

1 float F32vecl R = rsqrt_nr(F32vecl A); _mm sub_ss
_mm nul _ss
_mmrsqrt_ss

Horizontal Add

1 float float f = add_horizontal (F32vec4 A); _m add_ss

_mm shuffle_ss

1double |double d = add_horizontal (F64vec2 A); |_mm add_sd
_mm shuffle_sd

Page 411 of 431

Intel® C++ Compiler User's Guide

Minimum and Maximum Operators

Compute the minimums of the two double precision floating-point values of A and B.
F64vec2 R = sind_m n(F64vec2 A, F64vec2 B)

RO := mi n(AO, BO);
Rl := min(Al, Bl);
Corresponding intrinsic: _mm _m n_pd
Compute the minimums of the four single precision floating-point values of A and B.

F32vec4 R = sind_nin(F32vec4 A, F32vec4 B)

RO : = mi n(A0, BO);
R1 := min(Al, Bl);
R2 := min(A2, B2);
R3 := min(A3, B3);

Corresponding intrinsic: _mm m n_ps
Compute the minimum of the lowest single precision floating-point values of A and B.
F32vecl R = simd_ni n(F32vecl A, F32vecl B)

RO : = mi n(A0, BO);
Corresponding intrinsic: _mm mi n_ss

Compute the maximums of the two double precision floating-point values of A and B.
F64vec2 sind_nax(F64vec2 A, F64vec2 B)

RO : = max(A0, BO);
Rl := max(Al, Bl);
Corresponding intrinsic: _mm nmax_pd

Compute the maximums of the four single precision floating-point values of A and B.

F32vec4 R = simd_man(F32vec4 A, F32vec4 B)

RO : = max(A0, BO);
R1 := max(Al, Bl);
R2 := max(A2, B2);
R3 : = max(A3, B3);

Corresponding intrinsic: _mm _max_ps
Compute the maximum of the lowest single precision floating-point values of A and B.
F32vecl sind_nmax(F32vecl A, F32vecl B)

RO : = max(A0, BO);
Corresponding intrinsic: _mm max_ss

Page 412 of 431

Intel® C++ Compiler User's Guide

Logical Operators

The table below lists the logical operators of the Fvec classes and generic syntax. The logical
operators for F32vec1l classes use only the lower 32 bits.

Fvec Logical Operators Return Value Mapping

Bitwise Operation | Operators | Generic Syntax
AND & R=A&B;
&= R &= A;
OR | R=A|B;
= RI=A;
XOR A R=AN"B;
N= R N= A’
andnot andnot R = andnot(A);

The following table lists standard logical operators syntax and corresponding intrinsics. Note that there
is no corresponding scalar intrinsic for the F32vec1 classes, which accesses the lower 32 bits of the
packed vector intrinsics.

Logical Operations for Fvec Classes

Operation | Returns | Example Syntax Usage Intrinsic
AND 4 floats F32vec4 & = F32vec4 A & F32vec4 B; _mm and_ps
F32vec4 & &= F32vecd A
2 doubles | F64vec2 R = F64vec2 A & F32vec2 B; |_mm and_pd
F64vec2 R & F64vec2 A
1 float F32vecl R = F32vecl A & F32vecl B; _mm and_ps
F32vecl R & F32vecl A;
OR 4 floats F32vec4 R = F32vec4 A | F32vec4 B; |_mmor_ps
F32vec4 R | = F32vec4d A
2 doubles | F64vec2 R = F64vec2 A | F32vec2 B; |_nm.or_pd
F64vec2 R | = F64vec2 A
1 float F32vecl R = F32vecl A | F32vecl B; |_mmor_ps
F32vecl R | = F32vecl A
XOR 4 floats F32vec4 R = F32vec4 A ™ F32vec4 B; _mm xor _ps
F32vec4 R "= F32vec4 A
2 doubles | F64vec2 R = F64vec2 A ™ F364vec2 B; | _nm xor_pd
F64vec2 R "= F64vec2 A
1 float F32vecl R = F32vecl A * F32vecl B; _mm xor _ps
F32vecl R *= F32vecl A
ANDNOT | 2 doubles | F64vec2 R = andnot (F64vec2 A, _mm andnot _pd
F64vec2 B);

Page 413 of 431

Intel® C++ Compiler User's Guide

Compare Operators

The operators described in this section compare the single precision floating-point values of A and B.
Comparison between objects of any Fvec class return the same class being compared.

The following table lists the compare operators for the Fvec classes.

Compare Operators and Corresponding Intrinsics

Compare For: Operators | Syntax

Equality cnpeq R = cnpeq(A, B)
Inequality cnpneq R = cnpneq(A, B)
Greater Than cnpgt R = cnpgt (A, B)
Greater Than or Equal To cnpge R = cnpge(A, B)
Not Greater Than cnpngt R = cnpngt (A, B)
Not Greater Than or Equal To | cnpnge R = cnpnge(A, B)
Less Than cnpl t R = cnplt(A, B)
Less Than or Equal To cmpl e R = cnple(A B)
Not Less Than crpnl t R = cnpnlt (A, B)
Not Less Than or Equal To cmpnl e R = cnpnl e(A, B)

Compare Operators

The mask is setto Oxf fffffff for each floating-point value where the comparison is true and
0x00000000 where the comparison is false. The table below shows the return values for each class
of the compare operators, which use the syntax described earlier in the Return Value Notation section.

