
Physics 200-04
Einstein

Poincare and Lorentz: Throughout the last few years of the 19th century,
two people were the chief advocates for a radical rethinking of physics in the
face of the problems that the aether presented to physics. In both cases their
emphasis was on trying to figure out how and why matter behaved in such
a strange way in order to give the outcomes for the experiments. They were
searching for a constitutive theory of matter which would make sense of the
various experiments. Lorentz realized that instead of Fresnel’s strange partial
aether drag, one could get the same results by assuming that in the equations
of motion for the waves, one assumed that in the new frame not only did x →

x − vt but also that the time dependence be changed by substituting t →

t − vx/c2. both examined Maxwell’s equations and realized that there were
a set of transformations which would leave the Maxwell equations the same
(a set of transformations which we call the Lorentz transformations). But both
were confused as to how to make these transformations compatible with matter.
Lorentz for example tried to make electrons out of the electromagnetic field (so
that it would automatically obey the same transformations as the EM field did)
but always got hung up with the fact that in order to hold the electron together,
non-electromagnetic forces were required.

Einstein It was Einstein who suddenly pulled it all together and showed
how, but looking at the problem, and in particular at the nature of space and
time in a new way. He based his approach, not on any analysis of how non-
electromagnetic matter behaved, but instead postulated two principles. Both
principles were based in part on experiment and in part on intuition. The first
was that any attempt to measure the velocity of light by any means would
always give the value c. Light never traveled at any different speed. The second
principle he borrowed from Galileo– namely that there was not experiment
that anyone could do which could determine the velocity of a system internally
(ie without any reference to or interaction with some external system). This
second was probably the more radical, since, although Galileo had paid it lip
service, he had denied it in his theory of tides. Newton had explicitly denied
it in his theory of absolute space, even though his equations were Galilean
transformation invariant. The Aether theorists, and the wave nature of light
seemed to contradict this principle. Nevertheless, Einstein based his whole
approach on it.

I will not follow Einstein in his derivation, but rather take the road we began
on three lectures ago.

The statement that light always travels with velocity c can be phrased by
writing down the statement that the equation of motion for a particle of light,
or for a wave packet of light made to look like a particle, is

distance traveled = ct (1)
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Or, if we assume that the light starts out from the point x = y = z = 0 at t = 0,
then this can be written as

√

x2 + y2 + z2 = ct (2)

or, to make this more symmetrical,

x2 + y2 + z2
− c2t2 = 0 (3)

Now, let us imagine that this same light ray, or set of light rays is observed
by someone traveling past us with some velocity. They will have a time defined
t′ and will have spatial coordinates defined x′, y′, z′. Because there should
be no way in which this observer could tell that he is traveling just by looking
at how the light moves, light must obey exactly the same equation in this new
system of coordinates as in the old. Ie, the equation of motion for the light must
again be

x′2 + y′2 + z′
2
− c2t′

2
= 0 (4)

Now, there most be some relationship between the new coordinates and the
old. Since in each case I assumed that the light started out at the origin at time
zero, we will need that x = y = z = t = 0 corresponds to x′ = y′ = z′ = t′ = 0.
Furthermore, it is hard to see how the relationship between the unprimed and
primed coordinates could be non-linear, as that would surely introduce terms
which are more than just quadratic in the new coordinates.

I will assume that the relation is linear. furthermore, I will assume for
simplicity that we are working in two dimensions rather than four– ie, with
coordinates x, t and x′, t′. We will come back to the four dimensions later.

Thus we have

x = αx′ + βct′ (5)

ct = γx′ + δct′ (6)

Substituting this into

x2
− (ct)2 (7)

we get

(α2
− γ2)x′2 + 2(αβ − γδ)x′ct′ − (δ2

− β2)(ct′)2 (8)

In order that the equation

x′2
− c2t′

2
= 0 (9)

follows from

x2
− c2t2 = 0 (10)
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we need that

αβ − γδ = 0 (11)

α2
− γ2 = δ2

− β2 (12)

Let us begin by assuming that α2
− γ2 = 1 and we will look at the possibility

that this is not unity later on.
We can solve this by defining γ = sinh(θ) for some θ where

sinh(θ) =
eθ

− e−θ

2
(13)

