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Over the last decade, advances in computing technology and numerical tech-
niques have lead to the possible theoretical prediction of astrophysically rele-
vant waveforms in numerical simulations. With the building of gravitational
wave detectors such as the Laser Interferometric Gravitational-Wave Observa-
tory, we stand at the epoch that will usher in the first experimental study of
strong field general relativity.

One candidate source for ground based detection of gravitational wave-
forms, the orbit and merger of two black holes, is of great interest to the
relativity community. The binary black hole problem is the two-body prob-
lem in general relativity. It is a stringent dynamical test of the theory. The
problem involves the evolution of the Einstein equation, a complex system of
non-linear, dynamic, elliptic-hyperbolic equations intractable in closed form.
Numerical relativists are now developing the technology to evolve the Ein-

stein equation using numerical simulations. The generation of these numerical

vi



codes is a “theoretical laboratory” designed to study strong field phenomena
in general relativity.

This dissertation reports the successful development and application
of the first multiple apparent horizon tracker applied to the generic binary
black hole problem. I have developed a method that combines a level set of
surfaces with a curvature flow method. This method, which I call the level flow
method, locates the surfaces of any apparent horizons in the spacetime. The
surface location then is used to remove the singularities from the computational
domain in the evolution code. I establish the following set of criteria desired
in an apparent horizon tracker: (1) The robustness of the tracker due to its
lack of dependence on small changes to the initial guess; (2) The generality of
the tracker in its applicability to generic spacetimes including multiple back
hole spacetimes; and (3) The efficiency of the tracker algorithm in CPU time.

I demonstrate the apparent horizon tracker by evolving a binary black
hole spacetime in Kerr-Schild coordinates without the horizon tracking; and
then using the information from the horizon tracking to run the simulation
further. Because of the apparent horizon tracking, the results shown in this
dissertation are of the first binary black hole merger in the Grand Challenge
Binary Black Hole Coalescence Alliance code. We have taken a significant step

forward in the binary black hole merger problem.
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Chapter 1

Introduction

1.1 The Problem: Strong Field Gravitation

The desire to study strong field general relativity has led to the investigation
of one of the most compelling problems in numerical relativity today: the
simulation of the multiple-black-hole spacetime. Binary black hole interactions
are believed to occur in the universe within approximately 300 M pc at a rate of
about one per year as a conservative estimate [42,61] . Despite the infrequency
of events involving black holes, they remain one of the most likely events to
be detected by ground based gravitational wave detectors.

The reason for the likelihood of detection of waveforms resulting from
black hole collisions lies in the weakness of the gravitational field. In the weak
gravitational limit, the expression for the power carried away in quadrupole

radiation is

1G dQ;; d3Q'
:<S§ TR > (11)

where <> indicates an average over several periods of the radiation. In a



closed, radiating system with a time scale for motions within the sources,

T =r3/M, the total radiated power has been estimated by L.S. Finn [26] as:

b () (2 03

However, he points out that generally this is an optimistic estimate of the

power radiated, because it assumes maximal contribution from the moving

mass to the quadrupole radiation. In addition, eqn. (1.2) is a luminosity-

MR?
T3

squared ( ) divided by a “fundamental power.” Since the fundamental

power:
&
el 3.6 x 10°%rg/s (1.3)
is so large, the actual emitted gravitational radiation-power is small unless
R and T are both close to 1 when expressed in geometricized units in which
M = 1. The power radiated is small unless we deal with very compact objects
such as neutron stars or black holes.

Such a dimensional analysis gives a physical insight into the weakness of
the gravitational interaction and the weakness of sources that do not involve
compact objects. The signal of gravitational interaction occurring far from
us, the observers, will manifest itself as tiny ripples in our geometry. The
most violent, plausibly frequent interactions, collisions involving black holes
or neutron stars, are expected to be rare and will occur very far away from us.
Typically, distant events will only affect our local spacetime in fluctuations on
the order of 107! units of strain on the detector. Detectors sensitive to this
scale must be built to obtain information about these distant sources. For
this observed information to be useful, theoretical models of the observable

interactions must be devised.



The physical signature of gravitational fields associated with compact
objects is the gravitational waveform. Obtaining a database of gravitational
waveforms involves solving the Einstein equation, which is a highly non-linear,
coupled elliptic-hyperbolic set of partial differential equations. These partial
differential equations are intractable with closed form methods. Numerical
methods, even though they are highly difficult to implement, are the only and
best means available to study generic, strong field, gravitational interactions.

Over the last decade, numerical and technical advances have created the
possibility of numerically solving the Einstein equation for dynamic systems
and detecting gravitational radiation emitted from astrophysical sources. Ex-
perimental apparatus capable of detecting gravitational waves from compact
objects in the universe is under construction (such as the Laser Interferometric
Gravitational-wave Observatory in the United States). The detectors repre-
sent the possibility of verifying (or falsifying) the predictions of gravitational

radiation produced by theoretical models.

1.2 The Approach: A Numerical Relativity
ToolBox

Members of the numerical relativity community are building the tools nec-
essary to describe a series of very complicated spacetimes to facilitate the
study of scenarios involving strong field general relativity. Such scenarios in-
clude neutron star and black hole collisions, supernovae, and extragalactic
nuclei. Binary black hole interactions are expected to be within the range of

early generations of ground based gravitational wave detectors. To predict the



waveforms generated by dynamic black hole spacetimes, numerical codes are
being constructed.

The goal is to develop a single, generic, numerical code that will, given
an initial data set, evolve the resulting spacetime by a set of rules called the
Einstein equation. The Einstein equation is written as a Cauchy problem by
introducing a sequence of 3-spaces evolving in time. The code I use in this
dissertation implements a 3+1 formulation similar to the Arnowitt, Deser, and
Misner [6] approach. The code is being built from a toolbox containing tools
from many collaborators flexible enough to be useful in a variety of possible
situations. A very large amount of this work resulted from the National Science
Foundation’s Binary Black Hole Grand Challenge Alliance [7]. The final code
will be used for single and binary black hole mergers with various orbits,
speeds, and spins of the black holes. In the end, the code will be designed to
act as a “theoretical laboratory” for the study of general relativity.