Compare Operator Return Value Mapping

Page 414 of 431

R AO | For Any B If True If False F32vec4 | F64vec?2 | F32vecl
Operators
RO:=| (Al |crp[eq | It | B1) |Oxffffffff | 0x0O000000 | X X X
le | gt | ge] |B1)
I cnp[ne | nlt |
(AL nle | ngt |
nge]
R1:=| (Al |crmp[eq | It | B2) |Oxffffffff | 0xO000000 | X X N/A
le | gt | ge] |B2)
I cnp[ne | nlt |
(Al nle | ngt |
nge]

Intel® C++ Compiler User's Guide

R2:=| (A1 |crp[eq | It | B3) |Oxffffffff | 0xO000000 | X N/A N/A
le | gt | ge] B3)
I cnp[ne | nlt |
(Al nle | ngt |
nge]
R3:=|A3 |[cnp[eq | It | B3) |Oxffffffff | 0x0000000 | X N/A N/A
le | gt | ge] |B3)
cnp[ne | nlt |
nle | ngt |
nge]

The table below shows examples for arithmetic operators and intrinsics.

Compare Operations for Fvec Classes

Returns | Example Syntax Usage Intrinsic
Compare for Equality

4 floats F32vec4 R = cnpeq(F32vecd A); _mm cnpeq_ps
2 doubles | F64vec2 R = cnpeq(F64vec2 A); _mm cnpeq_pd
1 float F32vecl R = cnpeq(F32vecl A); _hm cnpeq_ss

Compare for Inequality

4 floats F32vec4 R = cnpneq(F32vec4 A); |_nm cnpneq_ps
2 doubles | F64vec2 R = cnpneq(F64vec2 A); |_nm cnpneq_pd
1 float F32vecl R = cnpneq(F32vecl A); |_nm cnpneq_ss

Compare for Less Than

4 floats F32vec4 R = cnplt(F32vecd A); _mmecnplt_ps
2 doubles | F64vec2 R = cnplt (F64vec2 A); _mmecnplt_pd
1 float F32vecl R = cnplt(F32vecl A); _mmecnplt_ss

Compare for Less Than or Equal

4 floats F32vec4 R = cnpl e(F32vec4 A); _mm cnpl e_ps
2 doubles | F64vec2 R = cnpl e(F64vec2 A); _mm cnpl e_pd
1 float F32vecl R = cnpl e(F32vecl A); _mm cnpl e_pd
Compare for Greater Than

4 floats F32vec4 R = cnpgt (F32vec4 A); _nm cnpgt _ps
2 doubles | F64vec2 R = cnpgt (F32vec42 A); |_nm cnpgt_pd
1 float F32vecl R = cnpgt (F32vecl A); _m cnpgt _ss

Compare for Greater Than or Equal To

4 floats

Page 415 of 431

F32vec4 R = cnpge(F32vecd A);

_mm cnpge_ps

Intel® C++ Compiler User's Guide

2 doubles

F64vec2 R

cnpge(F64vec2 A);

_nmm cnpge_pd

1 float

F32vecl R

cnpge(F32vecl A);

_nm cnpge_ss

Compare for Not Less Than

4 floats F32vec4 R = cnpnlt(F32vec4 A); |_mmcnpnlt_ps
2 doubles | F64vec2 R = cnpnl t (F64vec2 A); |_nmmcnpnlt_pd
1 float F32vecl R = cnpnlt(F32vecl A); |_mmcnpnlt_ss
Compare for Not Less Than or Equal

4 floats F32vec4 R = cnpnl e(F32vec4 A); |_mmcnpnl e_ps
2 doubles | F64vec2 R = cnpnl e(F64vec2 A); | _mmcnpnl e_pd
1 float F32vecl R = cnpnl e(F32vecl A); |_mmcnpnl e_ss
Compare for Not Greater Than

4 floats F32vec4 R = cnpngt (F32vec4 A); |_mm cnpngt_ps
2 doubles | F64vec2 R = cnpngt (F64vec2 A); | _nm cnpngt_pd
1 float F32vecl R = cnpngt (F32vecl A); |_nmm.cnpngt_ss
Compare for Not Greater Than or Equal

4 floats F32vec4 R = cnpnge(F32vec4 A); |_nmm cnpnge_ps
2 doubles | F64vec2 R = cnpnge(F64vec2 A); | _nm cnpnge_pd
1 float F32vecl R = cnpnge(F32vecl A); |_nm cnpnge_ss

Page 416 of 431

Intel® C++ Compiler User's Guide

Conditional Select Operators for Fvec Classes

Each conditional function compares single-precision floating-point values of A and B. The C and D
parameters are used for return value. Comparison between objects of any Fvec class returns the

same class.

Conditional Select Operators for Fvec Classes

Conditional Select for: Operators Syntax

Equality select_eq |R = select_eq(A B)
Inequality sel ect _neq |R = sel ect _neq(A, B)
Greater Than select_gt |R = select_gt(A B)
Greater Than or Equal To select_ge |R = select_ge(A B)
Not Greater Than select_gt |R = select_gt(A B)
Not Greater Than or Equal To | sel ect _ge |R = select_ge(A, B)
Less Than select_It R = select It(A B)
Less Than or Equal To select_le |R = select_le(A B)
Not Less Than select_nlt |R = select_nlt(A B)
Not Less Than or Equal To select_nle |R = select_nle(A B)

Conditional Select Operator Usage

For conditional select operators, the return value is stored in C if the comparison is true or in D if false.
The following table shows the return values for each class of the conditional select operators, using the
Return Value Notation described earlier.

