
OVERVIEW OF MATLAB

PROGRAMMMING

PHYSICS 210

PRELIMINARIES

• Principal unit of Matlab usage: statement

>> a = 2

>> vr = [1 2 3 sqrt(17)]

>> vc = [5; 6; cos(pi/12); exp(2.3)]

>> M = [cos(pi) sin(pi); -sin(pi) cos(pi)]

>> linspace(0.0, 100.0, 101)

>> diag(M)

PRELIMINARIES

• Principal modes of Matlab programming

– Matlab scripts (programs)

• Arbitrary sequence of Matlab statements, including assignments,

control structures, input/output statements, etc.

– Matlab functions

• Completely analogous to Maple procedures

• Programming in Matlab ↔ Writing Matlab scripts and functions

• Whereas in Maple we focused on procedures (functions), in Matlab we will

also use scripts extensively, especially for term projects

• As we saw in the lab, Matlab source code (scripts/functions) must always be

prepared in a text files with a .m extension

DEFINING MATLAB FUNCTIONS

• Recall meta-syntax

– Meta-values: to be replaced by specific instance of <thing>, e.g.

• <Bexpr> Boolean expression a > b

• <ss> statement sequence x = 3,

 y = exp(2.3)

– Reserved words & operators: parts of language syntax, must be typed

verbatim, e.g.

• function

• if

• then

• else

• for

• end

• [

• :

FUNCTION DEFINITION: SYNTAX & GENERAL FORMS

• Note: A Matlab function can return 0, 1, 2, … values (as many as you wish),

and each value can be a scalar, vector, array …

• Meta notation:

– <ss> arbitrary sequence of Matlab statements (commands)

• In function definitions (as well as in scripts) will generally want to end

each statement with a semi-colon to suppress output, but can omit

semi-colons for an easy and useful way to “trace” execution of

statements when developing/debugging

– <fcnname> valid Matlab name

– <inarg> input argument (formal argument)

– <outarg> output argument” (a.k.a. “return value”)

FUNCTION RETURNING 0 VALUES

• General:

function <fcnname>(<inarg1>, <inarg2>, … <inargm>)

 <ss>

end

– end is optional, but I will always use it, recommend that you do as well

– Will refer to function line as “header”, <ss> as “body”

• Example: 1 inargs, 0 outarg

function zero_outarg(x)

 fprintf(‘The input argument is %g’, x);

end

>> zero_outarg(2013)

The input argument is 2013

NOTE: Mapping of formal input arg → actual arg: x → 2013

FUNCTION RETURNING 0 VALUES

function zero_outarg(x)

 fprintf(‘The input argument is %g’, x);

end

>> zero_outarg(2013)

The input argument is 2013

• Definition of function must be made in a file with name

<fcnname>.m

• For specific case considered above, this is (literally)

zero_outarg.m

• Define only one function per text file, and name that text file <fcnname>.m

FUNCTION RETURNING 1 VALUE

• General:

function <outarg> = <fcnname>(<inarg1>, <inarg2>, … <inargm>)

 <ss>

end

• Example: 2 inargs, 1 outarg (defined in text file one_outarg.m)

function out1 = one_outarg(in1, in2)

 % CRUCIAL! A value MUST be assigned to ‘out1’ within the

 % body of the function

 out1 = in1 + in2;

end

>> val = one_outarg(3, 4)

va1 = 7

• NOTE: Mapping between formal and actual args: in1→3, in2 → 4

FUNCTION RETURNING 2 VALUES

• General: Output is a length-2 vector whose elements are the 2 outargs

function [<outarg1> <outarg2>] = <fcnname>(<inarg1>, <inarg2> …)

 <ss>

end

• Note the syntax: square brackets enclose the <outargs>

• Example: 4 inargs, 2 outargs (defined in text file two_outarg.m)

function [out1 out2] = two_outarg(in1, in2, in3, in4)

 % CRUCIAL! A value MUST be assigned to BOTH ‘out1’ and ‘out2’

 % within the body of the function.

 out1 = in1 + in2;

 out2 = in3 – in4;

end

• More syntax: Commas between the <outargs> not needed (optional, won’t

hurt if you include them) but are absolutely required between the <inargs>

FUNCTION RETURNING 2 VALUES

function [out1 out2] = two_outarg(in1, in2, in3, in4)

 % CRUCIAL! A value MUST be assigned to BOTH ‘out1’ and ‘out2’

