PHYSICS 410

FINAL EXAM REVIEW



Ground Rules / General Information

The exam is completely closed book and electronics-free: no books, notes,
calculators, computers or cell-phones

The exam will generally involve calculations of various length based on class
notes, tutorials and homework /project assignments.

Three questions, but multi-part
You will have 150 minutes (2 1/2 hours) to complete the test

The review materials given below are not to be considered a complete set of
notes for exam study—you are ultimately responsible for all material that was
covered in class, tutorials and the homeworks and projects; nonetheless start
here first if you're short on time

No coding or pseudo-coding in exam
No coverage of random /stochastic methods other than non-uniform PRNG

| dropped some hints during lectures; consult classmates if you missed those



Polynomial Interpolation

e Given n data points:

(ZCj,fj), j:1,2,...,n

construct unique polynomial of maximum degree n — 1 that passes through all

of the data points (degree of polynomial = largest power of independent var.)
n—1
p(x) = Z cix’
i=0
e Lagrange approach
n
plz) = > filj(x)
j=1

i=1,i]



Barycentric Polynomial Interpolation

e Define barycentric weights

e Then .
w
p(z) = () Z _j .fJ
— r — T
71=1
or n
Wy
;x—mjfj
p(x) ==,
Wy
:c—acj



Polynomial Interpolation: Symbolic Example

e Consider 3 equispaced data points:

(xO — h7 f—1)7 (ZC(), f0)7 (55'0 + h7 fl)

e (Construct the Lagrange interpolating polynomial for these values, then evaluate
the derivative at x = xy.

e Without loss of generality, we can set x5 = 0, so that the data points are

(_ha f—l)a (07 fO)v (ha f1>



p(z) = Z fili(x)

O a@=h) L @Ra—h) (@t b))

= e T men T enm
2 — hx x2 — h2 22 + hx

= fa 5h2 — Jo 12 + /1 o2

e Now, since the above expression is a polynomial in x, to determine the
derivative evaluated at x = 0, we simply need to read off the coefficient of the
linear term of the polynomial. Thus we have

dp| i f

dx 2h
=0




Solution of Nonlinear Equations: Bisection

e Given f(min)f(Tmax) <0

converged = false
fmin = f(xmin)
while not converged do
xmid = (xmin + xmax) / 2
fmid = f(xmid)
if fmid ==
break
elseif fmid * fmin < O then
xmax = xmid
else
xmin = xmid
fmin = fmid
end if
if (xmax - xmin) / abs(xmid) < epsilon then
converged = true
end if
end while
root = xmid



Newton’s Method in 1 Dimension

f(x)

f(x(®) = r ()

fx() = r (1)

f(x@) = r@

P

(n)
L(nH1) _ (n) _ f(z'™)

f(@™)



Newton’s Method in d Dimensions

e \Want to solve

where

x = (x1,%2,...,2Tq)

f = (f1(x), f2(x),. .., fa(x))



e Newton iteration

(D) _ o (n) _ 5o (n)

where the update vector, §x("), satisfies the d x d linear system

J[xM]5x™) = £(x(")

e Jacobian matrix, J[X(”)], has elements

Jilx™] =

8a;j

X:x(n)



Finite Difference Approximation

e Taylor series

£ (g

0=

h is the expansion parameter

e Example

Fla+ ) = £(2) + hf(@) + @) + ) + 2 @) + O

e Domain discretization
Lmax — Lmin
Ax =

ne — 1
Tj=Tmin+ (J— 1Az, j=1,2,...,n4

Lmax — Lmin
Axr =

51 [ is level parameter




Derivation of FDAs

e Example: O(h?) centred approximation for f/(z)

_|_

1 (f(a;+Aa:) —f@) | flz) - flz - Aﬂf)) _ flz+Ax) — f(z — Az)

2 Az Ax 201
fiv1— fj—1
/ .
e Truncation error: Taylor series
/ AQZQ 1 Axg 1" 4
fle+ Az) = f(z) + Az f'(x) + Tf () + 7f (z) + O(Az”)

fle — Az) = f(a) — Aaf/(2) + S0 (@) — S0 () + O(Ax)



e Gives

Azx) — — A

= f'(z) +O(Az?)

e Example: O(h?) centred approximation for f(x)

f,/(xj) y fj—l—l _252_‘_ fj—l




Ax? Ax? Ax?
fle—Az) = fl@)—Aaf (@) +=-f"(&) - =" (@) + S f"(@) + O(Aa)

f@) = I
fle+An) = f()+Aaf (@) + S f(w) + 55 @) + S (@) + O(A)

e Adding series, then dividing by Axz? we have

flx+Azx) —2f(z) + f(z — Ax)
Ax?