Compare Operator Return Value Mapping

Page 417 of 431

R AO | Operators B C |D |F32vec4 | F64vec?2 | F32vecl
RO:=| (Al |select_[eq | It | le | gt | BO) | CO | DO | X X X
ge] BO) | CO | DO
I select [ne | nlt | nle | ngt
(Al | nge]
R1:=|(A2 |select _[eq | It | le | gt | B1) |C1|D1|X X N/A
ge] B1) |C1|D1
I select [ne | nlt | nle | ngt
(A2 | nge]
R2:=| (A2 |select _[eq | It | le | gt | B2) |C2 | D2 | X N/A N/A
ge] B2) | C2 | D2
I select [ne | nlt | nle | ngt
(A2 | nge]

Intel® C++ Compiler User's Guide

R3:=| (A3 |select _[eq | It | le | gt | B3) |C3 | D3 | X N/A N/A
ge] B3) | C3 | D3
I select [ne | nlt | nle | ngt
(A3 | nge]

The following table shows examples for conditional select operations and corresponding intrinsics.

Conditional Select Operations for Fvec Classes

Returns | Example Syntax Usage Intrinsic

Compare for Equality

4 floats F32vec4 R = sel ect _eq(F32vec4 A); _mm cnpeq_ps
2 doubles | F64vec2 R = sel ect _eq(F64vec2 A); _mm cnpeq_pd
1 float F32vecl R = sel ect _eq(F32vecl A); _mm cnpeq_ss

Compare for Inequality

4 floats F32vec4 R

sel ect _neq(F32vec4 A); |_nm cnpneq_ps

2 doubles | F64vec2 R

sel ect _neq(F64vec2 A); |_mm cnpneq_pd

1 float F32vecl R = sel ect _neq(F32vecl A); |_nm cnpneq_ss
Compare for Less Than

4 floats F32vec4 R = select_It(F32vecd A); _mmcnpl t _ps
2 doubles | F64vec2 R = sel ect |t (F64vec2 A); _mmecnplt_pd
1 float F32vecl R = select |t (F32vecl A); _mmecnplt_ss

Compare for Less Than or Equal

4 floats F32vec4 R = sel ect | e(F32vecd A); _mm cnpl e_ps

2 doubles | F64vec2 R = sel ect _| e(F64vec2 A); _mm cnpl e_pd

1 float F32vecl R = sel ect | e(F32vecl A); _mm cnpl e_ps

Compare for Greater Than

4 floats F32vec4 R = sel ect _gt (F32vecd4 A); _mm cnpgt _ps
2 doubles | F64vec2 R = sel ect _gt (F64vec2 A); _mm cnpgt _pd
1 float F32vecl R = sel ect _gt (F32vecl A); _mm cnpgt _ss

Compare for Greater Than or Equal To

4 floats F32vecl R = sel ect _ge(F32vec4 A); _mm cnpge_ps
2 doubles | F64vec2 R = sel ect _ge(F64vec2 A); _mm cnpge_pd
1 float F32vecl R = sel ect _ge(F32vecl A); _mm cnpge_ss

Compare for Not Less Than

Page 418 of 431

Intel® C++ Compiler User's Guide

4 floats F32vecl R = select_nlt(F32vecd4 A); |_nmmcnpnlt_ps
2 doubles | F64vec2 R = sel ect_nlt(F64vec2 A); |_nmmcnpnlt_pd
1 float F32vecl R = select_nlt(F32vecl A); |_mmcnpnlt_ss
Compare for Not Less Than or Equal

4 floats F32vecl R = sel ect_nl e(F32vec4 A); | _nmcnpnl e_ps
2 doubles | F64vec2 R = sel ect _nl e(F64vec2 A); |_nmm cnpnl e_pd
1 float F32vecl R = select_nl e(F32vecl A); |_nmcnpnl e_ss
Compare for Not Greater Than

4 floats F32vecl R = sel ect_ngt (F32vec4 A); | _nm cnpngt_ps
2 doubles | F64vec2 R = sel ect _ngt (F64vec2 A); |_nm cnpngt_pd
1 float F32vecl R = sel ect_ngt (F32vecl A); |_nmcnpngt_ss
Compare for Not Greater Than or Equal

4 floats F32vecl R = sel ect_nge(F32vec4 A); | _nm cnpnge_ps
2 doubles | F64vec2 R = sel ect _nge(F64vec2 A); |_nm cnpnge_pd
1 float F32vecl R = sel ect_nge(F32vecl A); |_nmcnpnge_ss

Page 419 of 431

Intel® C++ Compiler User's Guide

Cacheability Support Operations

Stores (non-temporal) the two double-precision, floating-point values of A. Requires a 16-byte aligned
address.

voi d store_nta(double *p, F64vec2 A);
Corresponding intrinsic: _nm st ream pd

Stores (non-temporal) the four single-precision, floating-point values of A. Requires a 16-byte aligned
address.

void store_nta(float *p, F32vecd A);
Corresponding intrinsic: _nmm st r eam ps

Page 420 of 431

Intel® C++ Compiler User's Guide

Debugging

The debug operations do not map to any compiler intrinsics for MMX(TM) technology or Streaming
SIMD Extensions. They are provided for debugging programs only. Use of these operations may result
in loss of performance, so you should not use them outside of debugging.

