PHYS 410/555: Computational Physics Fall 2004 Homework 2
DUE: Thursday, October 14, 10:00 AM Report bugs to choptuik@physics.ubc.ca

Important: The following assignment requires

1. Working with the xmaple graphical user interface (GUI) to produce a Maple worksheet (Problem 1).

2. Preparing source code for Maple procedures in plain-text files that can be input into maple or xmaple
via the read command (Problems 2, 3, 4 and 5).

To complete problem 1 (i.e. the one requiring the GUI), I suggest you use xmaple via the console of one of the
1nx machines, via one of the PC “X-terms” in Henn 205 or via your own machine, If you are using one of
the X-terms, you will need to ssh into one of the Inx machines, and then start up xmaple, as maple/xmaple
is not installed on 1tsl. Note that if you create the worksheet on some machine other than 1nx[123], you
should still ensure that xmaple on the 1nx machines can read the worksheet, and that the execution of the
worksheet on the 1nx machines is as you exrpect.

Whenever working with ANY worksheet in xmaple, be sure to save your work frequently, using, for example,
Ctrl-S.

Warning: It may take you several hours to properly complete Problem 1—it is not advised that you leave
its completion until the last minute.

Problems 2, 3, 4 and 5 do not require the use of the worksheet interface (GUI), and you should thus be able
to complete them using “command-line” maple, from any shell running on the 1nx machines.

Please follow all instructions below carefully, and ensure that all requested files are in their correct locations
within your lnx account (with their correct names!) when you have completed the assignment.

Finally, as always, let me know immediately if there is something that you do not understand, or if you
encounter serious problems with any part of the assignment.



Problem 1: Using Chapter 2 of the Maple V Learning Guide, make and save a facsimile of the Maple
worksheet I went through in class. Note that a Postscript version of my worksheet is available on-line via
the Class Notes web page—please refer to that document as well as the Learning Guide itself while doing
this exercise. You are to work though Chapter 2 in its entirety, essentially entering everything that follows a
Maple prompt (>) into your worksheet. Note, however, that there are several examples that do not work as
documented in the Learning Guide. You should omit these examples, as I did. Your worksheet should include
annotations corresponding to the various sections and sub-sections of the Chapter, as mine does. Observe
that complete instructions for adding comments, headings, titles, etc. are available via Maple’s on-line help
facility. (For example, in Maple 8, bring up the main help window—by selecting Introduction from the
Help menu—click on the Worksheet Interface hyperlink, then Overview of Document Processing, then
Insert Elements into a Worksheet, etc.) When you have finished, ensure that your worksheet, or a copy
thereof, is saved as ~/hw2/al/al.mws on your 1lnx account. (Note that .mws is the standard extension for
xmaple worksheet files.) Also observe the cautions above concerning (a) the time it may take to complete
this problem, and (b) the frequent use of Ctrl-S, or some other save mechanism.

Problem 2: Write Maple procedures as follows:

1. luniq := proc(l::list) ---

luniq returns true if and only if all elements of 1 are distinct (i.e. not equal to another list element).
If 1 is the empty list, luniq returns true.

Ezxamples:

> 1luniq([1,2,3,4]);
true

> luniq([1,2,3,11);
false

> luniq([diff (exp(sin(x)), x$6), cos(x), diff(diff (exp(sin(x)), x$5), x)1);
false

> luniq([]1);
true
2. lpair := proc(l1l::list, 12::1list) ---

If 11 and 12 are both lists of length N, 1pair returns a new list, also of length N, whose i-th element
is the 2-element list [ 11[i] , 12[i] 1.

Ezxamples:

> lpair([w, x, y, z],[1, 2, 3, 41);
[lw, 11, [x, 21, [y, 31, [z, 41]

> 1lpair([],[1);
1;

> 1lpair([1, 2, 3],[a, bl);
Error, (in lpair) input lists are not of equal length

3. lreduce := proc(ll::1list, 12::list(binarynumeric)) ---

The input parameters 11 and 12 must be non-null lists of equal length. Further, each element of 12
must be of type binarynumeric, that is, either 0 or 1. You must make the datatype binarynumeric
known to type by defining the procedure ‘type/binarynumeric*:



‘type/binarynumeric‘ := proc <your-definition-here> end;

In the above, “<your-definition-here>” is to be replaced with appropriate Maple code.

