First note a slight change in notation from the original lecture notes. Here, for ease of exposition, \hat{u}_{j}^{n} is the quantity which satisfies the difference equation (22.4), while u_{j}^{n} satisfies the differential equation (22.2).

We begin by assuming that our difference solution will admit a Richardson expansion

$$
\begin{equation*}
\hat{u}(x, t)=u(x, t)+h^{2} e_{2}(x, t)+h^{4} e_{4}(x, t)+\cdots \tag{22.7}
\end{equation*}
$$

and ask what this implies about how accurately we must specify \hat{u}_{j}^{0} and \hat{u}_{j}^{1}. First recall that the problem prescription includes the initial conditions:

$$
u(x, 0)=f(x) \quad u_{t}(x, 0)=g(x)
$$

Clearly then, we can (and might as well) specify \hat{u}_{j}^{0} exactly

$$
\hat{u}_{j}^{0}=f_{j}
$$

which implies that $e_{2}(x, 0)=0$. Then in order for (22.7) to hold, we must have

$$
\begin{aligned}
\hat{u}_{j}^{1} & \equiv \hat{u}\left(x_{j}, \Delta t\right) \\
& =u\left(x_{j}, \Delta t\right)+h^{2} e_{2}\left(x_{j}, \Delta t\right)+O\left(h^{4}\right)
\end{aligned}
$$

which implies that

$$
\hat{u}\left(x_{j}, \Delta t\right)-u\left(x_{j}, \Delta t\right)=h^{2} e_{2}\left(x_{j}, \Delta t\right)+O\left(h^{4}\right)
$$

But

$$
\begin{aligned}
e_{2}\left(x_{j}, \Delta t\right) & =e_{2}\left(x_{j}, 0\right)+\Delta t \frac{\partial e_{2}}{\partial t}\left(x_{j}, 0\right)+O\left(\Delta t^{2}\right) \\
& =\Delta t \frac{\partial e_{2}}{\partial t}\left(x_{j}, 0\right)+O\left(\Delta t^{2}\right)=\lambda h \frac{\partial e_{2}}{\partial t}\left(x_{j}, 0\right)+O\left(\Delta t^{2}\right)
\end{aligned}
$$

Thus,

$$
\hat{u}\left(x_{j}, \Delta t\right)-u\left(x_{j}, \Delta t\right)=h^{2}\left(\lambda h \frac{\partial e_{2}}{\partial t}\left(x_{j}, 0\right)\right)+\cdots=O\left(h^{3}\right)
$$

So we see that we must specify \hat{u}_{j}^{1} to $O\left(h^{3}\right)$ accuracy, not $O\left(h^{2}\right)$ as was erroneously claimed in the lecture. However, this is readily done by simply Taylor-expanding to higher order:

$$
u\left(x_{j}, \Delta t\right)=u\left(x_{j}, 0\right)+\Delta t u_{t}\left(x_{j}, 0\right)+\frac{1}{2} \Delta t^{2} u_{t t}\left(x_{j}, 0\right)+O\left(\Delta t^{3}\right)
$$

Recalling (22.6) where we specified the initial conditions in terms of initially left-moving and right-moving profiles, $l(x)$ and $r(x)$, and their derivatives, $l^{\prime}(x)$ and $r^{\prime}(x)$:

$$
\begin{aligned}
u(x, 0) & =l(x)+r(x) \\
u_{t}(x, 0) & =l^{\prime}(x)-r^{\prime}(x)
\end{aligned}
$$

and noting that

$$
u_{t t}(x, 0)=l^{\prime \prime}(x)+r^{\prime \prime}(x)
$$

we have for our initialization:

$$
\begin{align*}
& \hat{u}_{j}^{0}=l_{j}+r_{j} \tag{22.7}\\
& \hat{u}_{j}^{1}=l_{j}+r_{j}+\Delta t\left(l_{j}^{\prime}-r_{j}^{\prime}\right)+\frac{1}{2} \Delta t^{2}\left(l_{j}^{\prime \prime}+r_{j}^{\prime \prime}\right) \tag{22.8}
\end{align*}
$$