Then we have

α = cosh(θ) (14)

by the hyperbolic trigonometric identities.
Similarly

δ = cosh(θ′) (15)

β = sinh(θ′) (16)

and finally from αβ − γδ = 0

cosh(θ) sinh(θ′) − sinh(θ) cosh(θ′) = 0 (17)

or by the hyperbolic identities

sinh(θ − θ′) = 0 (18)

from which we get that θ = θ′.
Thus we find that

x = cosh(θ)x′ + sinh(θ)ct′ (19)

ct = cosh(θ)ct′ + sinh(θ)x′ (20)

Note that this immediately leads to the result that in the four dimensional
case the above transformation together with

y = y′ (21)

z = z′ (22)

works– ie is a transformation which leaves the speed of light constant in the
second frame.
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We can invert these equations as well to give x′, y′, z′, t′ in terms of x, y, z, t.

x′ = cosh(θ)x − sinh(θ)ct (23)

t′ = cosh(θ)t − sinh(θ)
x

c
(24)

y′ = y (25)

z′ = z (26)

Note that the a particle located at x = 0 is in the new frame given by

x′ = −
sinh(θ)
cosh(θ)ct

′. Ie, in the x′t′ frame, that particle is moving with a velocity of

−v = −ctanh(θ) (27)

Similarly the point x′ = y′ = z′ = 0 moves with velocity v = c tanh(θ) in
the plus x direction.

We can use these to express θ in terms of v since tanh(θ) = v

c
(in your

assignment you show what cosh(θ) and sinh(θ) are in terms of v/c.)

cosh(θ) =
1

√

1 −
v2

c2

(28)

sinh(θ) =
v

c
√

1 −
v2

c2

(29)

Matrix version Define the four dimensional vector

X =







t
x
y
z






(30)

Also define the square matrix

G =







−c2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1






(31)

Then the length of the vector X can be defined as

length(X)2 = XT GX = −c2t2 + x2 + y2 + z2 (32)

The Lorentz transformation L is a transformation written in matrix form as
X = LX ′ which leaves the length squared the same form. This means that we
need

(LX ′)T GLX ′ = X ′T GX ′ (33)
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But the left hand side is

(LX ′)T GLX ′ = X ′T LT GLX ′ = (X ′T )(LT GL)X ′ (34)

The only way this will be true for all vectors X ′ is if

LT GL = G (35)

This is the condition for a linear transformation designated by L to be a
Lorentz transformation. G is usually called the metric. Ie, the Lorentz trans-
formations are transformations which leave the metric invariant.

If L leaves t alone (t = t′) then the Lorentz transformations are exactly the
rotations of x, y, z.

Note that any product of Lorentz transformations is also a Lorentz transfor-
mation. If L = L1L2 where L1 and L2 are Lorentz transformations, then

LT GL = (L1L2)
T GL1L2 = L2

T L1
T GL1L2 = LT

2 (LT

1 GL1)L2 (36)

= LT

2 GL2 = G (37)

Ie, then L is also a Lorentz transformation. The set of all Lorentz transfor-
mations form a group.

[I would like to point out how easy this is to prove using matrices. Had I
had to try to prove it using the full linear transformations written out in full,
it would have taken about 10 pages of huge messy scribbling. It takes two lines
using matrices– the power of mathematical notation. Of course you must be
able to backtrack to figure out what the notion means after you are finished.]

Note that if we define

G−1 =







−c−2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1






(38)

then

G−1G = GG−1 = I (39)

We then have

LT GL = G ⇒ (G−1LT G)L = G−1G = I (40)

so that G−1LT G is the inverse of L.

Time The most surprising feature of this transformation is the change in
the nature of time. In particular the time in the new frame is not the same as
the time in the old frame. This difference manifests itself in two ways. The first
is that the notion of simultaneity changes. The t=constant surface is not the
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same as the t′=constant surfaces. For example, the t = 0 surface is given by
cosh(θ)t′ + sinh(θ)x′/c = 0, or

t′ = −
v

c2
x′ (41)

The “same time” means something different in one frame than it does in the
other.