Once ‘type/binarynumeric‘ has been appropriately defined, type should work as follows:

> type(0, binarynumeric);
true

> type(l, binarynumeric);
true

> type(2, binarynumeric);
false

> type(a, binarynumeric);
false

Given that the above constraints are satisfied, the output of lreduce is a list consisting of those
elements of 11 which correspond to elements of 12 which are equal to 1 (with the order of elements of
11 preserved in the output list).

Ezxamples:

> 1lreduce([1,4,2,3],[0,1,0,1]1);
[4, 3]

> lreduce([1,4,2,31,[0,0,0,11);
[3]

> 1lreduce([1,4,2,3],[0,0,0,01);
[

> lreduce([1,4,2,3],[0,0,11);
Error, (in lreduce) input lists are not of equal length

> 1lreduce([],[1);
Error, (in lreduce) null list input is invalid

> lreduce([1,4,2,3]1,[0,2,0,11);
Error, lreduce expects its 2nd argument, 12, to be of type
list(binarynumeric), but received [0, 2, 0, 1]

Ensure that your procedures are suitably “bullet-proof”; test them thoroughly with various input—invalid as
well as valid—including null lists ([ 1). Have your routines output error messages via ERROR when appropriate,
as shown in the above usage examples.

All three procedure definitions should be adequately commented, and must be prepared in a single Maple

source file (plain text file) called ~/hw2/a2/procs. I must be able to read ~/hw2/a2/procs into a maple
or xmaple session using the read command. Your procedures will be tested with my own input.



Problem 3a: Later in the course, we shall consider finite difference approximations (FDAs) to differential
operators such as d/dx, d?/dz?, etc. We will generally formulate these approximations on a uniform mesh
(or uniform grid, or uniform lattice) of points; that is on a discrete set of points, x;, so that a continuum
interval [a,b] ! is replaced with the discrete set

z;j=a+jh, 7=0,1,---N -1, (3.1)
where N is the total number of lattice points (including the “boundary points” 2o = a and xy_1 = b), and
the mesh spacing (or grid spacing, or lattice spacing), h, is given by

b—a
N-1"

h =

Note that the definition (3.1) implies that the spacing between any and every consecutive pair of lattice points
x; and x;4; is h—this is what is meant by a uniform mesh. We note that a significant motivating factor for
the use of uniform meshes is that accurate finite difference expressions are especially easily formulated on
them.

Having defined the discrete domain, or mesh, we consider discrete functions defined on the mesh, and adopt a
standard finite-difference notation so that, e.g., u; = u(z;), denotes a grid-approximation to some continuum
function u(x). On a uniform lattice (and modulo possible problems—ignored here—near the end-points of
the lattice), a particular FDA for a particular differential operator is independent of the specific lattice site
at which the approximation is applied (i.e. the FDA is translationally invariant). 2 For example, as we will
shortly establish, the following is a so-called second-order accurate approximation of du(z)/dz|z=z;:

Ujp1 — Uj—1
—_ - 3.2
o7 (3.2)

That is, we have
Ujyr —uj—1 _ du
2h dx

T=2;

+O(h?). (3.3)

As a side-comment, we note at this point that it is often convenient to represent a formula such as (3.2)
pictorially, using what is known variously as a finite difference stencil, molecule or star. For example, the
above approximation could be represented as

where the circles indicate which of the particular grid function values (i.e. which of the w;/) in the neigh-
bourhood of z; are involved in the approximation (the nearest neighbours in this case), and the coefficients
(numbers) in the circles are the relative “weights” of the u; in the FDA. (Note that (3.2) includes an overall
factor or 1/2h which is not accounted for in the figure.)

Let us now turn to the task of verifying that (3.2) is an O(h?) approximation to du(z)/dx|,—,. To do so, we
consider Taylor series expansions about x = x;, where the expansion parameter is the appropriate multiple
of the grid spacing, h.> Specifically, we have

du 1 ,d%u 1 .d%u 1. ,d%
=x; : T=x; : T=T; : T=T
du 1 ,d%u 1 .d%u 1. ,d%
Uj—1 EU(ijl) E’UJ({EJ' —h) = Uy —h% + 5 2@ - ghgﬁ + Eh%w +O(h5)
=x; : T=x; : T=T; : T=I;

Yie. all & such that a < & < b, for given interval limits a and b

2Here I am assuming that the differential operator has constant coefficients.
3Ensure that you understand this point; contact the instructor, or ask a classmate if you don’t.