2
= PR @) = [ @) +0(Ae)

e Subtracting the continuum expression, f”'(x) from the above, we have the
truncation error

AL p(a) + O(Aa?) = O(Ac?)



Derivation of FDAs Using Taylor Series

e Example: Determine approximation to f”(x) that uses grid points x;_1,x; and

Lj+1-

e Assume a linear combination of truncated Taylor series for f;_1, f; and f;11
will give the formula; require

afi—1+Bfi+vfj+1=[f"(x)+...

e Taylor expanding

Ax? Ax? Ax?
fim1 = Jla—A2) = f(@)=Daf o)+ =" (@)= " @)+ " (1)+0(Aa)
fi=[(z)

Ax? Ax? Ax?
fror = Jla+Ae) = f@)+Daf @)+ =" @)+ =" @)+ " (1)+0(Aa)



e From requirement that first equation yields f”(x) at leading order, and the
Taylor expansions, we have three linear equations

a+pf+v=0
—a+v=0
Ax?
—(a+7v)=1
2
e Solving:
B 1
@ Ax?
2
B = - Ax2
B 1
! Ax?
so our FDA is

as previously.



Richardson Extrapolation

Basic idea: FD Approximations using different scales of discretization, hq, ho,
etc. but same finite difference template, can be combined to produce an
approximation of higher order

Example: forward approximation of first derivative

Have

flz+ Az) — f(x)
Ax

LAy — = /(@) + 5 Af" (@) + AT (2) + O(Az

6

Same formula, but applied on the scale 2Ax:




e Take linear combination
OéLAxf—l—ﬁLZAxf

so that leading order term is f’(x) and leading order error term is eliminated

a+p=1
a+28=0
Solving this system
a =2
g =-1
Then
Ax NV flz+Azx) — f(x) f(x +2Az) — f(x)
aL2f + BL*2Tf = 2( AL )—( S An )
 —flz+2Az) +4f(x + Azx) — 3f(x)
B 2Ax
= [(5) — 302" () + O(Aa?)

= f'(z) + O(Az?)



So approximation is

—Jite + 441 — 355

f(z5) — A




FDA Example: Nonlinear Pendulum

e Equation of motion, initial conditions:

e O(h?) FDA (explicit):

2
2—?;29——811&9 0 <t <tnax
6(0) = 6q
w(0) = wq
= —ginf" n=273,..

6m—|—1 — 929n + 9n—1

At?

or

gt = 20™ — 9"~ — At?sin O

n=213,..

nt—l)

’I’Lt—].)



e Initialization:

o' = 0(0) = 6,
and
O(At) = 6(0)+ Atfl—f(()) + AtQiZ;S( 0) + O(At?)
~ Oy + Atwy+ AtQCj;g(O)
e Now use equation of motion to eliminate d?0/dt?; i.e. d*0/dt*> = —sinf, so we
have

1
O(At) ~ 0y + At wg — §At2 sin 0



Solving ODEs

Know how to cast system of ODEs into first order form; example

V(@) + o)y (@) = () =

Introduce new variable z(x) = 4/(x), then above becomes

/

y = =z

/
Z = r—qz

Know distinction between initial value and boundary value problems

Know basic methods

e Euler

e Modified Euler

e Improved Euler

e Fourth order Runge-Kutta



Solving ODEs: Independent Residual Evaluation

e /dea: Attempt to directly verify that approximate solution, @ satisfies the
ODE(s) through the use of an independent discretization of the ODE (i.e. a
discretization distinct from that used by the ODE integrator).

L (e)

(L+h’Es+h*Ey+ ) (u+e(e))
Lu + h*Eyu + - - - + L"(e)

h2Eo [u] 4+ L" [e(e)]

h?Es [u] = h*r = O(h?)