 % within the body of the function.

 out1 = in1 + in2;

 out2 = in3 – in4;

end

>> [val1 val2] = two_outarg(7, 8, 9, 10)

va11 = 15

val2 = -1

• Note the syntax for the assignment of the return values, vector of variables must

appear on the left hand side to “capture” both values that are returned

FUNCTION RETURNING 3 VALUES

• General: Output is a length-3 vector whose elements are the 3 outargs

function [<outarg1> <outarg2> <outarg3>] = <fcnname>(<inarg1> …)

 <ss>

end

• Again note the syntax: square brackets enclose the <outargs>

• Example: 3 inargs, 3 outargs (defined in text file three_outarg.m)

function [out1 out2 out3] = three_outarg(in1, in2, in3)

 % Values MUST be assigned to all three of ‘out1’,

 % ‘out2’ and ‘out3’ in the body of the function.

 %

 % Also note that the 2nd and 3rd output arguments are

 % assigned a vector and a matrix respectively.

 out1 = in1;

 out2 = zeros(1, in2);

 out3 = eye(in3);

end

FUNCTION RETURNING 3 VALUES

function [out1 out2 out3] = three_outarg(in1, in2, in3)

 % Values MUST be assigned to all three of ‘out1’,

 % ‘out2’ and ‘out3’ in the body of the function.

 %

 % Also note that the 2nd and 3rd output arguments are

 % assigned a vector and a matrix respectively.

 out1 = in1;

 out2 = zeros(1, in2);

 out3 = eye(in3);

end

>> [val1 val2 val3] = three_outarg(100, 3, 2)

val1 = 100

val2 = 0 0 0

val3 =

1 0

0 1

• Once more, note the vector of variables on the left hand side that is needed to
ensure that all three return values are “captured”

BOOLEAN OPERATIONS

• No distinct Boolean type in Matlab (as there was in Maple)

– Numerical value 1 is defined to be “true”

– Numerical value 0 is defined to be “false”

– (In actuality any non-zero value is true)

Relational Operators

== Equal

~= Not equal

> Greater than

< Less than

>= Greater than or

equal

<= Less than or

equal

Logical Operators

& Logical AND

| Logical OR

~ Logical NOT

CONTROL STRUCTURES (SELECTION): if-else-end STATEMENT

• General: if-else-end

if <Bexpr>

 <ss 1>

else

 <ss 2>

end

• Note: no then; use end rather than end if

• Example

if a > b

 c = a + b;

else

 c = a – b;

end

CONTROL STRUCTURES: if-end STATEMENT

• Special case: no else clause

if <Bexpr>

 <ss>

end

• Example:

if a > b

 c = a + b;

end

CONTROL STRUCTURES: if-elseif-else-end STATEMENT

• General: if-elseif-else-end

if <Bexpr 1>

 <ss 1>

elseif <Bexpr 2>

 <ss 2 >

elseif <Bexpr 3>

 <ss 3>

 .

 .

 .

else

 <ss n>

end

• Note: elseif not elif as in Maple

• Example

if x == 0

 y = 1;

elseif x == 1

 y = 2;

elseif x == 2

 y = 4;

else

 y = 0;

end

CONTROL STRUCTURES (ITERATION): for-end STATEMENT

• General:

for <loopvar> = <vector-expression>

 <ss>

end

<vector-expression> MUST define row vector

• General type 1: <vector-expression> created using colon operator

for <loopvar> = <first> : <last>

 <ss>

end

for <loopvar> = <first> : <step> : <last>

 <ss>

end

• <first>, <last>, <step> don’t need to have integer values, but often will

in our work

CONTROL STRUCTURES: for-end STATEMENT

• Type 1 examples

for k = 3 : 6

 k

end

k = 3

k = 4

k = 5

k = 6

for jj = 2 : 3 : 14

 2 * jj

end

jj = 4

jj = 10

jj = 16

jj = 22

jj = 28

for value = 5 : -6 : -25

 value

end

value = 5

value = -1

value = -7

value = -13

value = -19

value = -25

CONTROL STRUCTURES: for-end STATEMENT

• General:

for <loopvar> = <vector-expression>

 <ss>

end

• General type 2: <vector-expression> created using any other command or

expression that returns/defines a row vector

• Example:

for val = [1, 3, 9, sqrt(2)]

 val;

do

val = 1

val = 3

val = 9

val = 1.414