Substituting the above expansions into (3.2) we find, after a little algebra, that

d
+O(h*) = % +0(h?)

Ujr1 — Uj—1 - du

1 ,d%
== h?
2h dx

6 dx3

T=T T=Tyj ZTj

as advertised.

We now consider what is essentially a general form for an FDA of an abitrary constant-coefficient differential
operator D. We posit that any FDA approximation of D[u(z)]| can be written as

T=Tj

i=imax

Dlu(@)]l,—,, =0 Y citijri + O(hP).

1=%min
Here imin, tmax; Cipiy, * * * Cimax, 0 and p are all characteristics of the FDA, and are defined as follows:

1. %min and iyax determine the “left” and “right” limits, respectively, of the difference stencil, so that the
total width/diameter of the stencil iS éymax — tmin + 1 (for (3.2) we thus have imin = —1,imax = 1 and
a stencil diameter of 3 in accord with the above figure).

An FDA is termed centred if
(a) imin - _imax

(b) The ¢; are symmetric (antisymmetric) about ¢ = 0 for even- (odd-) order derivatives. Note that
all of the difference schemes used in this problem are centred.

2. The ¢, - - Cip.. are integer coefficients that determine the relative “weights” of the unknowns, u;,
that appear in the FDA.

3. o is an overall scale factor, which invariably is of the form 1/(kh?) (why 1/h9?), where d is the
differential order of the operator, D (e.g. d/dx = d =1, d*/dz* = d = 2, etc.), and the integer x is
chosen so that the ¢; are all integers (so for (3.2) we have d = 1, kK = 2).

4. pis an integer that characterizes the order of accuracy of the approximation (in the continuum limit,
h — 0) and can be determined via Taylor series expansion as illustrated in the example above. We
thus speak of an O(h?) scheme such as (3.2) as second order, an O(h) FDA as first order, etc.

Now, observe that for each distinct FDA of the form (3.2), the coefficients ¢; ,, - - ¢;,... can conveniently be
represented as a rank-1 Maple array. For example, to represent formula (3.2) we could define

> ¢ := array(-1..1, [-1,0,11);
with an associated scale factor o = 1/(2h).
Given this preamble, we finally arrive at the problem specification per se!
Write a Maple procedure with header
fdaeval := proc(c::array(integer), sigma::algebraic) ... end:
that uses Taylor series expansion about = x; as in the above example to evaluate

?=%max

Du(@)]|—p, = @ Z Cillj+i

1=%min

thus returning explicit verification of (correctly!) constructed difference schemes. The following examples
illustrate typical invocations and corresponding return values for the procedure:



vV Vv

al

# 0(h"2) centred approximation to first derivative

:= array(-1..1, [-1,0,11);

> fdaeval(al,1/(2%h));

(3) 2
D(w ) +1/6 O H(W&) h

> # 0(h"2) centred approximation to second derivative

> a2

:= array(-1..1, [1,-2,11);

> fdaeval(a2,1/(h"2));

&) 4 2
DO HYwx +1/12 ®d HW® h

# 0(h"2) centred approximation to third derivative

\4

a3

:= array(-2..2, [-1,2,0,-2,1]1);

> fdaeval(a3,1/(2xh"3));

3 (5) 2
@O YW +1/4 D H>Wx h

Notes and Hints

1.

As in the above examples, your procedure should always return an expression which involves a differ-
ential operator applied to u(x), and which is also a function of h; i.e. use global expressions (variables)
for u(x) and h respectively.

. Consider the use of Maple expressions such as

> taylor (u(x+h), h, ord);

where you must determine an appropriate value of ord, (note that “appropriate value” may depend
on the length of the coefficient array, i.e. on the width, or diameter, of the FDA).

. The output from ?array is likely to be of help in completing this question.

. The dollar ($) operator will “convert” a Maple range into the equivalent Maple series of integers, vis

> rng = -2..2;

rng = -2 .. 2
> § rng;

-2, -1, 0, 1, 2

. IMPORTANT: No error checking beyond that provided automatically by Maple’s argument-type

checking facility is required in your implementation of fdaeval. Students sending e-mail regarding
error checking in this problem are likely to be told to RT(F)M :-).

Your implementation of a thoroughly tested fdaeval, including any auxiliary procedures you define (if any)
must be prepared in the Maple source file (plain-text file) ~/hw2/a3/£d0. Commenting of your procedure(s)
can be minimal. You should also feel free to leave any Maple source files that you code for testing purposes
in ~/hw2/a3/. Such files, however, will not be graded.

