
PHYSICS 210

SOLUTION OF N-BODY PROBLEMS
USING FDAS

1. PHYSICAL & MATHEMATICAL
FORMULATION

m
1

m
2

O

2
r

r
1

12

12
F

2
r = r − r

1

1

1.1 Derivation of the equations of motion

• Consider N point particles, labelled by an index i, with masses mi

mi i = 1, 2, . . . N

and position vectors, ri(t)

ri(t) ≡ [xi(t), yi(t), zi(t)] i = 1, 2, . . . N

where we have established a standard set of Cartesian coordinates (x, y, z) with
some arbitrarily chosen origin (In practice, however, it may be most convenient
to choose the origin at the center of mass of the system).

• We wish to study the dynamics of the system due to the (attractive)
Newtonian gravitational force exerted by each particle on every other particle.

2

• Combining Newton’s second law, as well as his law of gravitation, we have the
basic equations of motion in vector form

mi ai = G

N∑
j=1, j 6=i

mimj

r2ij
r̂ij , i = 1, 2, . . . N , 0 ≤ t ≤ tmax (1)

where

• ai = ai(t) is the acceleration of the i-th particle

• G is Newton’s gravitational constant

• rij is the magnitude of the separation vector rij between particles i and j:

rij ≡ rj − ri

rij ≡ |rj − ri|
and we recall that the magnitude of any vector, w = [wx, wy, wz] is given
by:

w ≡ |w| =
√
w2
x + w2

y + w2
z

3

• r̂ij is the unit vector in the direction from particle i to particle j (i.e. in the
direction of the separation vector:)

r̂ij ≡
rj − ri
rij

(2)

• From now on, for brevity of notation we will use

N∑
j=1, j 6=i

→
∑
j

and i = 1, 2, . . . , N and 0 ≤ t ≤ tmax will be implied.

4

• For the purposes of computation, it turns out to be more convenient to use (2)

r̂ij ≡
rj − ri
rij

(3)

in (1) to get

mi ai = G
∑
j

mimj

r3ij
rij (4)

where we note that

r3ij =
[
(xj − xi)2 + (yj − yi)2 + (zj − zi)2

]3/2
• It is also convenient to “non-dimensionalize” the system of equations, which in

this case means choosing units in which G = 1, which we will hereafter do

5

1.2 Non-dimensionalization

• We again consider the process of non-dimensionalization as we did for the case
of the nonlinear pendulum, but in this case in slightly more generality, and
slightly more formally

• The key observation is that if we have a problem in mechanics that involves up
to three parameters pk, k = 1, 2, 3 which have distinct dimensions

Mαk Lβk T γk

where L, M and T denote length, mass and time respectively, and the αk, βk
and γk are generally integers, then we can always choose a system of units in
which p1 = p2 = p3 = 1.

• Note that in the current case we have a single dimension-ful parameter, G

[G] = M−1L3T−2

(so α = −1, β = 3 and γ = −2).

6

• There are thus many (infinitely many) different ways that we can choose a
system of units in which the Newton constant satisfies, G = 1, and we will now
assume that we are working in such a system

• It is important to note that although non-dimensionalizing simplifies actual
calculations (we don’t have to keep track of parameters that are essentially
irrelevant for the mathematics), it has the drawback that one must generally
convert back-and-forth between the non-dimensional set of units, and the
desired set (MKS for example) to make contact with specific physical setups
(e.g. dynamics of the solar system).

• For the purposes of your term projects, you should work with G = 1.