Building a code capable of reproducing the dynamics of a binary black
hole collision, including the orbit, inspiral, merger, and ringdown phases [27] ,
is an arduous process. It is a process that has been on-going for the past several
years and continues today. There are three parameters that characterize black
holes: mass, M, angular momentum a, and charge, (). Astrophysical black
holes are assured to have a very small charge, so our simulation always have

@ = 0. Evolving a black hole involves the following:
e Initial Data
e Finite Differencing of the Equation of Motion

e Singularity Excision



e QOuter Boundaries
o Wave Extraction.

The items will be addressed in detail later in the text. For now, let me briefly
examine each one.

The Einstein equation will be reformulated into a 3+1 form as men-
tioned previously. This form is an initial value problem called a Cauchy prob-
lem separating space and time and making the dynamics manifest. A set of
initial data on the space at the initial time must be specified. The Einstein
equation in 341 form now has evolution equations, or equations of motion,
that we discretize on the computational grid. The derivatives are taken care
of by finite difference molecules that are second order accurate in space. (Other
discretization techniques may be used.) The difficulties with the finite differ-
encing arise when we excise the region of the grid containing the singularity.
We cannot compute through a singularity due to the huge gradients in the
grid functions. Unruh [58] suggested excising the black hole at its apparent
horizon (the topic of this dissertation). The resulting “hole” in the grid we
call a mask since it hides the singularity from view. Finding the correct finite
difference molecules for points on the boundary of the masked region is dif-
ficult. The centered differencing used everywhere else in the grid cannot be
used here. Causal differencing [39] is a physically motivated method to handle
superluminal shift vectors, such as occur at the mask boundaries when we
do apparent horizon excision. The difficulty of correctly implementing causal
differencing increases as dynamics are added to the problem.

There is a separate set of problems associated with the outer domain of

our simulations. We cannot locate the outer boundaries of space at null infinity



as we do in nature; therefore, unphysical boundary conditions are required at
finite radii. Due to the limits in computer memory, the boundaries of the grid
tend to be too close to the black hole. Here “too close” means the errors at the
boundary of the computation are unacceptably large. This leads to increasing
interior errors as errors in the boundary propagate into the interior.

Wave extraction is necessary to obtain the gravitational waveforms from
the simulation. Future simulations will generate waveforms for comparison
with experiment (such as LIGO). Wave extraction is not demonstrated in this
dissertation, but will be part of the future work.

There have been fully 3-dimensional simulations of long term single
black holes (including Kerr spinning holes), in the Grand Challenge Alliance
codes [31, 22]. The next step in building a code capable of simulating as-
trophysically relevant scenarios was a moving black hole. The difficulties in
determining good finite difference molecules increase since previously masked
points are uncovered. However, moving black holes have been evolved success-
fully [38,22].

We are interested in the case of two black holes in a grazing collision,
the precursor to orbiting black holes. We use all the 3-dimensional tools built
for isolated stationary and moving black holes to evolve a grazing collision of
spinning black holes. The role of this dissertation is to locate the apparent
horizons used to mask the singularity region, and to demonstrate the utility
of this procedure in carrying out a dynamical evolution.

Recent progress has led to apparent horizon tracking algorithms ca-
pable of locating single, generic, apparent horizons [46,2,38,59,33]; however,
this dissertation will describe the first algorithm capable of detecting multiple

apparent horizons in a generic spacetime with the following criteria:



(1) The robustness of the tracker due to its lack of dependence on small

changes to the initial guess;

(2) The generality of the tracker in its applicability to generic spacetimes

including multiple back hole spacetimes; and
(3) The efficiency of the tracker algorithm in CPU time.

This will aid in the evolution of binary black hole evolutions. The algorithm
is called the level flow method. It is based on a curvature flow method [60] for
robustness combined with a level set of surfaces which furnishes a coordination
to provide the signal for possible topology change (one surface to two) in the

flow to the apparent horizon.

1.3 This Dissertation ...

This dissertation is divided into eight chapters. Chapter 2 presents the Einstein
equation and its formulation as an initial value problem. The resulting evolu-
tion equations and constraints are listed. Chapter 3 is dedicated to defining
apparent horizons and the apparent horizon equation. The use of the apparent
horizon as an excision “no-boundary” is also discussed.

A large portion of the work behind this dissertation is the development
of the level flow method to locate apparent horizons, presented in Chapter 4.
I discuss the methods used by others to locate apparent horizons as well as my
method including in each case the successes and deficiencies. The code that
implements the level flow method is detailed in Chapter 5 including tests to

verify the accuracy of the finite differencing.



In Chapter 6 I demonstrate the “correctness” of the level flow method
through a series of closed-form tests. I use Schwarzschild, Kerr, and Brill-
Lindquist closed-form solutions to test the code and to explicate the method
of apparent horizon location.

In Chapter 7, I report, with excitement, our success in using the appar-
ent horizon tracker to run a binary black hole collision to merger. I present
the specific case of a short grazing binary black hole merger in Kerr-Schild
coordinates with each (equal) mass hole having a spin of 0.5M % and velocity
of 0.5c and —0.5¢Z. I ran the Grand Challenge Alliance code [39] with an
excision scheme to remove the singularities based on predictions of the appar-
ent horizon location. Because of the horizon tracking, we are able for the first
time, to obtain an evolution through to merger in the Alliance code. We are
currently working to improve the evolution enough to extract waveforms.

Finally, the last chapter summarizes the thesis work discussing the suc-
cesses and deficiencies. Current and future work is presented. Ideas of im-
proving the apparent horizon tracker are also discussed. The binary black

hole collision is not solved yet, but a significant step forward has been taken.



Chapter 2

The Einstein Equation in

Numerical Relativity

General relativity is a theory of the pseudo-Riemannian geometry of spacetime.
In this description, gravitational fields emitted from a source behave like waves
rippling the spacetime. Near the source the waves distort the spacetime ge-
ometry greatly, but far away from the source the spacetime is asymptotically
flat, meaning the spacetime is approximated by a Minkowski spacetime. The
spacetime is a continuous four dimensional manifold M on which the metric
gap With signature (— + ++) is defined. The notion that geometry is related

to matter and energy is mathematically given by the Einstein equation:
Gab = 87TTab, (21)

following Wald’s notation [62] where G, is the Einstein tensor, T, is the stress
energy tensor for non-gravitational sources, and 8 is the constant in units G
(gravitational constant) = ¢ (speed of light) = 1. In the end of this discussion,

we will limit ourselves to vacuum spacetimes, G,, = 0, appropriate to the



study of spacetimes containing black holes.

