
PHYS 210: Introduction to Computational Physics
Finite Difference Solution of N-Body Problems

Note: This document is subject to update, but the current version will always be available via the course

notes page

1. THE GRAVITATIONAL N-BODY PROBLEM

1.1 Physical & Mathematical Formulation

• Consider N point particles, labelled by an index i, with masses mi

mi i = 1, 2, . . . N

and position vectors, ri(t)

ri(t) ≡ [xi(t), yi(t), zi(t)] i = 1, 2, . . . N

where we have established a standard set of Cartesian coordinates (x, y, z) with some arbitrarily
chosen origin (In practice, however, it may be most convenient to choose the origin at the center of
mass of the system).

• We wish to study the dynamics of the system due to the (attractive) Newtonian gravitational force
exerted by each particle on every other particle.

• Combining Newton’s second law, as well as his law of gravitation, we have the basic equations of
motion in vector form

mi ai = G

N
∑

j=1, j 6=i

mi mj

r2
ij

r̂ij , i = 1, 2, . . . N , 0 ≤ t ≤ tmax (1)

where

– ai = ai(t) is the acceleration of the i-th particle

– G is Newton’s gravitational constant

– rij is the magnitude of the separation vector rij between particles i and j:

rij ≡ rj − ri

rij ≡ |rj − ri|
and we recall that the magnitude of any vector, w = [wx, wy, wz] is given by:

w ≡ |w| =
√

w2
x + w2

y + w2
z

– r̂ij is the unit vector in the direction from particle i to particle j (i.e. in the direction of the
separation vector:)

r̂ij ≡
rj − ri

rij
(2)

1

– From now on, for brevity of notation we will use

N
∑

j=1, j 6=i

→
∑

j

and i = 1, 2, . . . , N and 0 ≤ t ≤ tmax will be implied.

• For the purposes of computation, it turns out to be more convenient to use (2) in (1) to get

mi ai = G
∑

j

mi mj

r3
ij

rij (3)

where we note that

r3
ij =

[

(xj − xi)
2 + (yj − yi)

2 + (zj − zi)
2
]3/2

• It is also convenient to “non-dimensionalize” the system of equations, which in this case means
choosing units in which G = 1, which we will hereafter do

• Begin Aside: Non-dimensionalizing

• Note that if we have a problem in mechanics that involves up to three parameters pk, k = 1, 2, 3
which have distinct dimensions

Mαk Lβk T γk

where L, M and T denote length, mass and time respectively, and the αk, βk and γk are generally
integers, then we can always choose a system of units in which p1 = p2 = p3 = 1.

• Note that in the current case we have a single dimension-ful parameter, G

[G] = M−1L3T−2

(so α = −1, β = 3 and γ = −2).

• Non-dimensionalizing simplifies actual calculations, but has the drawback that one must generally
convert back-and-forth between the non-dimensional set of units, and the desired set (MKS for
example) to make contact with specific physical setups (e.g. dynamics of the solar system).

• For the purposes of your term projects, you should work with G = 1.

• End Aside:

• Continuing, we have

ai(t) =
d2r(t)

dt2

so (3) becomes (with G = 1)

mi ai = mi
d2ri

dt2
=

∑

j

mimj

r3
ij

rij

and then dividing both sides of the above equation by mi, we have

d2ri

dt2
=

∑

j

mj

r3
ij

rij (4)

• (4) is a system of second-order-in time differential equations for the vector quantities, ri(t)

2

• In order to compute a specific solution, we must supply initial conditions, which in this case are the
initial positions and initial velocities of the particles, i.e.

ri(0) = r0i i = 1, 2, . . . , N (5)

vi(0) ≡ dr

dt
(0) = v0i i = 1, 2, . . . , N (6)

where ri(0) and v0i are specified vectors (total of 6N numbers)