An even more surprising feature is that the time intervals themselves does
not mean the same thing. If x′ = 0, then t = cosh(θ)t′. Ie, the time designated
by clocks in the t, x frame is not the same as that in the t′, x′ frame. Part of
this comes about because of the change in simultaneity, and part because the
clocks really tick differently in the two frames.

The most dramatic example of this is the so called twin’s paradox. (there is
nothing paradoxical except with our preconceptions about how time behaves.)
Say that Bob leaves his twin, Alice and travels off at a speed v (with respect
to Alice) for a certain time. He then travels back at that same speed v until
he again meets Alice. On the way out, the time that Alice claims has elapsed
until the turnaround is cosh(θ)t′ where t′ is the time elapsed for Bob until the
turnaround. But on the way back, the time elapsed will be the same. Thus if
for Bob a time 2t′ has elapsed, for Alice a time 2cos(θ)t′ will have elapsed. If v
is sufficiently large (ie close to c), cosh(θ) will be large, and time elapsed from
leaving to re-meeting for Alice will be much larger than it is for Bob (by the

factor 1
cosh(θ) =

√

1 −

(

v

c

)2
. )

This of course seems on the face of it absurd. How can the times differ? Time
is surely a universal. In fact we have all been trained since we were very young
to regard time in this way. For very young children, Piaget has shown that
they will regard time as situation dependent. The amount of time passing for
them for a moving block is different than for a stationary block. Our education
system– pointing to clocks, telling them that there is a universal clock time
which is the same for all clocks, punishing them for being late and refusing
to accept that they thought less time had passed than for you– ensures that
we have had it ingrained into us that time exists as some unitary, universal, all
encompassing thing. On this basis it is of course lunacy to talk about time being
situation dependent, that time can depend on state of your motion with respect
to someone else. Unfortunately the world need not share our prejudices. While
Newton together with his notions of absolute space, also gave us the notion of
absolute time, it turns out to conflict with the way in which the world operates.

Lengths: How long is something? How do you compare lengths? The
answer at first seems obvious. You lay a ruler beside the object and look at
where along the ruler the two ends of the object lie. But things become more
difficult if the object is moving. How do you measure the length of a moving
object? What do you mean when you say “the length of that moving object is

6



1 meter”? Again it is obvious. Just lay your ruler down, and when the one end
of the object is lined up against the one end of the meter stick, find out where
along the meter stick the other end lies. But there is a world of difficulty in that
word “when”. When you say ”when the end...., look find out where...” clearly
depends on what you mean by ”when”, what you mean by ”the same time”
(which is what you take “when” to mean. ) Clearly it is not correct to simply
line up the one end, wander out for a coffee and a cinnamon bun, and then come
back and see where along the stick the other end lies. You want to line up the
two ends ”at the same time”. But, as noted above, ”at the same time” means
different things to different people. The notion of simultaneity depends on your
state of motion. What is “the same time” to one observer, is not the same time
to another.

So, let us look at the notions. Let us say we have the two ends of an object
lying at rest at the points x = 0 and x = L. For the observer in the x′ frame,
these ends will travel along the lines

0 = cosh(θ)(x′

1 + vt′1) (42)

L = cosh(θ)(x′

2 + vt′2) (43)

If we now want to determine the length of the body (x′

2 − x′

1) at the same t′

time, ie at t′1 = t′2, we find that

x′

2 − x′

1 =
L

cosh(θ)
=

√

1 −
v2

c2
L (44)

Ie, the length of the body in the moving frame, assuming that we want the length
“at the same time” in that same frame is shorter, by exactly the Fitzgerald
length contraction, cosh(θ) = 1

√

1− v
2

c
2

.

