Building the series_op Procedure Interactively

First define the series as in Abramowitz \& Stegun

$$
\begin{aligned}
& {\left[>\mathrm{s}[1]:=1+\mathrm{a}[1] * \mathrm{x}+\mathrm{a}[2] \mathrm{*}^{\wedge} 2+\mathrm{a}[3] \mathrm{*}_{\mathrm{x}}{ }^{\wedge} 3\right. \text {; }} \\
& s_{1}:=1+a_{1} x+a_{2} x^{2}+a_{3} x^{3}
\end{aligned}
$$

$$
\begin{aligned}
& s_{2}:=1+b_{1} x+b_{2} x^{2}+b_{3} x^{3} \\
& \text { > s[3] := } 1+c[1] * x+c[2] * x^{\wedge} 2+c[3] * x^{\wedge} 3 ; \\
& s_{3}:=1+c_{1} x+c_{2} x^{2}+c_{3} x^{3}
\end{aligned}
$$

Define a set of unknowns (the coeffs. of s3)

$$
\begin{aligned}
>\text { unknowns }:= & \{\mathrm{c}[1], \mathrm{c}[2], \mathrm{c}[3]\} ; \\
& \text { unknowns }:=\left\{c_{1}, c_{2}, c_{3}\right\}
\end{aligned}
$$

Define a 'shorthand' procedure for converting an expression to a polynomial

$$
\left[\begin{array}{c}
>\mathrm{P}:=\operatorname{proc}(\mathrm{x}) \operatorname{convert}(\mathrm{x}, \mathrm{polynom}) \text { end; } \\
P:=\operatorname{proc}(x) \operatorname{convert}(x, \text { polynom }) \text { end }
\end{array}\right.
$$

Define a specific series to re-express

$$
\left[\begin{array}{l}
>\text { series_in }:=1 / \mathrm{s}[1] ; \\
\qquad \text { series_in }:=\frac{1}{1+a_{1} x+a_{2} x^{2}+a_{3} x^{3}}
\end{array}\right.
$$

Perform a series expansion to high enough order

$$
\begin{aligned}
& >\text { series }(\%, \mathrm{x}=0,4) \text {; } \\
& 1-a_{1} x+\left(-a_{2}+a_{1}^{2}\right) x^{2}+\left(-a_{3}+a_{1} a_{2}+\left(a_{2}-a_{1}^{2}\right) a_{1}\right) x^{3}+ \\
& \mathrm{O}\left(x^{4}\right)
\end{aligned}
$$

Convert the power series to a polynomial

$$
\begin{aligned}
& >\mathrm{p} 1:=\mathrm{P}(\%) ; \\
& \quad \mathrm{p} 1:=1-a_{1} x+\left(-a_{2}+a_{1}^{2}\right) x^{2}+\left(-a_{3}+a_{1} a_{2}+\left(a_{2}-a_{1}^{2}\right) a_{1}\right) x^{3}
\end{aligned}
$$

Subtract the converted series and s[3] (equivalent to equating the series)

$$
\left[\begin{array}{l}
>\mathrm{s}[3]-\mathrm{p} 1 ; \\
c_{1} x+c_{2} x^{2}+c_{3} x^{3}+a_{1} x-\left(-a_{2}+a_{1}^{2}\right) x^{2} \\
\quad-\left(-a_{3}+a_{1} a_{2}+\left(a_{2}-a_{1}^{2}\right) a_{1}\right) x^{3}
\end{array}\right.
$$

Extract the coefficients with respect to x
> coeffs (\%, x);

$$
c_{1}+a_{1}, c_{2}+a_{2}-a_{1}^{2}, c_{3}+a_{3}-a_{1} a_{2}-\left(a_{2}-a_{1}^{2}\right) a_{1}
$$

Covert the coefficient sequence to a set. Order by order, the coefficients must vanish, and Maple assumes " $=0$ " is there is no " $=$ " in an equation
$[>\{\%\} ;$

$$
\left\{c_{2}+a_{2}-a_{1}^{2}, c_{3}+a_{3}-a_{1} a_{2}-\left(a_{2}-a_{1}^{2}\right) a_{1}, c_{1}+a_{1}\right\}
$$

Solve the set of equations for c[1], c[2], c[3]
> solve(\%, unknowns);

$$
\left\{c_{2}=-a_{2}+a_{1}^{2}, c_{1}=-a_{1}, c_{3}=-a_{3}+2 a_{1} a_{2}-a_{1}^{3}\right\}
$$

Now read the series_op procedure from a plain-text file, and display the procedure definition.
[> read series4;
> op(series_op);
proc(series_in::anything)
solve $(\{\operatorname{coeffs}(\mathrm{P}(s[3])-\mathrm{P}(\operatorname{series}($ series_in, $x=0,5)), x)\}$, unknowns)
end
series_op returns a SET of equations which define the coefficients c[1], c[2], ... etc. in terms of the a[i] and $b[i]$. To extract the value of a specific coefficient, use the subs command.

Here's an example showing how to extract the coefficient $\mathrm{c}[4]$ for the case s [3] := $1 / \mathrm{s}$ [1]

$$
\begin{aligned}
& {\left[>s[1]:=1+a[1] * x+a[2]{ }^{*} x^{\wedge} 2+\right.} \\
& >\quad a[3]{ }^{*} x^{\wedge} 3+a[4]{ }^{*} x^{\wedge} 4 \text {; } \\
& s_{1}:=1+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4} \\
& \text { [}>\text { subs(series_op(} 1 / \text { s[1]), c[4]); } \\
& -a_{4}+2 a_{1} a_{3}+a_{2}^{2}-3 a_{2} a_{1}^{2}+a_{1}^{4}
\end{aligned}
$$