• Now, express (4), (5) and (6) in “component form” (i.e. take x, y and z components), then (i =
1, 2, . . . , N is implicit in the following equations)

d2xi(t)

dt2
=

∑

j

mj

r3
ij

(xj − xi) (7)

d2yi(t)

dt2
=

∑

j

mj

r3
ij

(yj − yi) (8)

d2zi(t)

dt2
=

∑

j

mj

r3
ij

(zj − zi) (9)

and the initial conditions take the form
xi(0) = xi0 (10)

yi(0) = yi0

zi(0) = zi0

vxi
(0) = vxi0 (11)

vyi
(0) = vyi0

vzi
(0) = vzi0

where the xi0, yi0, zi0, vxi0, xyi0 and vzi0 are given values (again, 6 values per particle)

1.2 Solution via Finite Difference Approximation

1.2.1 Discretization: Step 1—Finite Difference Grid

• Continuum domain is
0 ≤ t ≤ tmax

• We will assume that we can proceed using a uniform time mesh (i.e. constant time step) as usual:
may not be a good assumption, particularly if particles start “clumping”

• Specify mesh via level parameter, ℓ

nt = 2ℓ + 1

∆t =
tmax

nt − 1
= 2−ℓtmax

tn = (n − 1)∆t, n = 1, 2, . . . , nt

1.2.2 Discretization: Step 2—Derivation of FDAs

• Continuum equations → discrete equations

3

• Will illustrate procedure for xi(t): yi(t) and zi(t) can be treated in identical fashion (i = 1, 2, . . . , N

still implicit in the following)

• FD notation
xn

i = xi(t
n)

where we use a superscript, rather than subscript, n, since we are using a superscript to enumerate
the particles.

• Need approximation for second time derivative, use usual second order centred formula

d2xi(t)

dt2

∣

∣

∣

∣

∣

t=tn

≈ xn+1

i − 2xn
i + xn−1

i

∆t2

• Substituting in (7), we have

xn+1

i − 2xn
i + xn−1

i

∆t2
=

∑

j

mj
(

rn
ij

)3

(

xn
j − xn

i

)

n + 1 = 3, 4, . . . , nt (12)

• Again, we view this as an equation for the advanced-time values xn+1

i , assuming that the values xn
i

and xn−1

i are known

• Solving explicitly for xn+1

i , we have

xn+1

i = 2xn
i − xn−1

i + ∆t2
∑

j

mj
(

rn
ij

)3

(

xn
j − xn

i

)

n + 1 = 3, 4, . . . , nt (13)

• This last equation (plus the corresponding equations for yn+1

i and xn+1

i) are our basic finite difference
equations for the N -body problem.

• As usual for a problem in dynamics, we need to deal with the initial conditions, and, again since we
are using a three-time-level scheme, we thus need to determine values for x1

i = xi(0) and x2
i = xi(∆t)

• As usual, the x1
i follow immediately from the initial conditions

x1
i = xi0

but we need to use Taylor series expansion to determine the values x2
i to O(∆t2)

x2
i = xi(∆t) = xi(0) + ∆t

dxi(t)

dt
(0) +

1

2
∆t2

d2xi(t)

dt2
(0) + O(∆t2) (14)

• Using the initial conditions for the particle positions and velocities (x components), (7) to eliminate
the second time derivative, and neglecting higher order terms we have

x2
i = xi0 + ∆t vxi0 +

1

2
∆t2

∑

j

mj

r3
ij0

(xj0 − xi0) (15)

where

r3
ij0 =

[

(xj0 − xi0)
2 + (yj0 − yi0)

2 + (zj0 − zi0)
2
]3/2

(16)

• Keep in mind that we have two other sets of equations and initial values for the yn
i and zn

i

• If we wish to consider 2D motion, we can simply set all of the zi0 and vzi0 to 0

4

1.3. Energy Quantities and Energy Conservation

• Total kinetic energy

T (t) =
N

∑

i=1

1

2
mi vi

2 (17)

• Total potential energy

V (t) = −
N

∑

i=1

N
∑

j=1, j<i

mi mj

rij
(18)

• Important: Note the the second summation in the above is limited to values of j that are strictly
less than i.

