
PHYS 410/555: Computational Physics Fall 2005 Homework 5
DUE: Thursday, December 1, 10:00 AM Report bugs to choptuik@physics.ubc.ca

The following assignment, should you decide to accept it (410 students only have this choice, 555 students
must complete it), involves writing and testing two Fortran 77 programs (including makefiles) which use
lsoda to solve ordinary differential equations. As usual, all files required by the assignment must reside in
the correct places on your lnx account for the homework to be considered complete. Contact me immediately
if you are having undue difficulties with any part of the homework.

Note, that unlike the previous assignment, this homework must be completed and submitted individually as
per the first three assignments.

These instructions will NEVER self-destruct.

Problem 1: Consider the following ODE, known as the Van der Pol equation:

d2u(t)

dt2
− ǫ
(

1 − u(t)2
) du(t)

dt
+ u(t) = 0 t ≥ 0 (1)

where ǫ > 0 is a specified positive constant. Physically, this ODE describes the voltage behaviour of a tunnel
diode oscillator, although for the purposes of this homework we will simply be viewing it as providing an
interesting example of non-linear oscillator dynamics.

In directory ∼/hw5/a1, write a Fortran 77 program vdp.f, with corresponding executable vdp which solves
the above ODE subject to the initial conditions:

u(0) = u0 (2)

du

dt
(0) = du0 (3)

vdp must have the following usage:

usage: vdp <tmax> <u0> <du0> <epsilon> <tol> <olevel>

where

1. tmax is the real*8 final integration time (tmax > 0).

2. u0 is the real*8 initial oscillator displacement.

3. du0 is the real*8 initial oscillator velocity.

4. epsilon is the real*8 value of ǫ (epsilon > 0).

5. tol is the real*8 lsoda tolerance. Use itol = 1, and pure absolute tolerance.
(10−12 ≤ tol ≤ 10−2)

6. olevel is the integer output level. (olevel > 0).

Your program must be commented, and must perform rudimentary error-checking of command-line argu-
ments: arguments should be of the proper type, and should be in the appropriate ranges as given above (as
usual, you can use i4arg and r8arg to detect whether an argument is of the correct type by using default
values which a user is unlikely to enter).

At requested output times, vdp must write on standard output the time, and the computed displacement
and velocity of the oscillator at that time, using an output statement such as

write(*,*) t, y(1), y(2)

1



The requested output times, tj , are defined by

tj = 0, h, 2h, · · · tmax (4)

where h is given by

h ≡
tmax

2olevel
(5)

To test your implementation, code an independent residual evaluation program, chk-vdp.f—with corre-
sponding executable chk-vdp—which applies an O(h2) finite-difference approximation of (1) to the output
of vdp. chk-vdp.f should be identical in construction, as well as what it inputs and outputs, to the
chk-tlsoda.f example covered in class, except that chk-vdp.f is to accept a single, real*8 command-line
argument, epsilon. Use the usual O(h2) difference approximations for the first and second time-derivatives
in (1); namely:

du

dt
(tj) =

u(tj+1) − u(tj−1)

2h
+ O(h2) (6)

d2u

dt2
(tj) =

u(tj+1) − 2u(tj) + u(tj−1)

h2
+ O(h2) (7)

Create a script Do-chk which contains the following

#!/bin/sh

epsilon=1.0

vdp 10.0 0.0 1.0 $epsilon 1.0d-8 10 | nth 1 2 > vdp-out

for inc in 8 4 2 1; do

nth 1 2 < vdp-out | lines 1 . $inc | chk-vdp $epsilon

done

Once you are satisfied that both vdp and chk-vdp are working properly, execute the script and save the
output as chk-vdp-out.

In order to get a feel for the behaviour of the oscillator, use vdp to investigate the solution of (1) for a
variety of values of ǫ (0 ≤ ǫ ≤ 5 suggested), u0 (10−3 ≤ u0 ≤ 10 suggested) and du0, (−5 ≤ du0 ≤ 5
suggested). When performing your studies, ensure that you specify tmax large enough to determine the
long-time behaviour of the oscillator. You can use gnuplot to plot the results of your computations.