Output Operations

The two single, double-precision floating-point values of A are placed in the output buffer and printed in
decimal format as follows:

cout << F64vec2 A
"[1]: Al [0]: AO"
Corresponding intrinsics: none

The four, single-precision floating-point values of A are placed in the output buffer and printed in
decimal format as follows:

cout << F32vec4 A
"[3]:A3 [2]:A2 [1]: Al [0]: A0"
Corresponding intrinsics: none

The lowest, single-precision floating-point value of A is placed in the output buffer and printed.

cout << F32vecl A
Corresponding intrinsics: none

Element Access Operations
double d = F64vec2 Alint i]

Read one of the two, double-precision floating-point values of A without modifying the corresponding
floating-point value. Permitted values of i are 0 and 1. For example:

If DEBUG is enabled and i is not one of the permitted values (0 or 1), a diagnostic message is printed
and the program aborts.

double d = F64vec2 Al 1];
Corresponding intrinsics: none

Read one of the four, single-precision floating-point values of A without modifying the corresponding
floating point value. Permitted values of i are 0, 1, 2, and 3. For example:

float f = F32vec4 Alint i]

If DEBUG is enabled and i is not one of the permitted values (0-3), a diagnostic message is printed
and the program aborts.

float f = F32vecd Al 2];
Corresponding intrinsics: none

Page 421 of 431

Intel® C++ Compiler User's Guide

Element Assignment Operations

F64vec4 Alint i] = double d;

Modify one of the two, double-precision floating-point values of A. Permitted values of i nt i are 0 and
1. For example:

F32vec4 A[1] = double d;
F32vec4 Alint i] = float f;

Modify one of the four, single-precision floating-point values of A. Permitted values of i nt i are 0, 1,
2, and 3. For example:

If DEBUG is enabled and i nt i is not one of the permitted values (0-3), a diagnostic message
is printed and the program aborts.

F32vec4 A[3] = float f;
Corresponding intrinsics: none.

Page 422 of 431

Intel® C++ Compiler User's Guide

Load and Store Operators

Loads two, double-precision floating-point values, copying them into the two, floating-point values of A.
No assumption is made for alignment.

voi d | oadu(F64vec2 A, double *p)
Corresponding intrinsic: _mm | oadu_pd

Stores the two, double-precision floating-point values of A. No assumption is made for alignment.

void storeu(float *p, F64vec2 A);
Corresponding intrinsic: _nmm st or eu_pd

Loads four, single-precision floating-point values, copying them into the four floating-point values of A.
No assumption is made for alignment.

voi d | oadu(F32vec4 A, double *p)
Corresponding intrinsic: _nm | oadu_ps

Stores the four, single-precision floating-point values of A. No assumption is made for alignment.

void storeu(float *p, F32vecd A);
Corresponding intrinsic: _mm st or eu_ps

Page 423 of 431

Intel® C++ Compiler User's Guide

Unpack Operators for Fvec Operators

Selects and interleaves the lower, double-precision floating-point values from A and B.

F64vec2 R = unpack_| om F64vec2 A, F64vec2 B);
Corresponding intrinsic: _mm unpackl o_pd(a, b)

Selects and interleaves the higher, double-precision floating-point values from A and B.

F64vec2 R = unpack_hi gh(F64vec2 A, F64vec2 B);
Corresponding intrinsic: _mm unpackhi _pd(a, b)

Selects and interleaves the lower two, single-precision floating-point values from A and B.

F32vec4 R = unpack_| om(F32vec4 A, F32vec4 B);
Corresponding intrinsic: _mm unpackl o_ps(a, b)

Selects and interleaves the higher two, single-precision floating-point values from A and B.

F32vec4 R = unpack_hi gh(F32vec4 A, F32vec4 B);
Corresponding intrinsic: _mm unpackhi _ps(a, b)

Page 424 of 431

Intel® C++ Compiler User's Guide

Move Mask Operator

Creates a 2-bit mask from the most significant bits of the two, double-precision floating-point values of
A, as follows:

int i

= nove_mask(F64vec2 A)

sign(al) <<l |

si gn(a0) <<0

Corresponding intrinsic: _mm novenmask_pd

Creates a 4-bit mask from the most significant bits of the four, single-precision floating-point values of
A, as follows:

int i

= nove_mask(F32vec4d A)

sign(a3)<<3 |

sign(a2)<<2 |

Corresponding intrinsic: _mm nmovenask_ps

Classes Quick Reference

sign(al) <<l |

si gn(a0) <<0

This appendix contains tables listing the class, functionality, and corresponding intrinsics for each
class in the Intel® C++ Class Libraries for SIMD Operations. The following table lists all Intel C++
Compiler intrinsics that are not implemented in the C++ SIMD classes.

Logical Operators: Corresponding Intrinsics and Classes

Operators | Corresponding 1128vecl, | I64vec, | F64vec?2 | F32vec4 | F32vecl
Intrinsic I64vec2, |I132vec,
I32vec4, |I16vec,
116vec8, |I18vec8
I8vecl6
&, &= _mm and_[x] si 128 si 64 pd ps ps
l, |= _mmor _[X] si 128 si 64 pd ps ps
AN _mm xor _[X] si 128 si 64 pd ps ps
Andnot _mm andnot _[x] |si 128 si 64 pd N/A N/A
Arithmetic: Corresponding Intrinsics and Classes
Operators | Corresponding | 164vec2 | 1I32vec4 | I116vec8 | I8vecl6 | 132vec2 | 116vecd | I8vec8 | F¢
Intrinsic
+, += _mm add_|[x] epi 64 |epi32 |epil6 |epi8 pi 32 pi 16 pi 8 pc
-, -= _mm sub_[x] epi 64 |epi32 |epil6 |epi8 pi 32 pi 16 pi 8 pc
¥, *= [_rr{n_rrul lo_ N/A N/A epi 16 | N/A N/A pi 16 N/A pc
X
I, I= _mmdi v_[x] N/A N/A N/A N/A N/A N/A N/A pc

