
PHYS 410/555: Computational Physics Fall 2004 Homework 3
DUE: Tuesday, November 2, 10:00 AM Report bugs to choptuik@physics.ubc.ca

The following assignment involves writing and testing several simple Fortran 77 programs. Follow the in-
structions carefully and please do all compilation and execution on your lnx account, or ensure that all
programs compile and execute on the lnx machines. All files required by the assignment must reside in the
correct places on your lnx account for the homework to be considered complete.

Important: Your solutions to each and every one of the problems below MUST include a Makefile (or
makefile) that defines, at a minimum, targets for the executable or executables required by the problem, and
clean, where the clean target, as usual, removes the executables and object-code files. Furthermore, your
makefiles MUST use the macros F77, F77FLAGS, F77CFLAGS, F77LFLAGS as discussed in class (i.e. you
must define “portable” makefiles).

Problem 1: In a directory ∼/hw3/a1 on your lnx account, create Fortran source files pgm1.f and pgm2.f

that are to be compiled into executables pgm1 and pgm2 with behaviour as described below.

Important: Use real*8 arithmetic and “free-format” I/O (i.e. read(*,*) and write(*,*)) here and
throughout the homework. In particular, in accordance with the “Unix philosophy”, discussed in class, of
keeping output from programs as “machine-readable” as possible, do NOT, put “descriptive” information
such as “f = ” in your output.

• pgm1: reads x, y pairs (2 real*8 numbers per line) from standard input, computes and writes f(x, y)
to standard output, where f(x, y) is defined as follows:

f(x, y) = cos2(x + 6y)

(

2 + e−
x
2+y

2

2

2 − e−
x2+y2

2

)

• pgm2: reads x, y, z triples (3 real*8 numbers per line) from standard input, computes and writes
g(x, y, z) to standard output, where g(x, y, z) is defined as follows:

g(x, y, z) =

√

x4 + y4 + z2 if x < 0
π
4 if x = 0
cos(x + y + z) sin(min(x, y)) tan(max(y, z)) if x > 0

Minimal commenting of these programs is acceptable, but be sure to carefully test them. You may find it
helpful to use Maple for testing purposes. (Recall that the Maple procedure evalf() evaluates an expression
using floating-point arithmetic.)

Your programs should detect and ignore invalid input in the same fashion as the mysum example discussed
in class. Should you wish to print messages if invalid input is encountered, be sure to direct the messages to
standard error (unit 0). Your programs will be tested with input of my own design.

As there has been confusion concerning this in the past, be sure that both of your programs accept 0 or more
lines of input—i.e. do not assume that there will only be a single line of input.

Finally, note that there is a Fortran sqrt function—see Appendix A of the Professional Programmer’s
Guide to Fortran 77, by Clive Page (available on-line via the Fortran Programming notes page) for a full list
of the Fortran 77 intrinsic (built-in) functions.

1

Problem 2: In a directory ∼/hw3/a2 create source files dvvfrom.f and dvvto.f that define Fortran
subroutines with the following headers:

subroutine dvvfrom(fname,v1,v2,n,maxn)

implicit none

character*(*) fname

integer n, maxn

real*8 v1(maxn), v2(maxn)

subroutine dvvto(fname,v1,v2,n)

implicit none

character*(*) fname

integer n

real*8 v1(n), v2(n)

These routines are to behave completely analogously to the routines dvfrom and dvto covered in the class
notes except that they are to read and write pairs of real*8 vectors (one-dimensional arrays) from and to
a file with name fname. Thus the format of the input and output is:

v1(1) v2(1)

v1(2) v2(2)

v1(3) v2(3)

.

.

.