• The issue of non-dimensionalization also applies to the masses of the particles

• Rather than thinking about the masses being given in some specific unit,
kilogram, mass of the sun etc., it is more convenient to view the numbers
assigned to the mi as being relative to the mass of some particular particle

7

• For example, we can choose one of the particles, with label I, say, and then
work in units such that mI = 1 (while still keeping G = 1, since we can make a
total of three transformations to fix the units of M , L and T)

• Then, for example, if mi = 2, this means that, physically, the i-th particle is
twice as massive as the I-th

• Note that with G = 1, and typical masses specified as values close to unity, the
characteristic distances (separations) at which the bodies will strongly interact
will be of order unity as well, and their speeds will also tend to be of order unity

• This is simply a reflection that non-dimensionalization is equivalent to the use
of units that are natural for the problem; i.e. units in which the dynamical
unknowns have values that are “close to” 1; i.e./e.g. not 1012 or 10−13 as they
might be if some “non-natural” system were used

• You should also use this type of non-dimensionalization in your projects rather
than, for example, trying to model our solar system (which isn’t particularly
recommended due to the simplicity and essential linearity of the dynamics)
using distances in meters and masses in kilograms

8

Derivation of EOM (continued)

• Getting back to the equations of motion, the accelerations of the particles are

ai(t) =
d2ri(t)
dt2

(recall that i = 1, 2, . . . , N is implied) so with G = 1, equation (4) becomes

mi ai = mi
d2ri
dt2

=
∑
j

mimj

r3ij
rij

and then dividing both sides of the above equation by mi, we have the
second-order differential equations of motion for the vector quantities ri that
govern the system of N particles

d2ri
dt2

=
∑
j

mj

r3ij
rij (5)

9

• Note that the particle mass mi has “dropped” out of the equations, since it
appears in both the “miai” on the left hand side of the second law, and in all
of the forces acting on particle i on the right hand side

• Among other things, this means that there is no difficulty in computing the
motion of “test particles”; i.e. particles with (effectively) zero-mass, but which
nonetheless are subject to gravitational forces

• In particular, this is the case for the particles representing stars in the Toomre
model of galaxy collisions

• As a side note, we also observe that the fact that mi appears in all terms of
Newton’s second law for the problem—i.e. on both the left and right hand
sides—and that it thus “cancels”, is ultimately a deep observation that
underlies Einstein’s theory of general relativity (equivalence principle)

10

• Now, in order to compute a specific solution of the differential equations of
motion (which is the only thing that we can do/model with a computer), we
must supply initial conditions, which in this case are the initial positions and
initial velocities of the particles, i.e.

ri(0) = r0i i = 1, 2, . . . , N (6)

vi(0) ≡ dr
dt

(0) = v0i i = 1, 2, . . . , N (7)

where r0i and v0i are specified vectors (3 components each, so 6 scalar values
for each particle, for a total of 6N numbers)

• For computational (numerical) purposes, it is most convenient to express (5),
(6) and (7) in “Cartesian form”—i.e. we take x, y and z components—then we
have

d2xi(t)
dt2

=
∑
j

mj

r3ij
(xj − xi) (8)

d2yi(t)
dt2

=
∑
j

mj

r3ij
(yj − yi) (9)

11

d2zi(t)
dt2

=
∑
j

mj

r3ij
(zj − zi) (10)

and we again note that i = 1, 2, . . . , N is implicit in the above and following
equations, i.e. the equations hold for each and every particle

• The component-form of the initial conditions take the form

xi(0) = xi0 (11)

yi(0) = yi0 (12)

zi(0) = zi0 (13)

vxi(0) = vxi0 (14)

vyi(0) = vyi0 (15)

vzi(0) = vzi0 (16)

where the xi0, yi0, zi0, vxi0, xyi0 and vzi0 are given values (again, 6 values per
particle)

12

2. SOLUTION VIA FINITE DIFFERENCE
APPROXIMATION

13

2.1 Discretization: Step 1—Finite Difference Grid

• The continuum domain is
0 ≤ t ≤ tmax

• We will assume that we can proceed using a uniform time mesh (i.e. constant
time step) as usual (however, it is important to know that for general N -body
calculations this will not be a good assumption, particularly if particles start
“clumping”)

• We can thus use the same type of grid that we did for the pendulum problem

l = 3

1 2 3 4t 5 6t 7t 8t 9

∆

t tt

t

t

t t

t = t
 = 9n

t = 0
max

where, as before, the superscript labels the discrete time step, (t→ tn), and is
not to be confused with a power