Page 425 of 431

Intel® C++ Compiler User's Guide

mul _hi gh [_n{n_rrul hi _ N/A N/A epi 16 | N/A N/A pi 16 N/A N/
X
mul _add [_n{n_madd_ N/A N/A epi 16 | N/A N/A pi 16 N/A N/
X
sqrt [_n{n_sqr t_ N/A N/A N/A N/A N/A N/A N/A pc
X
rcp _mmrcp_[X] N/A N/A N/A N/A N/A N/A N/A pc
rcp_nr _mmrcp_[x] N/A N/A N/A N/A N/A N/A N/A pc
mm add][x]
—mm sub_[x]
_mm mul _[x]
rsqrt [_n{n_r sqgrt_ N/A N/A N/A N/A N/A N/A N/A pc
X
rsqrt_nr [_n{n_r sqgrt_ N/A N/A N/A N/A N/A N/A N/A pc
X
mm sub[x]
_mm mul _[x]
Shift Operators: Corresponding Intrinsics and Classes
Operators | Corresponding | 1128vecl | I64vec?2 | 132vec4 | 116vec8 | I8vecl6 | I64vecl | 132vec2
Intrinsic
>> >>= _mmsrl _[X] N/A epi 64 |epi32 |epil6 |N/A si 64 pi 32
mmsrli N/A epi 64 |epi32 |epil6 |[N/A si 64 pi 32
[x] N/A N/A epi 32 |epil6 | N/A N/A pi 32
_mmsra__ N/A N/A epi 32 |epil6 | /A N/A pi 32
[x]
_mmsrai _
[x]
<<, <<= _mmsll _[x] N/A epi 64 |epi32 |epil6 |[N/A si 64 pi 32
mmslli_ N/A epi 64 |epi32 |epil6 |[N/A si 64 pi 32
[x]
Comparison Operators: Corresponding Intrinsics and Classes
Operators Corresponding | I32vec4 | I16vec8 | 18vecl6 | I32vec?2 | I16vec4 | I8vec8 | F64vec:
Intrinsic
cnpeq _mm cnpeq_ epi 32 |epil6 |epi8 pi 32 pi 16 pi 8 pd
[x]
cnpneq _mm cnpeq_ epi 32 |epil6 |epi8 pi 32 pi 16 pi 8 pd
[X] si 128 |si 128 |si128 |si64 si 64 si 64
_mm andnot _
[yl™
cnpgt _mm cnpgt _ epi 32 |epil6 |epi8 pi 32 pi 16 pi 8 pd
[x]

Page 426 of 431

Intel® C++ Compiler User's Guide

cnpge _mm cnpge_ epi 32 |epil6 |epi8 pi 32 pi 16 pi 8 pd
[X] si 128 |si 128 |si128 |si64 si 64 si 64
_mm andnot _
[yl™
cnpl t _mmecenplt _ epi 32 |epil6 |epi8 pi 32 pi 16 pi 8 pd
[x]
crpl e _mmecnple_ epi 32 |epil6 |epi8 pi 32 pi 16 pi 8 pd
[X] si 128 |si 128 |si128 |si64 si 64 si 64
_mm andnot _
[yl*
cnpngt _mmecnpngt _ |epi 32 |epil6 |epi8 pi 32 pi 16 pi 8 pd
[x]
cnpnge [_n}n_crrpnge_ N/A N/A N/A N/A N/A N/A pd
X
cmmpnl t [_n{n_c mpnlt _ | N/A N/A N/A N/A N/A N/A pd
X
cnpnl e [_n{n_cnpnl e_ |N/A N/A N/A N/A N/A N/A pd
X
* Note that
_mm andnot _
[y] intrinsics
do not apply to
the f vec
classes.
Conditional Select Operators: Corresponding Intrinsics and Classes
Operators Corresponding | I132vec4 | I16vec8 I8vecl6 | I32vec?2 | 116vec4 | 18vec8 | F6
Intrinsic
sel ect _eq _mm cnpeq_ epi 32 |epi 16 epi 8 pi 32 pi 16 pi 8 pd
[X] si 128 |si1128 si 128 |si 64 si 64 si 64
mm and[Y] si 128 |si 128 si 128 |si 64 si 64 si 64
_mm andnot _ |[si 128 |si 128 si 128 |si 64 si 64 si 64
[yl*
mmor[y]
sel ect_neq |_mm cnpeq_ epi 32 |epi 16 epi 8 pi 32 pi 16 pi 8 pd
[X] si 128 |si1128 si 128 |si 64 si 64 si 64
mm and[Y] si 128 |si 128 si 128 |si 64 si 64 si 64
_mm andnot _ |[si 128 |si 128 si 128 |si 64 si 64 si 64
[yl*
mmor[y]
sel ect _gt _mm cnpgt _ epi 32 |epi 16 epi 8 pi 32 pi 16 pi 8 pd
[X] si 128 |si1128 si 128 |si 64 si 64 si 64
mm and[Y] si 128 |si 128si 128 |si 128 |si64 si 64 si 64
_mm andnot _ |[si 128 si 128 |si 64 si 64 si 64
[yl™
mmor[y]