If we summed over all values of j—i.e. so that the upper limit of the sum was N—we would “double
count” the potential energy contributions (think, e.g., of the two-particle case where there is only
one contribution)

• Total conserved energy
E(t) = T (t) + V (t) (19)

• Can compute discrete versions of these quantities, and especially for small numbers of particles, test
for convergence of

dE(t) = E(t) − E(0)

as one way of establishing code correctness

5

1.4. Octave Implementation Suggestions

• Use multi-dimensional arrays to store discrete positions

• Ideally store entire solution (i.e. all time steps) as we did with pendulum example, and as you are
asked to do in Homework 4.

• For example, create and “zero” 3-dimensional array r via

r = zeros(N, 3, nt);

N: number of particles

nt: total number of time steps

• Then would have the following
r(i, 1, n) ≡ xn

i

r(i, 2, n) ≡ yn
i

r(i, 3, n) ≡ zn
i

• Consider writing an acceleration-computing routine with the header

function [a] = nbodyaccn(m, r)

m: Vector of length N containing the particle masses

r: N x 3 array containing the particle positions

a: N x 3 array containing the computed particle accelerations

Note that the particle accelerations are given by the right hand side of equation (12): once they have
been computed, they can be used in equation (13) to update the particle positions.

• Begin with a code that uses loops to compute the accelerations and, if necessary to, implement the
basic difference equations. Once that is working, save it/rename it, and try to write a version that
uses whole array operations as much as possible

• We will discuss an application, xfpp3d, that you can use to visualize the output from N -body
simulations in the lab.

6

1.5. Suggested test case

• A good, non-trivial configuration that you can use to develop and test your implementation describes
two particles with arbitrary masses in mutual circular orbit about their center of mass, and in the
x-y plane.

• EXERCISE: Let the particle masses be m1 and m2, respectively, and let them be separated by a
distance r. Let the initial position and velocity vectors be

r1(0) = (r1, 0, 0)

r2(0) = (−r2, 0, 0)

v1(0) = (0, v1, 0)

v2(0) = (0,−v2, 0)

where r1, r2, v1 and v2 are all positive quantities, so that the separation is given by r = r1 + r2.

Show that if

r1 =
m2

m
r

r2 =
m1

m
r

v1 =

√
m2r1

r

v2 =

√
m1r2

r

where m = m1 + m2 is the total mass of the system, then the particles will execute circular orbits
about the center of mass.

• NOTE: If you do use this configuration to develop/test your code, I expect that you will include the
verification (or derivation) of the above results in your writeup.

7

2. ELECTROSTATIC N-BODY PROBLEM

(For those working on charges-on-a-sphere problem (COSP) or similar)

• Let us now consider a collection of N point charges, with charges qi and masses mi:

mi , i = 1, 2, . . . N

qi , i = 1, 2, . . . N

• Defining a coordinate system and position vectors precisely as we did for the gravitational case, we
have the electrostatic equations of motion:

mi ai = mi
d2ri

dt2
= −ke

N
∑

j=1, j 6=i

qi qj

r2
ij

r̂ij , i = 1, 2, . . . N , 0 ≤ t ≤ tmax (30)

where ke is Coulomb’s constant (note the − sign relative to (1), since there is a repulsive force between
charges of the same sign).

• However, in this case we demand that the charges remain on the surface of a sphere. Let us assume
that the radius of the sphere is R and that it is centred at the origin of our coordinate system,
(0, 0, 0).

We observe that the choice of R is essentially arbitrary, and will have no effect on the equilibrium
positioning of the N charges. Thus we set R = 1.

Then we must have
ri ≡ |ri| ≡

√

x2
i + y2

i + z2
i = 1 , i = 1, 2, . . . N

• The simplest form of COSP has identical charges, i.e. equal masses and equal charges (of the same
sign). This is the version that you should implement in your term projects, at least to begin with.