In numerical relativity we wish to manifestly express the dynamics of
the Einstein equation. Following the theorem by Wald [62], if the spacetime
(M, gap) is globally hyperbolic with a spacelike Cauchy surface ¥ (which to-
gether means that the domain of dependence of ¥ is the entire manifold, M);
and if we consider what is known as a linear, diagonal second order hyperbolic
system on it which consists of n linear equations for n unknown functions,
@1 ...¢, of the form

YOV Vodi + Y (A5)*Vad; + > Bijd; +Ci =0 (2:2)

j j

(v**, (Aij)*, Bij, C; independent of ¢;) constructable on it, then eqn. (2.2)
has a well-posed initial value formulation on ¥. In this context, “well-posed”
means that the solution and its derivatives depend continuously on the data
and its derivatives are the initial surface. Eqn. (2.2) does not describe the
Einstein equation for two reasons: a) the Einstein equation is a constrained
hyperbolic system; b) the Einstein equation is quasi-linear, meaning the co-
efficients actually depend on the variable ¢;. This second point is treated by
an immediate extension, which generates at least local well posedness for the
Einstein system.

Among other things, point a) means that the Einstein equation only
involves six evolution equations since in this formulation four of the equations,
the constraint equations, involve no time derivatives. Thus the Einstein sys-
tem is underdetermined for the full set of ten components of the metric, using
terminology due to Wald [62,p.260]. This aspect of point a) is treated by
Wald (building on extensive literature) by introducing harmonic coordinates

[62]. This reduces the number of variables to be evolved to six, the same as the

10



number of equations in the Einstein system. Other viewpoints hold that the
Einstein equations are overdetermined because there are twelve algebraically
independent evolution equations plus four constraint equations determining
only twelve independent variables. In either circumstance, the Einstein space-
time is well posed in terms of data that solves the constraint equations on the
hypersurface X.

This dissertation does not use harmonic coordinates; we leave the coor-
dinate specification entirely free, in terms of the lapse function and shift vector
defined in section 2.1. Choice of lapse and shift has the effect of reducing the
evolved system to the required size in the same way that the harmonic coor-
dinates do. There has recently been a resurgence of interest in the question of
in which forms the Einstein system is explicitly well posed. We do not pursue
this question further, but we refer the reader to the recent literature [3,28].

The spacetime is sliced into a sequence of Cauchy hypersurfaces, X,
parameterized by time 7, a scalar function of the spacetime. In this manner the
Einstein equation becomes a set of ten partial differential equations with two
dynamic variables, v, and K. 74 is the three-space metric and K is the
extrinsic curvature describing the curvature of ¥, relative to the embedding
spacetime. Note that we will use v, as the spatial metric and g, as the
spacetime metric. The idea of foliating the spacetime is illustrated for a three-

dimensional spacetime in fig. (2.1).

2.1 The 341 Decomposition

The procedure for decomposing the spacetime into space+time (3+1) was

performed by Arnowitt, Deser, and Misner and is well documented [63, 21];

11



T+81

Figure 2.1: Sketch of the foliation of a 3-dimensional spacetime manifold M
into spacelike hypersurfaces, Y., sliced in time.

therefore, we will limit the discussion to a review of the equations and vari-
ables. The nature of a Cauchy procedure is an initial value problem in which
quantities on an initial slice (i.e. at an initial time) must be appropriately
specified. Once the initial slice’s quantities are specified, the Einstein equa-
tion determines the values of these quantities on the past and future slices.

Fig. (2.2) and the 3+1 metric
ds® = —a’dt® + v;;(da’ + B'dt)(da? + B7dt). (2.3)

are used for the following definitions. The foliation is characterized by a closed
one-form, 2, = V,7. The choice of slicing is contained in the lapse function,
a, defined as

a 2= —g®V, 7V, (2.4)

12



The timelike, unit normal to the spacelike hypersurfaces, 3., is
Ng = —aV,T. (2.5)

A timelike vector tangent to the world line of a coordinate observer, t¢, is
constructed such that

t* = an® + %, (2.6)

and defines a spacelike vector describing the shift in the spatial coordinates

between adjacent hypersurfaces, 3%, such that
Bng = 0. (2.7)

An observer will measure the elapsed proper time between hypersurfaces X,
and X, .4, along the normal from point P to point () as adt. The coordinate
time and proper time will often differ, and the observer moving along the
coordinate, z°, actually travels from point P to point R. The difference in
spatial coordinates @Q and R on X, 4 is related to the shift vector by [dt.
Specifying the lapse function and shift vector of the slicing is equivalent to
choosing the coordinate labeling of the spacetime.

Before writing down the Einstein equation in the 3+1 formalism a few
concepts need to be defined. A projection tensor, 1%, is introduced to define

the spatial parts of tensors:
J_ab = ab + n“nb. (28)

The notation L applies the projection tensor to every free index. The spatial

metric is defined as

Yab = Gab + NaNp. (2.9)

13



o dt

— P

Figure 2.2: Sketch of two adjacent hypersurfaces (X; and ¥, 4).

The derivative operator, D,, will be used here and in future chapters,
D,=1V,. (2.10)

D, is a natural derivative operator for operations on spatial tensors due to its

compatibility with the spatial metric:
DaYas = 0. (2.11)

(A spatial tensor is one for which L T = Tg). D, acts on purely spatial

tensors in the following manner:
DT, oo =1 g1 Lo LT VTR, (2.12)

The last tool required to write down the Einstein equation in 3+ 1 form
compares tensors at different points, p and p+Ap. In a curved spacetime, there
is no sensible notion of parallelism. To compare tensors at different points it

is helpful to define the notion of Lie dragging the tensor at p + Ap back to p

14



and subtracting this new tensor from the original one to get a difference. This
difference is call a Lie difference [53]. The basic concept of Lie dragging is
that of an infinitesimal motion of the points of the space along the vector field
defined at each point. Since a second infinitesimal vector can be thought of as
connecting two adjacent points, the Lie dragged vector is the vector connecting
the points; a definition for tensors can be built up similarly. The Lie derivative

with respect to a vector field, v*, is defined by:

¢*Ta1---akb1...bl - Talmakbl...bl

vTal...ak — 1 p 21
with all tensors evaluated at p [62]. T %, , is a smooth tensor field and
¢ T4y, , is the result of Lie dragging the tensor from p + Ap to p. For a

scalar function, f, the Lie derivative is

lim f*(po) — f(po) — lim f(po + Ap) = f(po) _ [ﬁ}

2.14
Ap—0 Ap Ap—0 Ap dp ( )

where f*(py) = f(p + Ap) is the value of the scalar dragged back to py. For
a scalar function, the Lie derivative is the same as the ordinary notion of a
derivative.