[The following paragraph is an alternative that is almost never used. It is
here only to illustrate the importance of synchronisation to the definition of
moving lengths]

On the other hand you might want to use the t time to define your simul-
taneity for some reason. The person in the x, t frame might set off flash lamps
at the two ends of the rod at the same time in his frame, and you want to know
how far apart those flashes are in your frame. In this case, it is not t′1 and t′2
which are equal, but

t1 = cosh(θ)t′1 + sinh(θ)x′

1/c (45)

t2 = cosh(θ)t′1 + sinh(θ)x′

2/c (46)

which are equal. Thus, we have, by subtracting the equations for x2 and x1 and
those for t2 and t1,

L = cosh(θ) ((x′

2 − x′

1) + v(t′2 − t′1)) (47)

0 = cosh(θ)
(

(t′2 − t′1) +
v

c2
(x′

2 − x′

1)
)

(48)
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or

x′

2 − x′

1 = L cosh(θ) =
L

√

1 −
v2

c2

(49)

which is longer than L.
Again, lengths also depend on the situation. You must precisely define what

you mean by a length, how you define ”at the same time” in defining the length,
to get an answer, and the answer depends on how you do it.

General Comments

It is critical to note that there is no talk of the Aether or of the interaction
with matter in this whole procedure. However, the two assumptions Einstein
made– constancy of light velocity and relativity– clearly have immense impli-
cations about the way that matter behaves. When we talk about times and
distances in the above, we assume that these times correspond with the times
as ticked off by real, mechanical, material clocks. We assume that when one
talks about lengths that this is the way that real, mechanical, material rulers
behave. If they did not, then when one used those clocks and rules, one would
either find that the speed of light was not constant, or that one could, by simply
doing local experiments, tell the difference between a moving and a non-moving
system.

Relativity of sound: To emphasis the above points, we note that there is
nothing in the above mathematics which demands that c be the speed of light.
The mathematics would be identical if we took c to be the velocity of sound.
Demanding that the velocity of sound be the same in all frames would lead to
identical equations, identical Lorentz transformations, as the above. However,
in this case clocks do not behave in that way. If one were to make a real
mechanical clock, and have it move through the water, its rate of ticking would
not obey the above relations. If one made a ruler, its length would not obey the
above relations. One would find both that the velocity of sound as measured
with real mechanical clocks and rods would not be the same in all frames. One
would find that one could do experiments which could tell you whether or not
you were moving with respect to the water or not. If you could make your
clocks and rods purely out of sound, with no other matter involved (not even
the characteristics of the water other than the sound waves), then according to
those clocks and rods sound would obey Einstein’s relativity. Just as Lorentz
argued, that if one could make all matter out of Electromagnetism, then the
clocks and rods would almost by definition, obey special relativity. But it is not
true that you can make all rods and clocks out of electromagnetism (not least
because of the instability of charged matter). You need other types of matter.
If Einstein’s relativity is correct that ALL matter must behave in such a way as
to ensure that relativity is correct. It is possible that there exists matter which
does not. However, in that case one would find that either the speed of light
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would not be the same in all frames for clocks and rods made out of that kind
of matter, and/or that one could find a universal rest frame and measure one’s
velocity with respect to that absolute space and time.

Conformal Transformation In the above derivation, I took the option
that α2

− γ2 = 1. What would happen if instead I took α2
− γ2 = K2(v)? In

this case, we would have

x = K(cosh(θ)x′ + sinh(θ)ct′) (50)

ct′ = K(cosh(θ)ct′ + sinh(θ)x′ (51)

y = Ky′ (52)

z = Kz′ (53)

It is the transformations of the y and z componenets which now cause the prob-
lem. This K(v) cannot be universal. We want the system to remail rotationally
invariant in the new frames. Thus be can boost to velocity v along the x axis
as above, now rotate around the y axis by 180o, and again boost along the x
axis. But this second boost will undo the first. Ie it should take us back to
the original frame. But y and z are multiplied by K on each boost. Thus you
do not get back to the original frame. Thus in some frame, one must destroy
rotation invariance. But then we could tell the difference between the various
frames by seeing if they were rotationally invariant or not.

Thus, K would have to depend on which frame we were in. But if it does,
then K would allow us to determine the frame we were in by doing a transform-
tion to a new frame and measuring the lengths in the y or z directions. The one
in which the object had the shortest (or longest) length in that direction would
now be a special frame, different from the others. Ie, Einstein’s second postulate,
that there is not physical difference between the physics in any of the frames,
is violated. Thus, even though such a transformation would keep the velocity
of light the same in all frames, it would not maintain the indistinguishability of
frames.
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