Page 427 of 431

Intel® C++ Compiler User's Guide

sel ect _ge _mm cnpge_ epi 32 |epi 16 epi 8 pi 32 pi 16 pi 8 pd
[X] si 128 |si 128 si 128 |si 64 si 64 si 64
~mm and_[y] si 128 |si 128 si 128 |si 64 si 64 si 64
_mm andnot _ |si 128 |si 128 si 128 |si64 si 64 si 64
[y]™
mmor[y]
select |t _mmecenplt _ epi 32 |epi 16 epi 8 pi 32 pi 16 pi 8 pd
[X] si 128 |si128 si 128 |si 64 si 64 si 64
~mm and_[y] si 128 |si 128 si 128 |si 64 si 64 si 64
_mm andnot _ |si 128 |si 128 si 128 |si64 si 64 si 64
[y]*
mmor[y]
select _le _mmecnple_ epi 32 |epi 16 epi 8 pi 32 pi 16 pi 8 pd
[X] si 128 |si 128 si 128 |si 64 si 64 si 64
~mm and_[y] si 128 |si 128 si 128 |si 64 si 64 si 64
_mm andnot _ |si 128 |si 128 si 128 |si64 si 64 si 64
[y]*
mmor[y]
sel ect _ngt [_n{n_cnpgt _ N/A N/A N/A N/A N/A N/A pd
X
sel ect _nge [_n{n_cnpge_ N/A N/A N/A N/A N/A N/A pd
X
select _nlt [_n{n_cnpl t_ N/A N/A N/A N/A N/A N/A pd
X
select _nle [_n{n_cnpl e_ N/A N/A N/A N/A N/A N/A pd
X
* Note that
_mm andnot _
[y] intrinsics
do not apply to
the f vec
classes.
Packing and Unpacking Operators: Corresponding Intrinsics and Classes
Operators Corresponding | I64vec?2 | 132vec4 | 116vec8 | I8vecl6 | I32vec?2 | I116vec4 | 18vec
Intrinsic
unpack_hi gh | _nm unpackhi _ |epi 64 |epi 32 |epil6 |epi8 pi 32 pi 16 pi 8
[]
unpack_l ow |_nm unpacklo_ |epi64 |epi32 |epil6 |epi8 pi 32 pi 16 pi 8
[]
pack_sat _mm packs_[x] | N/A epi 32 |epil6 |N/A pi 32 pi 16 N/A
packu_sat _mm packus_ N/A N/A epi 16 | N/A N/A pulé6 N/A
[]
sat _add _mm adds_|[x] N/A N/A epi 16 |epi 8 N/A pi 16 pi 8
sat _sub _mm subs_[x] N/A N/A epi 16 |epi 8 N/A pi 16 pi 8

Conversions Operators: Corresponding Intrinsics and Classes

Page 428 of 431

Intel® C++ Compiler User's Guide

Operators Corresponding
Intrinsic
F64vec2Tol nt _mmcvttsd_si 32

F32vec4ToF64vec2 | _mm cvtps_pd

F64vec2ToF32vec4 | _nmm cvtpd_ps

| nt ToF64vec?2 _mm cvtsi 32_sd

F32vec4Tol nt _mmcvtt_ss2s

F32vec4Tol s32vec2 | _mm cvttps_pi 32

I nt ToF32vec4 _mmcvtsi32_ss

| s32vec2ToF32vec4 | _mm cvt pi 32_ps

Page 429 of 431

Intel® C++ Compiler User's Guide

Programming Example

This sample program uses the F32vec4 class to average the elements of a 20 element floating point
array. This code is also provided as a sample in the file, AvgC ass. cpp.

/1 Include Stream ng SIMD Ext ension Cl ass

Definitions
#i ncl ude <fvec. h>

/1 Shuffle any 2 single precision floating point froma
/[l into low 2 SP FP and shuffle any 2 SP FP fromb
/1 into high 2 SP FP of destination

#defi ne SHUFFLE(a, b,i) (F32vec4)_mm shuffle_ps(a,b,i)
#i ncl ude <stdio. h>
#define SIZE 20

// d obal variables
float result;
_MM ALIGN 16 fl oat array[Sl ZE];

/***

/

/1 Function: Add20ArrayEl ements

/1 Add all the elenents of a 20 el enent array
/

/***

voi d Add20ArrayEl enents (F32vec4 *array, float *result)

F32vec4 vecO, vecl;
vecO = _mmload_ps ((float *) array);

/1 Load array's first 4 floats

//***

/1 Add all elenments of the array, 4 elenments at a tine
//**

Add el ements 5-8

Add el enents 9-12
Add el ements 13-16
Add el enents 17-20

vecO += array[1];
vecO += array| 2];
vecO += array| 3];
vecO += array| 4]

LR R R R R R R R O I I R I S R I S R

11
/1l There are now 4 partial sums. Add the 2 lowers to the 2 raises,
11
11

then add those 2 results together
ER R R R R I R R R R I I I R I I R R R R R R R R IR R R I I I I I R O R R R R IR IR R I I I O O O

vecl = SHUFFLE(vecl, vecO, 0x40);

vecO += vecl,

vecl = SHUFFLE(vecl, vecO, 0x30);

vecO += vecl,

vecO = SHUFFLE(vecO, vecO, 2);

_mmstore_ss (result, vecQ); // Store the final sum

}

void main(int argc, char *argv[])
{

int i;

/1 Initialize the array

Page 430 of 431

Intel® C++ Compiler User's Guide

for (i=0; i < SIZE; i++)

{

array[i] = (float) i;

}

/1 Call function to add all array el ements
Add20ArrayEl ements(array, & esult);

/1 Print average array el enent val ue

printf ("Average of all array values = %\n",

result/20.);

printf ("The correct answer is %\n\n\n", 9.5);

Page 431 of 431

	Intel® C++ Compiler User's Guide
	Introduction
	Welcome to the Intel C++ Compiler
	Disclaimer
	What's New in This Release
	Features and Benefits
	Product Web Site and Support
	System Requirements
	FLEXlm* Electronic Licensing
	How to Use This Document
	Related Publications

	Compiler Options Quick Reference
	Overview: Options Quick Reference Guides
	New Options
	Compiler Options Quick Reference Guide
	Functional Groups Listing
	Customizing Compilation Options
	Alternate Tools and Locations
	Preprocessing Options
	Controlling Compilation Flow
	Controlling Compilation Output
	Debugging Options