If fname .eq. ’-’, the routines should use standard input or standard output as appropriate. In the same
directory, write test programs tdvvfrom.f and tdvvto.f and create executables tdvvfrom and tdvvto that
test your two routines. The arguments to tdvvfrom and tdvvto should be identical to the programs tdvfrom
and tdvto, respectively, which were covered in class. Specifically, the usage of the test programs should be:

% tdvvfrom <file name>

% tdvvto <file name> <n>

tdvvfrom should report on standard error the length of the vectors that were read (i.e. how many pairs
were read); tdvvto need not report anything under normal execution. Both testing programs should be
adequately documented and must perform argument processing—this includes detection of insufficient or
invalid arguments, in which case a usage message should be printed to standard error. Use the system
routines iargc and getarg as well as i4arg from the p410f library discussed in class for argument parsing.
You should also use the integer function indlnb from the p410f library to ensure that you don’t create file
names with trailing spaces. Your test programs, as well as your dvvfrom and dvvto routines themselves,
will be evaluated with my own input and testing programs.

Problem 3: The Mandelbrot Set
As some of you will know, the Mandelbrot set1, is a region of the (2-dimensional) complex plane, that has a
boundary with very interesting properties such as self-similarity (scale invariance) and fractional dimension-
ality (i.e. the boundary is a so-called fractal). Your task in this problem is to implement a straightforward,
“brute force” algorithm, as the Fortran program mandelbrot, which can then be used to investigate the
structure of the Mandelbrot set and, in particular its fractal boundary. You must also implement a front end
sh-script, Mandelbrot, that runs mandelbrot for several parameter sets, and then uses gnuplot to generate
(Postscript) plots of the results.

1Named after Benoit Mandelbrot, who studied the properties of such sets in detail, and was substantially respon-

sible for bringing fractals into the general scientific and public consciousness.

2

The Mandelbrot set is defined by considering a specific mapping of the complex plane into itself, i.e. by
considering a complex valued function, f(z), of a single complex unknown, z. The particular function that
will be considered here is

f(z) = z2 − 3

4
. (3.1)

Given this function (mapping), we can consider its repeated application to any point in the complex plane.
That is, we choose some specific complex number, z0, then generate a sequence of iterates

z1, z2, z3 · · · z∞ ,

such that

zn+1 = f (zn) = z2
n − 3

4
.

Let us denote the n-fold iterated application of f(z) as f (n)(z), so that we have

zn = f (n)(z0) .

Then an arbitrary point, z, in the complex plane is defined to be in the Mandelbrot set if and only if

lim
n→∞

∣

∣

∣
f (n)(z)

∣

∣

∣
= ∞ .

where |z| is the modulus of z, i.e. |z| =
√

zz⋆. In words then, if in the limit of infinite iteration, (3.1) maps
a point z to complex infinity, then the point is in the Mandelbrot set.

Given this introduction, you are to create in ∼/hw3/a3 a Fortran 77 source file mandelbrot.f with corre-
sponding executable mandelbrot that has the following usage

usage: mandelbrot <re0> <re1> <nre> <im0> <im1> <nim> <nmax> (3.2)

Note that mandelbrot is thus to accept precisely 7 command line arguments whose types and interpretations
will shortly be defined, as will the output from the program.

Preamble: It should be clear from the definition of the Mandelbrot set, appealing as it does to an infinitely
iterated function, that you will have to introduce some approximations and/or simplifying assumptions into
your implementation of mandelbrot. Specifically, then, you are to adopt the following operational definition
for membership in the Mandelbrot set. Consider some suitably large modulus (distance from the origin of
the complex plane), R, and some fixed but large (or largeish) number of iterations nmax. Then a point z
will be deemed to be in the Mandelbrot set if

∣

∣

∣
f (n)(z)

∣

∣

∣
≥ R for some n ≤ nmax .

Thus, in the simultaneous limit nmax → ∞, R → ∞ we recover from the above the true definition of
membership in the set.

Command line arguments: We now return to a discussion of the command line arguments to mandelbrot.
The first six arguments define a uniform (discrete) lattice (aka mesh, lattice) of values zj,k in the complex
plane as follows

zj,k = [re0 + (j − 1)∆re] + i [im0 + (k − 1)∆im] , j = 1, 2, . . . nre, k = 1, 2, . . . nim (3.3)

where i2 = −1, re0, re1, im0, im1 are real values satisfying re0 < re1, im0 < im1 that define a rectangular
region in the complex plane

re0 ≤ Re(z) ≤ re1, im0 ≤ Im(z) ≤ im1

and the integers nre and nim define how many grid points there are in the real and imaginary directions
respectively. (Note that I have used the [· · ·] brackets in (3.3) to highlight the real and imaginary parts of
zj,k.) ∆re and ∆im are to be defined so that

znre,nim
= re1 + i im1 .