14

• As before we can specify the number of time steps and the mesh spacing via
the integer-valued level parameter, `

nt = 2` + 1

∆t =
tmax

nt − 1
= 2−`tmax

tn = (n− 1)∆t, n = 1, 2, . . . , nt

• For your term projects, fixing tmax and using ` to determine the mesh
parameters will be convenient for development, debugging, and testing—and
especially for convergence tests

• However, when you start to do actual numerical experiments—modeling of
specific scenarios—you will generally have to “play around” with tmax, so that
the integration time (we use the terminology “integrate the equations of
motion” synonymously with “solve the equations of motion”) is long enough to
see the behaviour of interest.

• You should then choose ` so that your results are acceptably accurate, subject
to limits on the amount of simulation time (wall-clock time) that are available
to complete the modeling before the project due date!

15

2.2 Discretization: Steps 2 & 3
Derivation & Solution of FDAs

• We now want to convert the continuum equations to a discrete form

• We illustrate the procedure for xi(t): yi(t) and zi(t) can be treated in identical
fashion (and i = 1, 2, . . . , N is still implicit in the following)

• We adopt the finite difference notation (grid function notation)

xni = xi(tn)

where we continue to use the superscript n to denote the discrete step number

• Need approximation for the second time derivative: use usual second order
centred formula

d2xi(t)
dt2

∣∣∣∣
t=tn
→ xn+1

i − 2xni + xn−1
i

∆t2
(17)

16

• Substituting in (8), we have

xn+1
i − 2xni + xn−1

i

∆t2
=
∑
j

mj(
rnij
)3 (xnj − xni) n+ 1 = 3, 4, . . . , nt (18)

• We view this as an equation for the advanced-time values xn+1
i , assuming that

the values xni and xn−1
i are known

• Solving explicitly for xn+1
i we have

xn+1
i = 2xni − xn−1

i + ∆t2
∑
j

mj(
rnij
)3 (xnj − xni) n+ 1 = 3, 4, . . . , nt (19)

• This last equation (plus the corresponding equations for yn+1
i and zn+1

i) are
our basic finite difference equations for the N -body problem.

17

• We also need to deal with the initial conditions, and, again since we are using a
three-time-level scheme, we need to determine values for x1

i = xi(0) and
x2
i = xi(∆t)

• The values for x1
i follow immediately from the initial conditions

x1
i = xi0

but by the same reasoning we appealed to for the pendulum simulation, we
need to use Taylor series expansion to determine the values x2

i to O(∆t2)
accuracy (i.e. including the O(∆t2) term)

x2
i = xi(∆t) = xi(0) + ∆t

dxi
dt

(0) +
1
2

∆t2
d2xi
dt2

(0) +O(∆t4) (20)

18

• We then substitute the initial conditions for the particle positions and velocities
(x components), and, importantly, use the equation of motion (8) to eliminate
the second time derivative (again, this is the same procedure that we followed
for the pendulum case), to get

x2
i = xi0 + ∆t vxi0 +

1
2

∆t2
∑
j

mj

r3ij0
(xj0 − xi0) (21)

where

r3ij0 =
[
(xj0 − xi0)2 + (yj0 − yi0)2 + (zj0 − zi0)2

]3/2
(22)

• Keep in mind that we have two other sets of equations and initial values for the
yni and zni

• If we wish to consider 2D motion, we can simply set all of the zi0 and vzi0 to 0

19

2.3 Convergence Testing

• We can apply the same techniques of convergence testing discussed in the
nonlinear pendulum notes to the FDA solution of the gravitational N -body
problem

• For example, denoting the solution for the x coordinate of some specific
particle computed at level ` as x`(tn) (i.e. we have suppressed the particle
index to minimize notational confusion) and assuming that the FDA equations
have been implemented properly (including those needed to initialize the
scheme, x`(0) and x`(∆t`)), we can expect

x?(tn)− x`(tn) = ∆t`2 e2(tn) + . . .