The curvature of the slices, ¥, embedded in the spacetime is described
by the extrinsic curvature tensor, which is determined by the gradients of
the timelike normals to ¥,. The equation for the extrinsic curvature of a
t=constant surface ¥; is

Kab =—1 V(anb). (2.15)

Expressing the decomposition of the derivative of the normal fields into a
hypersurface-tangential piece (K,) and a hypersurface-orthogonal piece leads
to:

Vanb = —Ngp — Ny, (216)

15



where the 4-acceleration is a® = n*V,n’. Using eqn. (2.15) and eqn. (2.16),

K, is expressed in the form:

1 1
Kab = —5 1 L:ngab = —Eﬁn’}/ab. (217)

The following two equations are needed to derive eqn. (2.17):
Lngab = 1Vegap + gy Van® + gacVon® = Vany + Vyng = 2V ny) (2.18)
and
LoYap = NVeYap + Yo Vant + Yae Von© = 2 (V(anb) + n(aab)) = —2K 4. (2.19)

Eqn. (2.17) is determined by first noting eqn. (2.18) where the first equality
in eqn. (2.18) is a standard way to express the Lie derivative in terms of the
covariant derivative; in fact the covariant derivatives could be replaced by
ordinary derivatives in the first form (the connections cancel). However, the
given form allows us to use the covariance of g, to drop it from the equation.

The second equality in eqn. (2.17) holds by noting that

Gab = Yab — Nalb, (2.20)

and thus £,g. computed according to eqn. (2.18) equals L,gap — 2n(.ap); the
term involving the acceleration is removed from eqn. (2.17) by the projection
operator .

The intrinsic curvature of the hypersurface is given by another tensor,

d

the spatial Riemann tensor, R,.,

and may be defined via the action of D, on

an arbitrary spatial dual vector, W,:
(DaDy — DyD )W, = Rape Wy (2.21)
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The spatial Ricci tensor, R, and the spatial Ricci scalar, R, are constructed:

Rap = Raa® (2.22)
R = R, (2.23)

where the indices are raised and lowered using the spatial metric, 7,5, and its

inverse, v

. The following matter terms are measured by observers moving
orthogonally to the slices and are defined as the local energy density (p), the

momentum density (j%), and the spatial stress energy tensor (Sg):

p = Tun'n® (2.24)
i* = — L (T%ny) (2.25)
Sap = Tup (2.26)

The trace of the spatial stress energy tensor is S = T,.

2.2 Constraint Equations

The decomposition in the 3+1 form begins with the derivation of the con-
straint equations. We do not give the full derivation here but note that these
equations are derived using Gauss-Codazzi equations [62] and the following
3+1 decomposition rule [21] for any generic symmetric tensor of dimensional
type (0,2):

Oab =1 Oap — Qn(a 1 Ob)i + NaNpOhi; (227)

where 7 denotes a contraction with n®, such as W; = W,n*. The decompo-
sition leads to constraint and evolution equations. The constraint equations

must be satisfied by the geometric and matter variables on every hypersurface.
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The first constraint is called the Hamiltonian constraint:
R+ K? - K*K"°, = 167p, (2.28)
where K is the trace of the extrinsic curvature
K = K*,. (2.29)
The second constraint equation is called the momentum constraint:
DyK® — D°K = 8nj°. (2.30)

Note that equations (2.29) and (2.30) involve only spatial tensors, not time
derivatives of spatial tensors explicitly. They are constraint equations and

must be satisfied by the 3+1 variables 7,, and K, on every slice (at all times).

2.3 Equations of Motion

The first set of evolution equations for the dynamic 3+1 variable, 7., follows

from eqn. (2.17) using Lie-differentiation along the vector field
t* = an® + (3 (2.31)
as the time derivative. The equation is written:
LYoy = 20K 0 + L5Yab- (2.32)

The second evolution equation for the dynamic 3+1 variable K, is derivable
from the Einstein equation and the decomposition procedure for a symmetric

tensor eqn.(2.27):
1
ﬁtKab = ,CﬁKab — DanOé =+ oz('Rg =+ KKab =+ 87T(§J_ab(5 — p) — Sab)). (233)
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The equations can be expressed in terms of a coordinate basis. The

Hamiltonian and momentum constraints are respectively:

K> - KK +R = 16mp (2.34)

Di(KY7 —+47K) = 8rj’ (2.35)
The evolution equations for the dynamical variables 7;; and Kj;; are:
Orvij = —20K;5 + Lpij (2.36)

1
8tK1-j = —DiDjCM + Oé[Rij —+ KK” — 2KleJl] — Oé[Sij — 5’)/”)(5 — p)] + ﬁgKij,

(2.37)

where
Lsvi; = B 0kvij + ;0B + vin0;8° (2.38)
LsKi; = B*0uKij + Ki;0,8° + Ki0;8%. (2.39)

2.4 Summary

In this dissertation, I use vacuum spacetimes only. The 341 equations in
vacuum can be summarized as follows. The constraint equations in vacuum

are:

R+K*— K%K’ = 0 (2.40)

DyK® — DK = 0, (2.41)
and the evolution equations in vacuum are:

8t%~j = —QCYKZ'J' + ,C,g%‘j, and (2.42)
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The solution of the 3+1 form of the Einstein equation is found in two
steps. First, the initial data are specified by choosing a coordinate system,
choosing data K, and 7,4, on the initial slice, and choosing the initial slice
topology. Due to the elliptic nature (second derivatives of the metric appear
in the 3-curvature, R) of the constraint equations, this is a complicated proce-
dure. One approach is presented by York [63]. We will return to the question
of initial data in Chapter 7. The second step is the evolution. This involves
choosing o and f3; everywhere, which is the same as imposing the coordinate
conditions that are left free due to the covariant nature of the Einstein equa-
tion. In such a way the spacetime is generated slice by slice. The spacetime
is evolved using only the evolution equations using the constraints as a check.
The evolution equations preserve the constraints in theory, and also do so nu-
merically as long as the finite differencing of the equations is done carefully
[19]. In practice, problems inevitably arise and the computational evolution

ends.