3

The correspondence between quantities defined above and the command line arguments are as follows

re0 → re0

re1 → re1

nre → nre

im0 → im0

im1 → im1

nim → nim

nmax → nmax

Use the functions r8arg and i4arg discussed in class and in the Fortran notes to parse the arguments from
the command line. You can use code such as

c Declare the type of r8arg

real*8 r8arg

c Define a real*8 value that you trust/hope the "user" will never use

real*8 r8_never

parameter (r8_never = -1.0d60)

c Declare a temporary for the argument to be parsed

real*8 thingy

.

.

.

c Parse the 4th command line argument as a real

thingy = r8arg(4,r8_never)

c If r8_never is returned, argument either isn’t there, or can’t be parsed as a real

if(thingy .eq. r8_never) go to 900

.

.

.

900 continue

write(0,*) ’usage: ...’

end

to deal with missing or non-parseable command line arguments. In addition to that error checking, your
program must also ensure that the following constraints are satisfied.

1. re0 < re1

2. im0 < im1

3. nre > 1

4. nim > 1

5. 10 ≤ nmax ≤ 1000

Other Problem Parameters: Your implementation of mandelbrot should use a “hardcoded” value of R =
1 × 1010 (i.e. the modulus at which we deem that the mapping is taking the input complex number to
complex-∞ is to be fixed at 1010).

4

Program Output: Given an invocation of the form (3.2), mandelbrot must produce the following, and only
the following, on standard output

.

.

.

rez_jk imz_jk

.

.

.

where

rez jk → Re[zj,k]

imz jk → Im[zj,k]

and the indices [j, k] run over all values such that zj,k has been deemed to be in the Mandelbrot set.

Thus, for example, sample output from the instructor’s implementation of mandelbrot starts as follows

% mandelbrot -1.0 2.0 101 -1.5 1.5 101 100

-1.00000000000000 -1.50000000000000

-0.970000000000000 -1.50000000000000

-0.940000000000000 -1.50000000000000

-0.910000000000000 -1.50000000000000

.

.

.

Any additional output that your program generates (such as diagnostic or tracing output) should be output
to standard error (logical unit 0).
Visualization of Output: Use gnuplot (or some other equivalent plotting package available on Linux systems2)
to plot the output from mandelbrot. Note that in doing the plotting it is essential to convince gnuplot to
use a plotting symbol that is sufficiently small that the structure of the output is not obscured by the symbols
per se. (Hint: Try help plot with). If as you proceed with your solution you remain unsure of what this
means, or you cannot get gnuplot to do as you wish, ask for further explanation/assistance.

Numerical Experiments: If possible, (in particular, if you have the time), once you are reasonably confident
that you have implemented mandelbrot correctly, you should try to run some numerical experiments to
see if you can “discover” the interesting features of the boundary of the Mandelbrot set mentioned above.
Ideally, you will do this before reading the rest of the problem specification, or, if you must read through the
rest of the question first, at least try to ignore/forget any numbers that you encounter! Report your findings,
if any, briefly in README.

Front-end Script: Write a sh-script called Mandelbrot that serves as a “front-end” to mandelbrot and that
has usage

usage: Mandelbrot <res>

<res> = number of discrete points in Re/Im directions

Mandelbrot is to execute the following invocations of mandelbrot (assuming that the first command line
argument to the script has been parsed into the shell variable res):

mandelbrot -1.0 2.0 $res -1.5 1.5 $res 100

mandelbrot -0.43 0.31 $res 0.24 0.98 $res 100

mandelbrot -0.140 0.045 $res 0.544 0.729 $res 100

2Check with the instructor if you are unsure of the “equivalence” of a given plotting package to gnuplot

5

The script should create Postscript files containing gnuplot plots of the output from the above invocations.
The plot files should be named

lev0-${res}.ps

lev1-${res}.ps

lev2-${res}.ps

respectively, where again, it is assumed that the first command line argument to Mandelbrot has been parsed
into the shell variable res.