where e2 is the leading order (dominant) error function

20

• We can then, for example, fix initial conditions, run calculations at
discretization levels `, `+ 1, `+ 2, `+ 3... (as many levels as we want and/or
as are feasible) and verify that plots of

x`(tn)− x`+1(tn)

4× (x`+1 (tn)− x`+2 (tn))

16× (x`+2 (tn)− x`+3 (tn))

etc., approach coincidence as ` increases

• The convergence test can be applied to the discrete solutions for x, y and z,
and for all particles

• Note: It is best to perform these tests for cases with a few particles (small N),
and for relatively short integration times

• For many particles, long integration times or when particles get close to one
another, you are not likely to see good convergence

21

• This is especially the case for large values of N where the problem becomes
very sensitive to initial conditions (i.e. “chaotic” behaviour ensues)

• However, the central use of convergence testing is to validate your
implementation, i.e. to demonstrate explicitly and intrinsically—without resort
to comparison with known or previously computed solutions—that there aren’t
any bugs/defects in your code

• The point is—and this is again typical of numerical simulations—once you have
established your program’s correctness for a few “suitably general” initial
conditions (perhaps even one set of initial values), there is no reason to expect
that it’s not correct for any input

• At that juncture, there’s nothing much more you can do with the code per
se—what you get is what you get, relative to the method that has been
adopted—if you’re not satisfied with the results, you will need to improve the
simulation approach

22

2.4 Energy Quantities and Energy Conservation

• The total kinetic energy for the collection of N particles is

T (t) =
N∑
i=1

1
2
mi vi

2 =
N∑
i=1

1
2
mi

(
v2
xi

+ v2
yi

+ v2
zi

)
(23)

• The total potential energy is

V (t) = −
N∑
i=1

N∑
j=i+1

mimj

rij
(24)

• Important: Note the second summation in the above is limited to values of j
that are strictly greater than i.

If we summed over all values of j—i.e. so that the lower limit of the second
sum was 1—we would “double count” the potential energy contributions
(think, e.g., of the two-particle case where there is only one contribution)

23

• The total conserved energy is

E(t) = T (t) + V (t) (25)

• Again, parallelling the pendulum calculations, we can compute discrete versions
of these quantities, and especially for small numbers of particles, we can test
for convergence of

dE(t) = E(t)− E(0)

as one way of establishing code correctness (refer to the pendulum notes for
more details)

• Important note for the Toomre problem: Only the total energy associated
with the massive particles (i.e. those representing the galactic cores) is
conserved in this case

• The sum of the KE and PE for any/all of the test particles will not be
conserved in general, so bear this in mind in your testing

24

3. IMPLEMENTATION IN MATLAB

• Use multi-dimensional arrays to the store the particle positions

• Ideally store entire solution (i.e. all time steps) in one array, as we did in the
pendulum example (if you run into memory limitations using very large
numbers of particles and/or time steps, ask for further implementation
suggestions as necessary)

• For example, create and (for efficiency) “zero” a 3-dimensional array r via

r = zeros(np, 3, nt);

np: number of particles
nt: total number of time steps

• In particular, this specific representation, with the particle, spatial coordinate,
and time dimension in the precise order given above, is necessary if you want to
use the instructor-supplied functions to output the results for subsequent
visualization with the xfpp3d utility that will be demoed in the lab

25

• Then we will have the following correspondences

r(i, 1, n) ≡ xni

r(i, 2, n) ≡ yni

r(i, 3, n) ≡ zni

and although the translation of the difference equations to Matlab will be more
involved than it was for the pendulum example, it should be a relatively
straightforward process if you proceed carefully

26

• It is important to emphasize that we are using the second dimension of the
array r to enumerate the three coordinates x, y and z. We can thus use
Matlab’s “colon” notation for specifying all elements along that dimension to
simplify/shorten code, e.g.

r(i, :, n)

for specific values of i and n is a 3-element vector containing the 3 Cartesian
components of particle i’s position at time tn, so that

r(i, :, n + 1)− r(i, :, n)

(again, for example) is the change from one time step to the next of all 3
components of the particle’s position

• Note that the computation of the contributions to the acceleration on any
particle due to the forces from all of the other particles, as given—for the case
of the x-positions—by the right hand side of equation (18), is used in two
places—the basic update equation (19) and the initialization of the values at
t2 → t = ∆t, equation (21).