Q

Q

e SHM example
dyy
dt

- dyo
— Y2 — — U

dt

e Independent residual (y = 1)

Qn—l—l - Zgn + Qn—l ~

R, 3 + O




ODE IVPs: Example Problems

e Understand solution approach and qualitative physics of

e Orbiting dumbbell
e One-dimensional Toda lattice
e Driven Van der Pol Oscillator



ODEs: Boundary Value Problems

e Example: Toy model for deuteron (u(r) = ry(r), x = (Zm)1/2’r‘)

d*u
@"‘(E-V)’LL:O

B —1 0<x <2
V(ﬂj)—{ 0 xr > X

e First order form

dr

dw

—=(V —-F
- ( Ju

e Initial conditions u(0) = 0 (regularity), w(0) = 1 (arbitrary), shoot on value of
E = E(xq) until solution approaches 0 for large x



Time Dependent PDEs: IVPs

e VP nomenclature not precise; in most cases we are solving initial-boundary
value problems since boundary conditions will need to be satisfied

e Understand the following terms and concepts (apply to all FDAs, including
those derived for ODEs)

Residual
Truncation error
Consistency
Convergence
Accuracy
Solution Error



1-d Diffusion Equation (Forward Time, Centred
Space)

e Continuum Equation

u(z,t)y = oUge, u(z,0) =wugp(x), u(0,t)=u(l,t)=0

e Interior FDA

n—+1 n n n n
Uy 7Y _ qu+1 _2uj T U
At Ax?
e Truncation error
1 n 1 n

e Discretized boundary conditions and initial conditions

n+l  ntl 0
u,  =u, =0, u; = uo(z;)



Von Neumann Stability Analysis

e Consider update operation in Fourier space (k-space)
a" " (k) = G[a" (k)]
where

1 [,
u'(k) = \/—27/ e~ u"(z) dx .

e For a general difference scheme, we will find (¢ = kh = kAx)

a"" (k) = GO a"(k),

e Determining stability conditions = determining conditions such that G(&)'s
eigenvalues lie within or on the unit circle for all conceivable &

e Appropriate range for £ is
—m < 5 < ™,



Diffusion Equation: Stability Analysis

e Define a (non-divided) difference operator D? as follows:

D?*u(x) = u(x + h) — 2u(z) + u(z — h).

e Suppress spatial grid index, difference equation is

n+1 n n
Wt = uw" 4+ aD?u",

where o = 0 At/h? = o At/Az* (but 0 = 1 below).

e Need to know the action of D? in Fourier-space. Using the inverse transform

have
u(r) = — e :
(z) 5|

SO



+00

D*u(x) = u(x +h) — 2u(z) +u(r —h) / (e — 2 + 7" " Gi(k) dk
+OO . . .

x / (67’5 — 24 6_7’5) e* (k) dk .

o Now consider the quantity —4sin®(£/2):

i&/2 _ _—i&/2
_ggin?d = g
2 21

2

. . 2 . .
(ezf/Z o 6—15/2) _ ezf _9 _|_€—z£’

SO
D?u(z) = L / o (—4 sin” §> e (k) dk
V2T J o 2 .

e |In summary, under Fourier transformation, we have

u(x) — uk),

D*u(x) — —4sin? gﬁ(kz)



e Difference scheme is

1
W =" + aD*u"

e Using these results in the Fourier transform of the update, we have (cancelling

all of the 1/v/27's)

+o0 . +o0 +o0 5
/ eFra(k)" T dk = / e*ru(k)"dk — / ka481n22~( )" dk

— 00 — 00 —0o0

e So amplification factor in Fourier space is

G(&) =1— 4o Sm2§

e Thus, for stability—|G(£)| < 1—we must have

DO | =

dasin®2 <2 — a<

Mlm

1 At
- =<
2 Az? —



Diffusion Equation: Crank-Nicolson Scheme

e Average spatial operators at t" and ¢!

+1 —1 +1
J J — g J J J s J J

At 2 Ax? Ax?