Ensure that the aspect ratio of your plots is unity, so that the plotting area is square. (Hint: Try help set

size.)

Mandelbrot can do minimal error-checking of its command-line arguments. It should detect the wrong
number of arguments, and exit with a usage message in that case. However, if there is a single argument
supplied, it can assume that the argument can be parsed as an integer.

Required Output: Once you are sure that mandelbrot and Mandelbrot are both working properly (including
usage messages and handling of wrong numbers/types of arguments as described above), execute

% Mandelbrot 501

in the solution directory, ensure that the plots

lev0-501.ps

lev1-501.ps

lev2-501.ps

exist and look as they should (by this time, if the problem is going well for you, you will know what they
should look like). Relax and/or celebrate. You’re essentially done the homework.

Summary of Required Files: Upon completion of this problem your solution directory should contain (at a
minimum), files as follows:

% ls -FC

Makefile lev0-501.ps lev2-501.ps mandelbrot.f

Mandelbrot* lev1-501.ps mandelbrot* mandelbrot.o

Your solution may also involve a REAMDE file, and you are free to leave other files that you have created
in-place.

Other Hints:

• See democomplex.f available via the Miscellaneous section of the course Software page for tips on
complex arithmetic in Fortran.

• Consult the instructor if anything in the problem specification is unclear, or if you are having undue
problems with any aspect of this question.

WARNING!!: Improper implementations of mandelbrot and/or overly large values of nre, nim (a 501×501
mesh is arguably large enough) and/or improper plotting techniques may lead to the generation of very large
data and/or plot files. Beware of exhuasting disk space on the lnx machines (learn how to use du to generate
summaries of disk usage if necessary), and avoid printing very large files (i.e. in excess of 2-3 megabytes) if
at all possible, since you’ll tend to tie up the printer.

Problem 4: (for 555 credit, OPTIONAL for 410 students)
In a directory ∼/hw3/a4 create a Fortran 77 source file rw2d.f and corresponding executable rw2d, which
simulates and analyzes random walks of a particle on a two dimensional integer lattice. Specifically, if at
step n the current position of the particle performing the walk is (x, y) = (i, j), where i and j are integers,
then, with equal probability (i.e. p = 1/4), the position at step n + 1 is either (i + 1, j), (i − 1, j), (i, j + 1)
or (i, j − 1). rw2d should accept two integer arguments as illustrated in this usage message:

6

usage: rw2d <nsteps> <nwalks>

where <nsteps> is the number of steps to take per walk, and <nwalks> is the number of separate walks to
be generated. Once again, note that you can use the i4arg function from the p410f library to parse the
command-line arguments. For each walk, start the particle at (0, 0) and use real*8 values for the particle
coordinates, even though the coordinates are restricted to integer values. When your program is finished
simulating the random walks, it must write on standard output the average of the distance-squared of the
particle from its starting point (i.e. compute 〈r2〉 using a simple average to compute the expectation value,
and average over all walks) after each step, as a function of step number. Specifically, the output should
consist of two numbers per line, generated using code such as the following:

do i = 1 , nsteps

write(*,*) i, rsqavg(i)

end do

Document and test your program thoroughly, then make runs of 10, 100, and 1000, 5000-step walks, and save
the output in files out10, out100 and out1000 respectively. Use gnuplot, or another instructor-approved
plotting package (contact me if you’re not sure whether a given package is instructor-approved!) to produce
a single plot of average-distance-squared versus step number for all three data-sets. Save a postscript version
of the plot in distance.ps. What can you say about the behaviour of 〈r2〉 versus step number as the number
of walks gets large? Answer in a file called README. Note that you can use the drand48 function defined in
the p410f library, and discussed in class, in order to complete this problem.

7