27

• You can thus simplify the overall program, including development/debugging,
by “factoring” the code and writing a separate acceleration-computing function
with a header

function [a] = nbodyaccn(m, r)

m: Vector of length N containing the particle masses
r: N x 3 array containing the particle positions
a: N x 3 array containing the computed particle accelerations

• You can expect to use nested for loops to compute all elements of a

• For the Toomre model, storage of all of the particle positions—for the cores as
well as all of the stars—in a single multidimensional array is still advocated,
since it will ultimately lead to cleaner code, and will facilitate visualization
using instructor-supplied routines

• In this case you will have to work a little harder with “bookkeeping” to come up
with a scheme for enumerating the various types of particles so that they can
still be referenced with a single array index: ask if you need assistance with this

28

3.1 Suggested test case

• A good, non-trivial configuration that you can use to develop and test your
implementation describes two particles with arbitrary masses in mutual circular
orbit about their center of mass, and in the x-y plane.

• Exercise: Let the particle masses be m1 and m2, respectively, and let the
particles be separated by a distance d. Let the initial position and velocity
vectors be

r1(0) = (d1, 0, 0)

r2(0) = (−d2, 0, 0)

v1(0) = (0, v1, 0)

v2(0) = (0,−v2, 0)

where d1, d2, v1 and v2 are all positive quantities, so that the distance between
the particles is d = d1 + d2.

29

• Show that if

d1 =
m2

m
d

d2 =
m1

m
d

v1 =
√
m2d1

d

v2 =
√
m1d2

d

where m = m1 +m2 is the total mass of the system, then the particles will
execute circular orbits about the center of mass.

• Note: If you do use this configuration to develop/test your code, I expect that
you will include the verification (or derivation) of the above results in your
writeup.

30

4. ELECTROSTATIC N-BODY PROBLEM

(Charges-on-a-sphere problem (COSP) or similar)

31

4.1 Derivation of the equations of motion

• Let us now consider a collection of N point charges, with charges qi and
masses mi:

mi , i = 1, 2, . . . N

qi , i = 1, 2, . . . N

• Defining a coordinate system and position vectors precisely as we did for the
gravitational case, we have the electrostatic equations of motion:

mi ai = mi
d2ri

dt2
= −ke

N∑
j=1, j 6=i

qi qj
r2ij

r̂ij , i = 1, 2, . . . N , 0 ≤ t ≤ tmax

(26)
where ke is Coulomb’s constant (note the − sign relative to (1), since there is a
repulsive force between charges of the same sign).

• However, in this case we demand that the charges remain on the surface of a
sphere. Let us assume that the radius of the sphere is R and that it is centred
at the origin of our coordinate system, (0, 0, 0).

32

• We observe that the choice of R is essentially arbitrary, and will have no effect
on the equilibrium positioning of the N charges. Thus we set R = 1.

• Then we must have

ri ≡ |ri| ≡
√
x2
i + y2

i + z2
i = 1 , i = 1, 2, . . . N

• The simplest form of COSP has identical charges, i.e. equal masses and equal
charges (of the same sign). This is the version that you should implement in
your term projects, at least to begin with.

• In this case, it is convenient to non-dimensionalize (and, once more, this is
always possible!), so that

mi = 1 , i = 1, 2, . . . N

qi = 1 , i = 1, 2, . . . N

ke = 1

33

• Eqn (26) then becomes simply

ai = −
∑
j

r̂ij
r2ij

= −
∑
j

rj − ri
r3ij

(27)

where, as before, we are now using

N∑
j=1, j 6=i

→
∑
j

with i = 1, 2, . . . , N and 0 ≤ t ≤ tmax implied.