2.5 Other Formulations of General Relativity

Although here we will be applying the apparent horizon locator to a spacetime
computed using the 341 form of the Einstein equation, the apparent horizon
locator is also applicable to spacetimes generated by other formalisms of the
Einstein equation. There are three different approaches of decomposition avail-
able to achieve a form that allows stepwise evolution. The approaches depend
on the slicing of the spacetime into space and time. The three approaches

are 1) evolution of spacelike 3-surfaces in time [6], 2) evolution of character-
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istic 3-surfaces in time [10], and 3) evolution of hyperbolic 3-surfaces in time
[35,36].

We have already discussed the first approach, decomposing the space-
time into spacelike hypersurfaces foliating the spacetime in a time sequence.
The second approach, the characteristic approach, was pioneered by Bondi,
van der Berg, Metzner [13], Sachs [52], and Penrose [49]. The spacetime is
sliced into null hypersurfaces of constant advanced or retarded time. This
method allows for compactification of infinity, allowing computations to reach
infinity in a finite amount of effort. Unfortunately, the construction of a co-
ordinate system near a pair of black holes is difficult in the characteristic
method, and currently unsolved in general. The third approach slices the
spacetime into spacelike hyperboloidal surfaces that become null at infinity.
This method also can compactify infinity. However, this method is unde-
veloped in 3-dimensional, numerical situations due to the large number of
variables introduced in the hyperbolic formalism. In any case, the level flow

method of tracking apparent horizons is applicable.
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Chapter 3

Apparent Horizons

My goal is to locate apparent horizons; therefore, it is very important to under-
stand the properties of an apparent horizon and its mathematical definition.
In this chapter, I define the apparent horizon in a physical sense and in a
mathematical sense. The role of apparent horizons in the evolution code is

also discussed.

3.1 Apparent Horizon Definition

Observational evidence such as gravitational lensing has shown that light is
deflected by the gravitational field of massive objects. In fact, an object with
significant enough weight will collapse under its own mass, creating a black
hole with a gravitational pull so strong that light is deflected to the degree that
it cannot escape from the object. (The massive object warps the spacetime.
The light is traveling in the straightest path, a geodesic, but that straightest
path exists in a curved spacetime.) The strongest such case occurs when a star

collapses into a black hole. In that case the curvature eventually becomes sin-
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gular at events within the black hole’s horizon. Because of the nonlinearity of
the Einstein equation, even pure vacuum black holes (which are called eternal
black holes because they did not form from collapse but existed in the distant
past) can exist with no matter present; these still contain singularities.

To quantify the idea of deflection, consider a thought experiment in-
troduced by Penrose [34]. A wavefront of light is emitted by a flashing light
source at the center of a spherical distribution of matter where the matter
is assumed transparent. In weak gravitational situations, matter will deflect
the light negligibly and the light will diverge, spreading out to radiative in-
finity, (J1). However if the matter has a strong gravitational field, the light
converges and never reaches J*. An outgoing wavefront that is defined by
converging outgoing null rays is called a trapped surface. A boundary exists
between the spherical wavefronts with positive convergence and those with
negative convergence. Such a surface is called a marginally trapped surface.

There are two surfaces of special interest to the study of black holes:
the event horizon and the apparent horizon. The event horizon is the bound-
ary between light rays that will and will not reach J7; therefore, it is the
boundary between what an observer at infinity will be able to detect and
not be able to detect. By its definition, the event horizon is global in na-
ture, meaning the entire spacetime must be known to determine its location.
In contrast, an apparent horizon is defined locally, meaning it is a 2-surface
defined at a particular instant in time. The apparent horizon is always the
outermost marginally trapped surface in a spacelike hypersurface at each in-
stant of time. The definition of the apparent horizon means it can exhibit
discontinuous movement through time. In contrast, an event horizon can only

exhibit continuous movement as a function of time.
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Figure 3.1: Penrose and Hawking’s collapse of a spherical star leading to the
formation of a singularity and trapped surfaces.

To illustrate this effect, consider the example of a spherically collapsing
massive star as described by Hawking and Penrose [34]. Fig. (3.1) depicts the
spherical collapse of a star. The star forms a singularity at » = 0 beginning at
some time, t,. Imagine that spherical wavefronts of light are emitted by the
star as it collapses. A wavefront, A, escapes the collapsing star’s gravitational
pull at the time t4 < t,, and reaches the observer at J*. A later wavefront,
B (ta < tp < t5), does not escape to the observer at infinity but neither does
it converge onto the singularity. This is a marginally trapped surface and the
apparent horizon. If no additional matter falls onto the star, this surface is the

event horizon. A spherical wavefront emitted even later during the collapse,
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C (tg < tc < tg), converges towards the singularity, thus describing a loci of

trapped surfaces. In this example, the apparent and event horizons coincide.

t
T r=0 Singularity

v

Apparent Event Horizon

e Shell of Matter

N

\
N

Surface of Star

Figure 3.2: The collapse of a star followed by the collapse of a spherical shell
of matter, dashed line, onto the star. The apparent horizon appears, B, and
then moves discontinuously out to D as the thin shell of matter passes. The
event horizon is the continuous surface labeled C' and D and drawn with a
dotted line.

Considering a more complicated example illustrates the difference be-
tween the apparent horizon and the event horizon. Once again imagine a star
undergoing spherical collapse but now with a thin shell of matter collapsing
onto the star at a later time. A spherical wavefront of light, A, is emitted
by the star and escapes to J*. Another wavefront, B, is emitted and is

marginally trapped until it is refocused into r = 0 (now labeled E) by the
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thin shell of matter. A wavefront emitted previously, C', has positive diver-
gence until it is refocused by the matter shell. At the instant C' is refocused
by the shell of matter and becomes marginally trapped, it is the outermost
marginally trapped surface, now labeled D. Since no more matter falls on the
star, C' and D constitute the event horizon. The apparent horizon is defined
by the surface B and D. The apparent horizon moves outward discontinuously
while the event horizon moves outward continuously. It will be of interest to
us later that the apparent horizon is guaranteed to lie within or coincide with

the event horizon [34].

3.2 Apparent Horizon Equation

|@k

Figure 3.3: Representation of a 2-Sphere embedded in a hypersurface, 3.