	Language Conformance
	Conformance Options

	Application Performance Optimization Optioms
	Optimization-level Options
	Processor Optimizations
	Interprocedural Optimizations
	Profile-guided Optimizations
	High-level Language Optimizations
	Optimization Reports

	Compiler Options Cross Reference
	Compiler Options Cross Reference

	Getting Started with the Intel C++ Compiler
	Invoking the Compiler
	Invoking the Compiler from the Command Line
	Invoking the Compiler from the Command Line with make
	Compiler Input Files
	Behavior of the Compiler
	Default Compiler Options
	Default Behavior of the Compiler
	Compilation Phases

	Customizing the Compilation Environment
	Customizing the Compilation Environment
	Environment Variables
	Configuration Files
	Response Files
	Include Files

	Customizing the Compilation Process
	Overview: Customizing Compilation Process
	Specifying Alternate Tools and Paths
	Preprocessing
	Overview: Preprocessing
	Preprocessing Only
	Preprocessing Directive Equivalents
	Predefined Macros

	Compiling
	Overview: Compilation
	Controlling Compilation
	Monitoring Data Settings

	Linking
	Linking

	Debugging
	Overview: Debugging Options
	Preparing for Debugging
	Support for Symbolic Debugging
	Parsing for Syntax and Semantics Only

	Language Conformance
	Conformance to the C Standard
	Conformance to the C++ Standard

	Optimizations
	Optimization Levels
	Overview: Optimization Levels
	Setting Optimization Levels
	Restricting Optimizations

	Floating-point Optimizations
	Floating-point Arithmetic Precision
	Floating-point Arithmetic Options for Itanium(R)-based Systems

	Optimizing for Specific Processors
	Processor Optimization
	Processor-specific Optimization (IA-32 only)
	Auto CPU Dispatch (IA-32 only)
	Combining Processor Optimization and Auto CPU Dispatch (IA-32 only)

	Interprocedural Optimizations
	Interprocedural Optimizations
	Multifile IPO
	Overview: Multifile IPO
	Compilation with Real Object Files
	Creating a Multifile IPO Executable
	Creating a Multifile IPO Executable with xild
	Creating a Library from IPO Objects
	Analyzing the Effects of Multifile IPO

	Using -ip or -ipo with -Qoption Specifiers
	Inline Expansion of Functions
	Controlling Inline Expansion of User Functions
	Criteria for Inline Function Expansion

	Profile-guided Optimization
	Overview: Profile-guided Optimizations
	Profile-guided Optimizations Methodology
	Basic PGO Options
	Example of Profile-guided Optimization
	PGO Environment Variables
	Using profmerge to Relocate the Source Files
	PGO API: Profile Information Generation
	PGO API Support Overview
	Dumping Profile Information
	Resetting the Dynamic Profile Counters
	Dumping and Resetting Profile Information
	Interval Profile Dumping
	Environment Variable

	High-level Language Optimizations
	HLO Overview
	Loop Transformations
	Loop Unrolling
	Absence of Loop-carried Memory Dependency

	Parallelization
	Overview: Parallelization Options
	Parallelization with OpenMP*
	Overview: Parallelization with OpenMP*
	Parallel Processing Thread Model
	Compiling with OpenMP, Directive Format, and Diagnostics
	OpenMP* Directives and Clauses
	OpenMP* Support Libraries
	OpenMP* Environment Variables
	OpenMP* Run-time Library Routines
	Intel Extensions
	Intel Extensions
	Workqueuing Model
	Overview: Intel Workqueuing Model
	Workqueuing Constructs
	Example Function

	Examples of OpenMP* Usage

	Auto-parallelization
	Overview: Auto-parallelization
	Programming with Auto-parallelization
	Auto-parallelization: Enabling, Options, and Environment Variables
	Auto-parallelization Threshold Control and Diagnostics

	Vectorization
	Overview: Vectorization
	Vectorizer Options
	Loop Parallelization and Vectorization
	Vectorization Key Programming Guidelines
	Data Dependence
	Loop Constructs
	Loop Exit Conditions
	Types of Loops Vectorized
	Stripmining and Cleanup
	Statements in the Loop Body
	Language Support and Directives
	Vectorization Examples
	Loop Interchange and Subscripts: Matrix Multiply

	Optimization Support Features
	Optimization Support Features Overview
	Compiler Directives
	Compiler Directives
	Pipelining for Itanium®-based Applications
	Loop Count and Loop Distribution
	Loop Unrolling Support
	Prefetching Support
	Vectorization Support (IA-32)

	Timing Your Application
	Optimizer Report Generation

	Libraries
	Overview: Libraries
	Default Libraries
	Intel® Shared Libraries
	Managing Libraries
	Intel Math Library
	Overview: Intel Math Library
	Using the Intel Math Library
	Math Functions
	Trigonometric Functions
	Hyperbolic Functions
	Exponential Functions
	Special Functions
	Nearest Integer Functions
	Remainder Functions
	Miscellaneous Functions
	Complex Functions

	Diagnostics and Messages
	Overview: Diagnostics and Messages
	Diagnostic Messages
	Language Diagnostics
	Suppressing Warning Messages with lint Comments
	Suppressing Warning Messages or Enabling Remarks
	Limiting the Number of Errors Reported
	Remark Messages

	gcc Compatibility
	gcc Compatibility

	Reference Information
	Compiler Limits
	Compiler Limits

	Key Files
	Key Files Summary for IA-32
	Key Files Summary for Itanium®-based Systems