In this case, it is especially convenient to non-dimensionalize (and again, this is always possible), so
that

mi = 1 , i = 1, 2, . . . N

qi = 1 , i = 1, 2, . . . N

ke = 1

• Eqn (30) then becomes simply

ai = −
∑ r̂ij

r2
ij

(31)

where, as before, we are now using
N

∑

j=1, j 6=i

→
∑

j

with i = 1, 2, . . . , N and 0 ≤ t ≤ tmax implied.

• Now, the basic idea behind COSP is to start the N charges at some arbitrary positions on the
sphere and, most conveniently, with no velocity. We then use dynamical evolution to find the (an?)
equilibrium configuration. In order for the charges to “settle down” to that configuration, we must
add some dissipation (friction) to the system.

8

• A straightforward way to do this is to add a term to the equation of motion that is proportional to
the velocity, and which retards the motion, i.e. (31) becomes

ai = −
∑ r̂ij

r2
ij

− γvi (32)

where γ is an adjustable parameter which controls the amount of dissipation (and which is something
that you will need to experiment with in your implementation)

• Although it might not seem entirely natural for this problem, it is still best to use Cartesian compo-
nents of (32) in simulations. This yields

d2xi(t)

dt2
= −

∑

j

(xj − xi)

r3
ij

− γ
dxi

dt
(33)

d2yi(t)

dt2
= −

∑

j

(yj − yi)

r3
ij

− γ
dyi

dt
(34)

d2zi(t)

dt2
= −

∑

j

(zj − zi)

r3
ij

− γ
dzi

dt
(35)

• We can now discretize these equations exactly as we did for the gravitational case, except that now
we need to handle the velocity (friction) term, for which we use the O(∆t2) centred approximation
for the first derivative, e.g.

dxi(t)

dt

∣

∣

∣

∣

t=tn
≈ xn+1

i − xn−1

i

2∆t

• Thus our discretization of the equation of motion in the x-direction (33) is

xn+1

i − 2xn
i + xn−1

i

∆t2
= −

∑

j

(

xn
j − xn

i

)

(

rn
ij

)3
− γ

xn+1

i − xn−1

i

2∆t
n + 1 = 3, 4, . . . , nt (36)

and the y and z equations have precisely the same form.

• I will leave it to you to solve (36) (as well as the y and z eqns.) for the advanced-time unknowns,
xn+1

i

• As mentioned above, you can initialize the particle positions arbitrarily (just don’t put two or more
in the same place!) and the easiest thing to do is to set the initial velocities to 0.

• Unlike the gravitational N -body case, we are only interested in the final, equilibrium configuration
of the charges here, not in the details of the dynamics.

• This means that there is no need to use the Taylor series technique to “properly” initialize the values
x2

i , y
2
i , z2

i . Assuming that the initial velocities are 0, then it will suffice to set x2
i = x1

i , y2
i = y1

i and
z2
i = z1

i ,

• Important: At all time steps, you must ensure that the charges are on the unit sphere. When you
use (36) (and the y and z equations) to advance the system by ∆t, the charges will generally move
off the sphere. One easy way to get them back on the surface is to simply “project” them along their
position vectors (from the origin).

9

• I.e. assuming that x̃n+1

i , ỹn+1

i and z̃n+1

i are the provisional values of the charge coordinates after the
time step, then setting

xn+1

i =
x̃n+1

i

r̃i
yn+1

i =
ỹn+1

i

r̃i
zn+1

i =
z̃n+1

i

r̃i

where

r̃i =
√

(x̃n+1

i)2 + (ỹn+1

i)2 + (z̃n+1

i)2

will place the charges back on the sphere.

• You should convince yourself that this works!

• Note the other differences from the gravitational problem

– Energy is not conserved here, so there is no point in checking for its conservation

– Convergence tests will also be of little/no use, and should not be included as part of your report

– You have the advantage that you know where the charges should be—on the surface of the
sphere—and you will/should know when you are computing the equilibria correctly

• The implementation hints for the gravitational case also apply here.

• Feel free to seek help from me should you have any questions about this project.

10