The previous section described the nature of the apparent horizon, now I
present a mathematical definition [21,64]. Let S be a surface with S? topology
and an outgoing null vector, £*. Assume that S is a marginally trapped surface
such that

V.k" = 0. (3.1)
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The vector £ can be written in terms of an outward pointing, spacelike normal

to S, s*; and a future directed, timelike normal to X(t), n%:

kE* = s" 4+ n". (3.2)
We also define an ingoing null vector (*:

[* = —s"4+n". (3.3)

Note that eqns. (3.2) and (3.3) differ from York by 1/+/2. Similarly to the 3+1
decomposition of spacetime into space and time, the 3-metric, 74, is projected

onto S inducing a 2-metric hgy via:
R = 4 — %5h. (3.4)
In terms of the spacetime metric, gup, hap 1S
R = g* + n*nb — 5%s°, (3.5)

where hg, has indices raised and lowered by ¢ of g®°.

Eqn. (3.5) can be rewritten as:
h® = g% 4 1@}, (3.6)
This allows the divergence of £ to be computed on the two surface using only
hab.
Vok® = g%V ky = RV ky + (1°ED)V k. (3.7)

The last term in eqn. (3.7) is $[1(Vaks)k + (k*V,ky){%]. Of the two terms in
the bracket, the first can be rewritten $1*V,(kyk®) = 0 since k* is null. The

second term in the bracket computes the geodesic equation in k,: this vanishes
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since every null vector is tangent to some affinely parametrized, null geodesic
so k*V ky = 0.

Hence the divergence of the null field, V,k* is a 2-tensor, i.e. it is a
tensor intrinsic to the 2-sphere and does not depend on how S is embedded
in X(t). Thus Vg k® = h®®Vky = h®® 1 V,k, = h*®D,k, and only the spatial

components of k, and D, need be computed. Equivalently,

Vok® = h*V,(sp + 1) (3.8)
= A 1 V,(sp+m) (3.9)
= h®D,(sy+ ny) (3.10)

where we have used eqn. (3.2). Since K, = —D,n, (eqn.2.17) and eqn. (3.5),

Vik® = h®(Dysy — Kap) (3.11)

= (g" 4+ nn’® — 5*s")(Dusp — Kap). (3.12)
However, D,s, — K, is spatial:
(Dysy — Kq)nn® = 0, (3.13)
thus reducing eqn. (3.12) to
V. k* = D%, — $%s*Dysy — K + s*s° K . (3.14)

One further simplification to eqn. (3.14) due to the fact that s°D,s, = D, (sbs;)/2
= D,(1)/2 =0 leads to

K= Vek® = D%, — K + 5°5" K. (3.15)
For a marginally trapped surface
k= D%, — K + s?s"K,;, = 0. (3.16)
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Eqn. (3.16) is called the apparent horizon equation since it describes the ap-
parent, horizon when the marginally trapped surface is outermost.

Solving eqn. (3.16) is equivalent to finding a surface that is marginally
trapped, the outermost of which at any given time is the apparent horizon.
The S?(spherical) topology of the apparent horizon naturally lends itself to

characterization via spherical coordinates. The function,

v =r—h(6,9) (3.17)

is a level set of 2-spheres in ¥, and the apparent horizon is the surface ¢ = 0.
The apparent horizon equation in spherical coordinates (h(6, ¢), 0, ¢) is a 2-
dimensional problem in 6 and ¢. The function h(f, ¢) is called the apparent
horizon shape function.

We are interested in finding a set of surfaces parameterized by k in
3. The set of such surfaces characterized by x will be a fundamental idea
in our level flow method of locating apparent horizons. One can imagine a
level set consisting of a series of surfaces embedded in a given hypersurface.
Each surface has a different value of x everywhere on it. This is equivalent
to permeating the space with surfaces of constant expansion, outgoing null
generators. The apparent horizon is recovered from the set of surfaces when
k = 0. Incidentally, the foliation of the 3-space in terms of constant x surfaces
is a geometrical basis for coordination and gauge choice (this is a subject for

future investigation).
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3.3 Apparent Horizon Excision

Solving the apparent horizon equation (eqn.( 3.16)) for the outermost marginally
trapped surface will identify the location of the apparent horizon in a single
hypersurface. The spacetime is foliated by hypersurfaces so an apparent hori-
zon finder must be used on each hypersurface for each desired horizon position.
Once the horizon surface is located, the evolution code uses this information
to avoid computing near the singularity. Apparent horizon excision uses the
apparent horizon location to determine the region of the grid to be masked.
The procedure requires no set of prescribed boundary conditions.

Apparent, horizon excision is one of the most difficult aspects of a com-
putational black hole simulation. The tracking of apparent horizons is not
yet automatic in the evolution code. Initially, we use a linearly extrapolated
estimate of the positions of the apparent horizons, and then we correct this
estimate after running the level flow apparent horizon tracking code with the
evolution data. The scheme for excising the singularity from the computa-
tional domain is the same whether or not apparent horizon tracking is turned
on during evolution. The code has a function called the mask which is a series
of 0’s and 1’s indicating which points in the domain are to be excised (mask=0)
and which are not (mask=1). A buffer zone of a few grid points is used to
ensure that the excised points are within the apparent horizon.

The mask function indicates which points are to be used in finite differ-
ence molecules. As discussed in Chapter 1, the molecules are centered around
each grid point. The points on the border of the mask do not have equal
numbers of points to each side. The differencing is designed to make intelli-

gent decisions in choosing an extended, offset molecule to ensure second order

30



accuracy; and, more importantly, to ensure stability.
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Chapter 4

Methodology

In this chapter, I describe the level flow method used to develop the apparent
horizon tracker. In order to evaluate the level flow method, I suggest the

following criteria for apparent horizon trackers:

(1) The robustness of the tracker due to its lack of dependence on changes

to the initial guess;

(2) The generality of the tracker in its applicability to generic spacetimes

including multiple back hole spacetimes; and
(3) The efficiency of the tracker algorithm in CPU time.

I will refer to this list when comparing and contrasting the level flow method
with other methods; and when identifying the strengths and weaknesses of the

level flow method.

32



4.1 Algorithms for Finding Apparent Horizons

The first algorithms for locating apparent horizons were successful in spher-
ically and axially symmetric spacetimes. Current methods involve three-
dimensional codes to track apparent horizons in non-symmetric spacetimes.
Most modern horizon locator codes in the literature are capable of finding the
location of an apparent horizon in a generic, single black hole spacetime, and
a few are capable of finding multiple apparent horizons in the special case of
time-symmetric spacetimes.