W (un+1 — 20t ™ W — 20" u?1>

e Truncation error (note expansion about (z,t) = (z;,t"T1/2))

L2 nr12 Lo ntljz 1 n+1/2
T = ﬂAt (uttt)j — gO’At (uttm)j — EO’AZE (uxxxx)j
+ O(AtY) + O(Az*) + O(At*Az?)
= O(At?, Ax?)

e Stability: Write scheme as

& 2 n+1 @ 2 n
(1—§D)uj —(1—|—§D)uj



Now apply Fourier transform. Get

<1 + 2ar sin” g) a(k) " = (1 — 2asin”

So amplification factor is

.« 1—2asin*(&/2)
Gle) = 14+ 2« sin2(§/2)

This is of the form

1—-X
1+ X
with X > 0, which we can show satisfies
1—-—X
xS
1+ X
Thus, we have .
G <1

for all £ and a, so this scheme is unconditionally stable

2

g) u(k)"”



1-d Schrodinger Equation

e Continuum equation: (1 complex)

h2
i¢t — _%wazx + V(CIZ, 75)¢

e Non-dimensionalize, solve on unit interval with homogeneous Dirichlet
conditions

iwt — _¢xx + Vw
w(an) — ¢0(x)
¥(0,t) = ¢(1,t) =0



Apply Crank-Nicholson differencing

n+1 n n+1 n+1 n+1 n n n
’i¢j T ij _ 1 <¢j_|_1 - 2¢] + ¢j_1 1 ¢j+1 — 2¢j + wj_1>
At 2 Az? Ax?
1 n+1/2 n+1 n
+ SV (07" + 0

Truncation error

T = O(At?, Az?)
Stability

In stability analysis, can neglect terms that do not involve spatial or temporal
derivatives (theorem)

Thus can ignore potential term in stability analysis



e Write scheme (without V') as

(z' + %QDQ) Wt = (z — %QDQ) "

where D? is as defined for the diffusion equation and oo = At/Az?

e Under Fourier transform, this becomes

( —20481n2§> D (k) = (z+2a8m §>z§ (k)

e Thus, the amplification factor is

~ 1+ 2« sin?

G(&) =

2

DN | [N |y

1 — 2asin
which has unit modulus for all o and &

e Thus, the scheme is unconditionally stable.



Implicit Schemes

e The Crank-Nicholson schemes for the diffusion and Schrodinger equation are
implicit

e Written as a linear system for the advanced unknown vector, u?“

AU =b
Jj
the matrix A is tridiagonal

e Know how to identify such systems (including the boundary conditions), and
how to set up and solve them in MATLAB (codeless description).



1-d Wave Equation

e Continuum equation (non-dimensionalized, ¢ = 1)

w(r, ) = Uze, w(x,0) =ug(x), u(x,0)=v9(x), u(0,t)=wu(l,t)=0

e Interior FDA

n+1 —1
U, —Qu?—I—u? u;’H —2u§"—|—u§"_1 |
At? B Ax? J =28, =

e T[runcation error

1 1
T = AP ()] — 5 AT (Usaaa) ] +O(A) +0(A") = O(AE, Az?) = O(h?)

e Discrete boundary conditions

n+l n+l1
Uy = Uy =0



e Discrete initial conditions

e First time level comes from ug(x)

u; = ug(;)

o ujl must be initialized up to and including terms of order O(At?):

1
1
= u; + At (ur) + §At2 (tsa) | + O(AL)

1
~ ug(rj) + Atwvg(x;) + §At2u6’(xj)



e Stability analysis

e First rewrite difference equation in “first order” form; introduce v? = u?_l:

n—+1 n n 2 n n n
U = 2u. —v. +X(u., ,—2u. +u.

J J J—I_ (J-I—l J—I_ J—1>’
n-+1 n

’U.+ = U-,

J J

or, in matrix form
U n+1_ 24+ X2D?% —1 w 1"
v o 1 0 v
e Under Fourier transformation this becomes

[ ]n+1_[2—4)\21sin2§/2 _1”5]”

0
e \We must now determine conditions under which above matrix has eigenvalues
that lie within or on the unit circle

S 2



e Characteristic equation (whose roots are the e.v.'s) is

2 —4X%sin?*(£/2) —p —1
1 —H,

or
1+ (4)\2sin2§—2>u—1—120.

e Equation has roots

5 1/2
u(é) = (1 — 2)\?sin? 5) + <(1 — 2)\?sin” g) — 1) :

e Need sufficient conditions for
()] < 1,
or equivalently

(@ < 1.