An interesting way to examine the dynamics of an oscillator is to make a phase-space plot, i.e. a parametric
plot (in t) of the oscillator’s velocity versus its displacement. Use gnuplot to make a single phase-space
Postscript plot called vdp-phase showing the du/dt vs u trajectories from the following three computations:

vdp 50.0 0.01 0.0 1.0 1.0e-8 11

vdp 50.0 1.0 -1.0 1.0 1.0e-8 11

vdp 50.0 3.0 1.0 1.0 1.0e-8 11

Using gnuplot, make a Postscript plot called vdp.ps showing the oscillator displacement versus t for the
following computation

vdp 100.0 0.01 0.0 10.0 1.0e-8 12

What can you say about the long-time behaviour of the oscillator as a function of u(0) and du/dt(0) for
fixed ǫ? Answer in ∼/hw5/a1/README.

Problem 2: Consider the archetypical partial differential equation (PDE) of diffusion type: the (non-
dimensionalized) heat equation (or simply the diffusion equation), written here for a function u ≡ u(t, x):

ut = uxx on 0 ≤ x ≤ 1 , 0 ≤ t ≤ tmax (8)

2



subject to (1) the initial conditions:
u(0, x) = u0(x), (9)

(where u0(x) is a specified function), and (2) the boundary conditions:

u(t, 0) = u(t, 1) = 0 (10)

Problem 2a)
In directory ∼/hw5/a2, write a Fortran 77 program, diffusion-mol.f, with corresponding executable
diffusion-mol, which solves the above PDE using the method of lines, and lsoda. Specifically, convert (8)
into a system of Nx coupled ODEs by (1) introducing a regular mesh xj and discrete unknowns uj:

xj ≡ (j − 1)h j = 1, 2, · · · Nx h ≡ (Nx − 1)−1 uj(t) ≡ u(xj , t) (11)

(2) replacing uxx with the usual O(h2) finite difference approximation, yielding

d uj(t)

dt
=

uj+1 − 2uj + uj−1

h2
j = 2, · · · Nx − 1 (12)

and (3) incorporating the Dirichlet boundary conditions (10) as follows:

du1(t)

dt
= 0 (13)

duNx
(t)

dt
= 0 (14)

We will code diffusion-mol so that, as much as feasible, it has the same command line arguments (in-
cluding initial data type, and output type) as the finite difference programs diffusion2 and diffusion4

(diffusion[24]) from the previous homework, and so that it produces analogous output.
In particular, diffusion-mol will call lsoda to compute approximate solution values, un

j ≈ u(tn, xj), where
the discrete times, tn, n = 0, 1, . . .Nt are defined by

tn = nλh, n = 0, 1, . . .Nt . (15)

Here, λ ≡ ∆t/∆x ≡ ∆t/h is the Courant number, and the number of time steps, Nt, is defined implicitly
via

Ntλh ≡ tmax. (16)

We stress that we introduce λ here solely to keep the usage of diffusion-mol as close as possible to
that of diffusion[24], and that, as was the case for the finite difference programs, λh and tmax must be
commensurate (i.e. we must have mod(tmax, λh) = 0).

In addition, and again paralleling Homework 3, for the specific initial data choice

u0(x) ≡ u(0, x) = sin (2pix) (17)

we can compute the exact solution, u(tn, xj), the solution error en
j ,

en
j ≡ un

j − u(tn, xj) (18)

as well as the RMS (or ℓ2-norm) of the solution error e(tn)

e(tn) ≡ ‖en
j ‖2 ≡

(

∑j=Nx

j=1

(

en
j

)2

Nx

)1/2

(19)

Then, as was the case for diffusion[24], we will provide diffusion-mol with an option to compute and
output the error in the lsoda-MOL solution un

j , when the exact solution is known.

Thus, diffusion-mol must have the following usage:
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usage: diffusion-mol <level> <olevel> <ostride> <tmax> <lambda> <id type> <out type> <tol>

Note that all 8 arguments are required, in contrast to diffusion[24], where <out type> was optional.

The command line arguments are defined as follows:

1. <level> is the integer level of spatial discretization: Nx = 2<level> + 1.