Problem 3b: Code another version of fdaeval that has the following header

fdaeval := proc(rng::range, c::list(integer), sigma::algebraic) ... end:

with sample invocations/output as follows.



\2

# 0(h"2) centred approximation to first derivative
fdaeval(-1..1, [-1,0,1], 1/(2%h));

\4

(3) 2
D(w ) +1/6 O H(W&) h

\4

# 0(h"2) centred approximation to second derivative
fdaeval(-1..1, [1,-2,1]1, 1/(h"2));
(2) 4) 2
O JMXwkx +1/12 O H>W&) h

\4

+*

0(h"2) centred approximation to third derivative
fdaeval(-2..2, [-1,2,0,-2,1], 1/(2*xh~3));
(3 (5) 2
O dwx +1/4 d H@W& h

\4

Follow the same instructions re testing/commenting etc. as for the first part of this problem, except use £d1
(rather than £d0) as the filename of the Maple source file containing the definition of the new fdaeval and
support procedures (if any).

In ~/hw2/a3/README, comment on the relative ease of use (“naturalness”) of the two implementations (i.e.
which version do you think that a “generic” user is likely to prefer, and why?).

Hint: With judicious use of one or more local variables of the right type, your implementation of this version
of fdaeval can be accomplished as a relatively minor modification of the version in 3a.

Problem 4: Implement a Maple procedure that computes the unique polynomial (the Lagrange interpolating
polynomial) of degree n — 1 that passes through [x;, f(2;)], ¢ = 1---n. Note that all of the x; are assumed
to be distinct. The procedure should have the header

polyinterp := proc(ldata::list(list), var::name)

polyinterp must return a polynomial in var; do not assume, for example, that var will always be “a”. A
sample invocation of polyinterp and the resulting output is:

> polyinterp([ [0,1]1, [1,6]1, [2,4], [3,0] 1,’x’);

3 2
5/6 x - 6x +61/6 x+ 1

Prepare the procedure definition (adequately documented and with as much error-checking as possible) in
the Maple source file (plain-text file) ~/hw2/a4/polyinterp. Your routine will be tested with my own
input. Note that I wrote (will write) this procedure in class; you are free to copy what I did there verbatim.
However, you are encouraged to implement the procedure on your own, working from the basic mathematical
description, also covered in class. Finally, my version does not exit with an error message if the z; are not
distinct; yours MUST do so.

Problem 5: (for 555 credit, optional for 410 students) From the following 3 dimension-full physical
constants (values given in ST units):

34—2

e Newton’s gravitational constant: G = 6.673 x 10711 kg™ 'm3s~
o Speed of light: ¢ = 2.998 x 108 ms~!

e Planck’s reduced constant: h = 1.0546 x 10 34 kgm?s—!



it is possible to compute a fundamental mass, length, time, density etc. known as the Planck mass, Planck
length, Planck time, Planck density etc. More precisely, for any physical attribute with dimension

Mo L2 T (5.1)

where M, L, and T have the dimensions of mass, length, and time respectively, and the «; are real constants,
the associated Planck quantity has the same dimensions, and is generically given by

PP B (5'2)
for some to-be-determined real constants ;. For example:
L ~ C—3/2 ﬁ1/2 G1/2

where the ~ denotes “has the same dimensions”. In SI units, then, the Planck length is 1.616 x 10~3%m.

Write a Maple procedure called planck that accepts algebraic expressions of the form (5.1) and returns the
corresponding Planck quantity (5.2). You should first extend the type procedure to recognize a new type
MLTdim that is any expression precisely of the form (5.1) (with constant «;). Thus, for example,

> type(M, MLTdim);
true

> type(M"2/(L*T), MLTdim);
true

> type(2xL, MLTdim) ;
false

> type(M"pl, MLTdim);

false

Once you have extended type appropriately, note that you can use Maple’s type-checking facility by using
a header of the form:

planck := proc(x::MLTdim)

Finally, extend the floating-point evaluation routine, evalf so that it recognizes the constants G, c and
hbar and returns their ST values (without dimensions) as given above. Prepare all of the procedures you
write in a single file called ~/hw2/a5/planck. Typical output from planck should look like this:

> # Input definitions from file ‘planck®
> read planck;

> planck(L);

> evalf (%) ;
-34
.1616058223%10

Test your implementation thoroughly; it will be evaluated using input of my own design.