e Can write

p@=01-Q) £ (1-Q)?>*-1)"2,



where

Q = 2)\?sin? g :
is real and non-negative (QQ > 0).

e [hree cases to consider:

1. (1-Q)?*-1=0,
2. (1-Q)*—-1<0,
3. (1-Q2-1>0 .
e Case 1: @ =0 or Q =2; in both cases |u(&)| =1
o Case 2: ((1—Q)%—1)Y2is purely imaginary, so
w@OPF =1-Q)*+(1-(1-Q)%)=1.

e Case3: (1-Q)?*-1>0 — (1-Q)*>1 — Q > 2, then

1-Q—(1-Q° -1 < -1,

so stability criterion will always be violated.



e Thus, necessary condition for Von-Neumann stability is

1-Q)P*—-1<0 — (1-Q)*<1 — Q<2.

e But Q = 2\sin?(£/2) and sin®(£/2) < 1, so have

At

A=A

<1,

for stability of our scheme



2-d Diffusion Equation: ADI Solution

e Continuum equation: u = u(x,y,t), c =1
Ut = Ugy T Uyy, 0<2<1, 0<y<1l, t>0
u(z,y,t) =uo(z,y), uw(0,y,t) =u(l,y,t) =u(x,0,t) =u(x,1,t) =0

e Define operators

n n n
gh an ity 2 iy
xrx 1,7 Aan
n n n
gh o i+l 2uy ;+ U
Yy 1,9 AyQ
e FDA
un—l—l I ¢ 1
1,J 1,7 h h n+1 n
At — 5 (am + %) ( 1,7 + zg)

e [runcation error



e ADI solution

(-2 (- )i 12 (),

e Retains O(Ax?, At®) truncation error

e System can be solved in stages by introducing an intermediate gridfunction,
1

unj then solving in turn
(1A o= (14800 ) (1t Vo,
(1 — g(‘?h ) nH = uﬁf%
i, 0]
e Solve via

1
e Stage 1: For each 7 =2,3,...n — 1 solve a tridiagonal system for u, ’+2

] Y
1 =1,2,...n
e Stage 2: Foreach i =2,3,...n — 1 solve a tridiagonal system for u?jl
17=1,2,...n



PDEs: Elliptic Equations

e Model problem: Poisson equation on unit square
VU(CIZ’, y) = Upg T Uyy = f(xay)
on

:0<x<1,0<y<1

subject to
u(0,y) = u(l,y) = u(z,0) = u(x,1) =0.

e O(h?) discretization

Uit1,j + Uim1j + Wij1 + Uij—1 — AU .
h2 :fi,j 2§’L,j§n—1

UL = Un; = U1 =Up =0, 1<i,75<n



e Solution by Gauss-Seidel relaxation

n n+1 n n+1
(,J) =h" ( E 1,9) T uv(,+)1,3 T u(,J 1) Tu

) 4u('n-)> — fi,j

1,7+1 1,7

— du;

h Uit 1,5 T Ui—1,5 T Ui j4+1 + Ui j—1
1, h2

Lt o) ) | 9F
7”3 J J auzg
()
_ (n) i,

O TT NG
U; ; +Zh oy

e Solution by successive overrelaxation (SOR) (4 =

(Z‘*’l) wa§3+1) + (1 —

A —1
i,J

GS solution):
w)u ()
0.



Generating a test solution:

Strategy: specify u(x,y) that satisfies boundary conditions, then compute
corresponding r.h.s. function, f(x,y)

u(z,y) = sin(wyx) sin(wyy)
where w, and w, are integer multiples of =

Then
flz,y) = = (wF + w)) u(z,y)

NOTE: This strategy of specifying a solution that satisfies appropriate
conditions and then, from the governing equation, computing an effective
source term can be used in many contexts, including the solution of ODEs and
time-dependent PDEs.



Generation of Non-uniform Pseudo-Random
Numbers

e Given a probability distribution function p(z), and a uniform pseudo-random
number generator, the following pseudo-code describes an algorithm that will
generate random numbers distributed according to p(x)

accept = false
until accept do
x = random(xmin, xmax)
y = random(0O, pmax)
if y < p(x) then
rand = X
accept = true
end if
end do