• Now, the basic idea behind COSP is to start the N charges at some arbitrary
positions on the sphere and, most conveniently, with no velocity. We then use
dynamical evolution to find the (an?) equilibrium configuration. In order for
the charges to “settle down” to that configuration, we must add some
dissipation (friction) to the system.

34

• A straightforward way to do this is to add a term to the equation of motion that
is proportional to the velocity, and which retards the motion, i.e. (27) becomes

ai = −
∑
j

rj − ri
r3ij

− γvi (28)

where γ is an adjustable parameter which controls the amount of dissipation
(and which is something that you will need to experiment with in your
implementation)

35

• Although at first glance it might not seem entirely natural for this problem, it is
still best to use Cartesian components of (28) in simulations.

• Doing this gives us the final form of the equations of motion:

d2xi(t)
dt2

= −
∑
j

(xj − xi)
r3ij

− γdxi
dt

(29)

d2yi(t)
dt2

= −
∑
j

(yj − yi)
r3ij

− γdyi
dt

(30)

d2zi(t)
dt2

= −
∑
j

(zj − zi)
r3ij

− γdzi
dt

(31)

36

4.2 Discretization: FDAs

• We can now discretize equations (29-31) exactly as we did for the gravitational
case, except that now we need to handle the velocity (friction) term, for which
we use the O(∆t2) centred approximation for the first derivative, e.g.

dxi(t)
dt

∣∣∣∣
t=tn
≈ xn+1

i − xn−1
i

2∆t
(32)

• Thus our discretization of the equation of motion in the x-direction (29) is

xn+1
i − 2xni + xn−1

i

∆t2
= −

∑
j

(
xnj − xni

)(
rnij
)3 − γ

xn+1
i − xn−1

i

2∆t
n+1 = 3, 4, . . . , nt

(33)
and the y and z equations have precisely the same form.

• I will leave it to you to solve (33) (as well as the y and z eqns.) for the
advanced-time unknowns, xn+1

i

37

• As mentioned above, you can initialize the particle positions arbitrarily (just
don’t put two or more in the same place!) and the easiest thing to do is to set
the initial velocities to 0.

• Unlike the gravitational N -body case, we are only interested in the final,
equilibrium configuration of the charges here, not in the details of the dynamics.

• This means that there is no need to use the Taylor series technique to
“properly” initialize the values x2

i , y
2
i , z2

i . Assuming that the initial velocities
are 0, it will suffice to set x2

i = x1
i , y

2
i = y1

i and z2
i = z1

i ,

38

4.3 Constraining the charges to the sphere

• Important: At all time steps, you must ensure that the charges are on the unit
sphere. When you use (33) (and the y and z equations) to advance the system
by ∆t, the charges will generally move off the sphere. One easy way to get
them back on the surface is to simply “project” them along their position
vectors (from the origin).

• I.e. assuming that x̃n+1
i , ỹn+1

i and z̃n+1
i are the provisional values of the charge

coordinates after the time step, then setting

xn+1
i =

x̃n+1
i

r̃i
yn+1
i =

ỹn+1
i

r̃i
zn+1
i =

z̃n+1
i

r̃i

where

r̃i =
√

(x̃n+1
i)2 + (ỹn+1

i)2 + (z̃n+1
i)2

will place the charges back on the sphere.

• You should convince yourself that this works!

39

• Note the other significant differences from the gravitational problem

• Energy is not conserved here, so there is no point in checking for its
conservation

• The details of the COSP dynamics are not of much concern—it is the final
states that are important—so it is not crucial that the time evolution be
simulated very accurately

• Largely because of this, convergence tests will be of limited significance and
do not need to be included as part of your report

• You have the advantage that you know where the charges should be—on the
surface of the sphere

• A key challenge will be determining when equilibrium has been attained and
that the final states your simulation yields really are equilibria

• The implementation hints for the gravitational case also apply here: in
particular, I recommend that you store the positions of the particles in a three
dimensional array with dimensions ncharges × 3 × nt.

• You may also find it useful to compute and monitor the total potential energy,
V (t) (use a formula analogous to (24)) during the simulations

40