For the spherically symmetric hypersurface with line element:
ds®> = a*dr® + r?b*(d” sin® d¢?), (4.1)

eqn. (3.16) reduces to a one-dimensional, non-linear, ordinary differential equa-

tion:
d(rb)
dr

—arbK% =0, (4.2)

where coefficients a and b are functions of the coordinates and rb is the areal
radius. Eqn. (4.2) can be solved by finding its zeros [20, 50, 4 55]. In axisymme-
try, the apparent horizon equation reduces to a nonlinear, two-point, boundary
value ordinary differential equation solved by shooting methods [18,8]. Most
solutions of the apparent horizon equation in three dimensions fall into one of
three categories: 1) The use of Newton’s method to solve the apparent horizon
equation as a boundary value problem, 2) The use of a pseudospectral expan-
sion to integrate the apparent horizon equation, and 3) The use of curvature
flow to rewrite the apparent horizon equation as a parabolic equation of mo-
tion within an artificial time, A, which leads to the apparent horizon surface

in the limit A\ — oo.
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The apparent horizon equation is a second order, elliptic equation. A

prototypical elliptic equation is the Poisson equation:

0?u  0%*u

922 + v p(z,y)
[51]. Elliptic equations are solved using a boundary value. For the apparent
horizon equation, the boundary conditions on the horizon’s shape enforce the
smoothness of the surface across the boundary. One then typically solves
the elliptic equation using finite difference techniques. The apparent horizon
equation is non-linear; therefore, the algebraic equations resulting from the
discretization are typically solved using Newton’s method. Efficiency is an
issue especially considering the storage requirements for solving large sets of
equations. Jonathan Thornburg and Mijan Huq [38,59] have written successful
boundary value routines to track apparent horizons. Their codes are fast
(criterion 3) compared with codes using flow methods but require a good
initial guess (criterion 1) and are not generalized for spacetimes with multiple
black holes (criterion 2).

The second method is an algorithm based on a pseudospectral expan-

sion of the apparent horizon shape function, h(6, ¢) (eqn. (3.17)) in spherical
harmonic basis functions:

lmam

h0,0) =Y amYim(0, ¢). (4.3)

=0 m=-I
A finite number of the coefficients, {a;,, } parameterize the horizon shape func-
tion, and the maximum /[,,,, depends on the computation. The apparent hori-

zon equation can then be solved by writing it as

[ (am)]| = 0, (4.4)
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and using a minimization routine to find a minimum of ||x||, typically not equal
to, but close to, zero [25,14, 23]; or using a functional iteration scheme to solve
k(i) = 0 for {a;,, } [46]. This scheme has been implemented in generic, single
black hole spacetimes but not in multiple hole spacetimes. Pseudospectral
methods can be very fast (criterion 3) but their speed and memory storage
depend on I, Kemball and Bishop [40] reported a dependency of I2,,. in
distorted cases and 2, in spherical cases. In either case, the performance
decreases with increasing distortion of the surface (criterion 1). This method
has not been generalized to multiple holes (criterion 2).
The curvature flow approach, first applied to apparent horizons by K.P.
Tod [60], is to rewrite the apparent horizon equation as a parabolic equation
with a speed given by the expansion of the two-surface S in ¥. In the case of a
time symmetric hypersurface, K, = 0, the apparent horizon equation reduces
to the condition for a minimal surface, D,s* = 0. In this case, the surface, S,
is at a local extremum of area. The variation of S along the spacelike normal
to a minimal surface leaves the area unchanged as S is moved along a vector
field, V¢
0A = —/V“HadS (4.5)
s

where A is the area and H, is the mean curvature vector. The minimal surfaces
in 3 may be found by using a mean curvature flow [9,37,29] in which a starting
surface, S,, is parameterized by coordinates z* and evolved in terms of a
parameter A\. The equation is evolved by:

ox®
o\

=—Hs" (4.6)

where 0x®/0O\ is a vector field, and H is the mean curvature, which is the
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trace of extrinsic curvature associated with embedding S in ¥ given by
H = D,s". (4.7)

Eqn. (4.6) is the gradient flow for the area functional. The area decreases
monotonically with increasing \. Grayson [32] has shown that a surface de-
forming under its gradient field (eqn. (4.6) will evolve to a stable minimum
surface (surface is local minimum of area) if there is one, or to a point.

I am interested in the non-time symmetric case (K, # 0) for which the
marginally trapped surfaces differ from minimal surfaces, the surfaces are not
extrema of the area. However, Tod suggests an equation similar to eqn. (4.6)

as a curvature flow:
oxr?®
o\

using k = D,s5%+5s° K, — K as in eqn. (3.16). I have found it to be successful

—ks” (4.8)

at identifying apparent horizons in generic hypersurfaces [56]. The curvature
flow method fulfills the requirement of a robust algorithm (criterion 1). How-
ever, it is slow (criterion 3) and does not immediately apply to spacetimes
containing multiple black holes (criterion 2).

The above methods have been very successful at detecting single appar-
ent horizons. However, none are capable of detecting multiple apparent hori-
zons without running the code more than once with different initial guesses.
In general, the locations of singularities are not known prior to the evolution,
so a method able to detect multiple apparent horizons from a single initial
guess is desired. In an effort to find a method capable of detecting multiple
horizons, Laguna [41] suggested a method called the level set method by Osher
and Sethian [47]. The level set method is an algorithm capable of following

fissioning surfaces in Euclidean spacetimes. It embeds the surface, ¢, into a
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higher dimensional surface, ®. The original surface is set as the zeroth level
of &, & = 0 = ¢. Figure (4.1) depicts an example to illustrate the embed-
ding of the guess surface into a higher dimensional surface, in the case a circle

embedded into a paraboloid.

y

¢ (0)

-7 ¢t) (@=0
o) o(t) ($=0)

y

Figure 4.1: An example illustrating the embedding of a series of surfaces, ¢
into a higher dimensional surface, ®. The surface of interest is reclaimed by
setting & = 0.

® is evolved under a curvature flow equation of motion where the veloc-
ity is the local mean curvature of ¢ embedded in ®. The reason this method
can successfully follow a surface undergoing fission while the curvature flow
method can not is that the equation of motion is flowing the ® not ¢. ® is
not fissioning. The final surfaces are found by setting ® at the final time to
zero. An example of where multiple apparent horizons would exist in the final
® solution is illustrated in fig. (4.2).