2. <olevel>: Combined with <level>, defines the frequency of output. Must satisfy <olevel>≤
<level>. Output is performed every

ofreq = 2level−olevel

time steps, starting from step 0 (the initial time, t = 0).

3. <ostride>: Positive integer ≥ 1, which controls amount of output performed at output times. Specif-
ically, grid function values at every <ostride>-th spatial grid point are output, so if <ostride> = 1,
all values are output, if ostride = 2, every second value is output etc. Useful for “thinning” output
prior to plotting via gnuplot for large values of <level> (large Nx).

4. <tmax>: Maximum integration time, tmax.

5. <lambda>: Courant factor, λ ≡ ∆t/∆x = ∆t/h

6. <id type>: Controls what type of initial data is used. Implemented values are precisely the same as
for Homework 3, and are repeated here for convenience.

• <id type> = 0: Initialize using u(0, x) = sin(2πx) (Solution is known in this case, en
j and e(tn)

can be computed.)

• <id type> = 1: Initialize using u(0, x) = exp
(

− ((x − 0.4) /0.07)
2
)

(Gaussian initial data. 1)

7. <out type>: Controls what type of output is performed to standard output. Implemented values are

• <out type> = 0: Solution values un
j , j = 1, <ostride>+ 1, 2 <ostride>+ 1, . . . , Nx are output

in a form suitable for subsequent plotting using gnuplot’s surface plotting facility.

• <out type> = 1: Provided that <id type> = 0, en
j and e(tn) are computed at output times and

tn and e(tn) are output, two numbers per line.

8. <tol> is the real*8 lsoda tolerance. Use itol = 1, and atol = rtol = tol. (10−12 ≤ <tol> ≤
10−2)

Your program must be commented and must perform error-checking of command line arguments as in
Problems 2 and 3 of the previous homework (be sure to incorporate all of the constraints on command line
arguments that are given above).

In developing your program, you may find it useful to work from the main program for diffusion2 (or
diffusion4) from the previous homework. In particular, you are encouraged to use the xvs interface, as
those codes do, so that you can use the xvs visualization server, as well as the sdftoxvs utility program,
which sends .sdf files to xvs.

IMPORTANT: While developing and debugging your code, do not run with values of <level>larger than
9, or you are likely to encounter the error alluded to in the next subproblem, which is optional for 410 (the
subproblem is optional, not the error!).

After your program has been debugged to your satisfaction (you will probably want to use <id type> = 0 for
testing purposes), use it to generate a file gaussian8 which contains the standard output of the invocation

diffusion-mol 8 6 4 0.25 0.5 1 0 1.0d-3

1Note that strictly speaking, the gaussian initial data does not satisfy the boundary conditions, u(t, 0) = u(t, 1) = 0.
However the small level of violation of the boundary conditions is negligible in comparison to the level of truncation
(discretization) error inherent in the solution at the resolutions at which you will be running diffusion2.
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Using gnuplot, make a parametric surface plot of this data and save it as the Postscript file gaussian8.ps.

Problem 2b) (REQUIRED for 555 students, OPTIONAL for 410)

Copy the script ∼/phys410/hw5/a2/Run to your solution directory and invoke it. Note that this script
assumes that you have a makefile in your solution directory, so be sure that you do.

What happens when you execute Run? Do you encounter an lsoda error? If so, what is the error return
code, and what does it mean? (You may want to invoke diffusion “by hand” rather than in the context of
the script, in order to see the full error messages produced by lsoda.) Provide answers to these questions in
a README file in the solution directory.

If you did encounter an lsoda error when you executed Run, try to modify your code so that all of the
invocations of diffusion performed by Run complete with no error messages from lsoda. (Hint: For large
values of Nx, the system of ODEs resulting from the MOL discretization becomes stiff, so a Jacobian will
be computed by lsoda. Consider changing the Jacobian type indicator (the argument jt to lsoda) and
providing one or more optional inputs to the routine. Recall that the integral example in the ODE notes
illustrates the use of optional inputs to lsoda.)

If and when you modify your code so that all invocations of diffusion executed by Run are successful,

leave all postscript plots generated by the script in your solution directory, along with the surface plot

gaussian8.ps. Finally, briefly discuss your interpretation of the various error plots produced by Run in your

README file.
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