	Intel C++ Intrinsics Reference
	Overview
	Types of Intrinsics
	Benefits of Using Intrinsics
	Naming and Usage Syntax

	Intrinsics Implementation for All IA
	Intrinsics for All IA
	Integer Arithmetic Related
	Floating-point Related
	String and Block Copy Related
	Miscellaneous Intrinsics

	MMX(TM) Technology Intrinsics
	Support for MMX(TM) Technology
	The EMMS Instruction: Why You Need It
	EMMS Usage Guidelines
	MMX(TM) Technology General Support Intrinsics
	MMX(TM) Technology Packed Arithmetic Intrinsics
	MMX(TM) Technology Shift Intrinsics
	MMX(TM) Technology Logical Intrinsics
	MMX(TM) Technology Compare Intrinsics
	MMX(TM) Technology Set Intrinsics
	MMX(TM) Technology Intrinsics on Itanium® Architecture

	Streaming SIMD Extensions
	Intrinsics Support for Streaming SIMD Extensions
	Floating-point Intrinsics for Streaming SIMD Extensions
	Arithmetic Operations for Streaming SIMD Extensions
	Logical Operations for Streaming SIMD Extensions
	Comparisons for Streaming SIMD Extensions
	Conversion Operations for Streaming SIMD Extensions
	Load Operations for Streaming SIMD Extensions
	Set Operations for Streaming SIMD Extensions
	Store Operations for Streaming SIMD Extensions
	Cacheability Support Using Streaming SIMD Extensions
	Integer Intrinsics Using Streaming SIMD Extensions
	Memory and Initialization Using Streaming SIMD Extensions
	Miscellaneous Intrinsics Using Streaming SIMD Extensions
	Using Streaming SIMD Extensions on Itanium® Architecture
	Macro Functions
	Macro Function for Shuffle Using Streaming SIMD Extensions
	Macro Functions to Read and Write the Control Registers
	Macro Function for Matrix Transposition

	Streaming SIMD Extensions 2
	Overview: Streaming SIMD Extensions 2 Intrinsics
	Floating-point Arithmetic Operations for Streaming SIMD Extensions 2
	Logical Operations for Streaming SIMD Extensions 2
	Comparison Operations for Streaming SIMD Extensions 2
	Conversion Operations for Streaming SIMD Extensions 2
	Streaming SIMD Extensions 2 Floating-point Memory and Initialization Operations
	Load Operations for Streaming SIMD Extensions 2
	Set Operations for Streaming SIMD Extensions 2
	Store Operations for Streaming SIMD Extensions 2
	Miscellaneous Operations for Streaming SIMD Extensions 2
	Integer Arithmetic Operations for Streaming SIMD Extensions 2
	Integer Logical Operations for Streaming SIMD Extensions 2
	Integer Shift Operations for Streaming SIMD Extensions 2
	Integer Comparison Operations for Streaming SIMD Extensions 2
	Conversion Operations for Streaming SIMD Extensions 2
	Cacheability Support Operations for Streaming SIMD Extensions 2
	Miscellaneous Operations for Streaming SIMD Extensions 2
	Streaming SIMD Extensions 2 Integer Memory and Initialization
	Integer Load Operations for Streaming SIMD Extensions 2
	Integer Set Operations for Streaming SIMD Extensions 2
	Integer Store Operations for Streaming SIMD Extensions 2

	Intrinsics for Itanium® Instructions
	Overview: Intrinsics for Itanium® Instructions
	Native Intrinsics for Itanium® Instructions
	Lock and Atomic Operation Related Intrinsics
	Load and Store
	Operating System Related Intrinsics for Itanium®-based Systems
	Conversion Intrinsics Itanium®-based Systems
	Register Names for getReg() and setReg()
	Multimedia Additions for Itanium®-based Systems

	Data Alignment, Memory Allocation Intrinsics, and Inline Assembly
	Overview: Data Alignment, Memory Allocation Intrinsics, and Inline Assembly
	Alignment Support
	Allocating and Freeing Aligned Memory Blocks
	Inline Assembly

	Intrinsics Cross-processor Implementation
	Intrinsics Cross-processor Implementation
	Intrinsics for Implementation Across All IA
	MMX(TM) Technology Intrinsics Implementation
	Streaming SIMD Extensions Intrinsics Implementation
	Streaming SIMD Extensions 2 Intrinsics Implementation

	Intel C+ Class Libraries
	Introduction
	Welcome to the Class Libraries
	Hardware and Software Requirements
	About the Classes

	Technical Overview
	Details About the Libraries
	C++ Classes and SIMD Operations
	Capabilities

	Integer Vector Classes
	Overview: Integer Vector Classes
	Terms, Conventions, and Syntax
	Rules for Operators
	Assignment Operator
	Logical Operators
	Addition and Subtraction Operators
	Multiplication Operators
	Shift Operators
	Comparison Operators
	Conditional Select Operators
	Debug
	Unpack Operators
	Pack Operators
	Clear MMX(TM) Instructions State Operator
	Integer Intrinsics for Streaming SIMD Extensions
	Conversions Between Fvec and Ivec

	Floating-point Vector Classes
	Overview: Floating-point Vector Classes
	Fvec Notation Conventions
	Data Alignment
	Conversions
	Constructors and Initialization
	Arithmetic Operators
	Minimum and Maximum Operators
	Logical Operators
	Compare Operators
	Conditional Select Operators for Fvec Classes
	Cacheability Support Operations
	Debugging
	Load and Store Operators
	Unpack Operators for Fvec Operators
	Move Mask Operator

	Classes Quick Reference
	Programming Example