In Euclidean spacetimes, the mean curvature of embedding ¢ into &

is known [47] and the mean curvature flow method is used to determine the
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Figure 4.2: The level set method in theory would find the two apparent hori-
zons by flowing the N + 1-dimensional surface. ¢ is identified at ® = 0.

equation of motion. For generic, pseudo-Riemannian spacetimes, the deter-
mination of a mean curvature for embedding ¢ in ® is difficult. Pasch [48]
found the mean curvature for a time-symmetric spacetime and successfully
implemented the level set method for that particular case but not in general;
therefore failing to meet criterion 2. The level set method has an added dimen-
sion and is therefore expensive (criterion 3). Here I implement an alternate

method to detect topology change.

4.2 Level Flow Method

The level flow method can detect the change in topology of a guess surface
and predict the resulting multiple surfaces in generic, multi-hole spacetimes.
The level flow method is designed to flow the trial surface, ¢/, through a fission
into two surfaces. To detect fission in the trial surface, I begin by flowing

with an equation similar to the curvature flow equation, eqn. (4.8). Eqn. (4.8)
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can be reset into an equation on the trial function 3 which is “evolved” in A

to finally find the apparent horizons as ¢ = 0. Since 81/’ = %’UA gﬁl by the chain

rule, multiply eqn. (4.8) by 2 6? gives
o L0

o = e (4.9)
Using
3_1/;
s = g0 0T (4.10)
IVl
and
O O
V|| = ab 4.11
IVell =/ oo 2% (411)
the test surfaces flow is given by:
oY
— =- . 4.12
= sl vyl (412

Eqn. (4.12) will flow the test surface, ¥, to a marginally trapped surface at
1 = 0 at when k = 0; however, I wish to flow to a set of surfaces defined by
Kk = ¢, where n = 1,2.... The integer n acts as a counter for the number
of surfaces in the set. To accomplish this, I modify the flow equation to
accommodate this more general flow

o — RVl (1.13)
where F'(k) is a speed function.

The ability to fission the surface depends on the choice of the speed
function. In the traditional curvature flow method (eqn. (4.8)), the speed
function is chosen to be F(k) = &, a good choice since F(k) = k = 0 is a

marginally trapped surface. However, this choice will not flow 1 though a

fission; in general the finite difference scheme fails as the surface pinches. The
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level set method avoided this difficulty by flowing an /N+1-dimensional surface,
®, that did not fission, In contrast, I choose to flow an N-dimensional surface,
1, but use the one-parameter family of surfaces in ¥ I call the level set S(c,,)
to indicate a fission. The level set is a collection of constant x values given
by ¢, in X(t). In future work, these surfaces will be used in a coordination of
3(t).

I choose a F(k) &< k — ¢,. This speed function allows flow to multiple
surfaces in the set as Kk — ¢, = 0. As Kk — ¢, — 0, I am solving for a particular
surface in the level set, S(c,). This surface has a constant value of k = ¢,

everywhere on it. A set of surfaces is found by varying ¢, as the flow progresses
Cni1 = Cn = A, (4.14)

where (+) in outward flow and (—) in inward flow and Ac || & ||2-
Eqn. (4.8) is a general equation with the speed function, F, made
to suit our purpose of tracking apparent horizons. To locate surfaces in X

parametrized by &, I choose two options for the speed function:

F(k) = k—ocy (4.15)

K — Cp

F(k) = (k— cn)arctan®( ) (4.16)

Ko
Both functions flow the trial surface 1) to a surface S(c,). The second func-
tion, eqn (4.16), behaves similarly to the first but allows for larger time steps
near a fissioning surface because it moves points further from the eventual so-
lution faster than the points closer to the eventual solution. A more detailed

description is given in the next chapter.
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Figure 4.3: Schematic of ¢(c,), the level set of surfaces in X(¢). I solve for
a single surface, S(c,), in ¥(c,). Multiple levels are used in detecting the
existence of multiple horizons.

The only information needed to initiate the level flow code is the 3-
metric and extrinsic curvature components of the hypersurface plus the start-
ing radius and center of the guess surface. v, and K, are generated by evolu-
tion codes or closed form solutions of the 341 equations. The starting surface

radius and center are input parameters to initialize a topological 2-sphere that
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acts as the deforming trial surface. The radii and center do not have to be
particularly good initial guesses (criterion 1). As the flow velocity approaches
zero, F(k—c¢) — 0, k ~ ¢, and a surface S(c,) is found within a tolerance (e,).
When k = 0, the located surface describes a marginally trapped surface. If the
surface is the outermost marginally trapped surface in the hypersurface, it is
the apparent horizon. To ensure that the surface is the apparent horizon, the

starting surface should enclose the suspected horizon area i.e., start outside.

[M
(@]
[
1 ‘ 1 1 1 1 ‘ 1 1 1 1 ‘ 1 1 1 1 ‘ 1 1 1 1 ‘ 1

Figure 4.4: Plot of five levels (k = 0.14,0.12,0.10,0.08,0.06) of constant diver-
gence of outgoing null geodesics.

I use this level set parametrized by c, to determine if the topology is
changing in the surface. Fig.(4.4) shows the level set found in a spacetime
containing two black holes with coordinate locations (—0.954,0, —0.3)M and
(0.954,0,0.3)M. Each 2-surface has a constant value of k. I monitor the

topology of the deforming surface by computing the radial component of the
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gradient of k with respect to the normals of each surface in the level set. The
gradient is defined as:
|/{n71 - I{n|

nl Pml 4.17
|7‘n71 - Tn‘ ( )

where r is the radial function given in eqn. (3.17). A sharp increase in the
gradient indicates the existence of multiple surfaces. To ensure that I do not
erroneously abandon a single surface, I also monitor the maximum of the [5-
norm of k. If k is no longer decreasing, I am no longer finding a solution to
eqn. (3.16); otherwise the single surface is retained. The level flow method
is essentially a special set of surfaces with properties that let us determine
when to break. If I only flowed to x = 0, I would not form the collection of
k =constant surfaces.

Once a topology change is indicated, the radii and centers for each of
the new surfaces are found (note that these four parameters for each surface
are all that is needed). To find these two new centers and radii, the center of
the final single surface (from which I break) is calculated and the minimum
of the expansion gradient is determined. These two pieces of information are
used to create a vector that introduces a direction and its negative into the
situation, fig. (4.5). With a direction, the new center and radius are found
using the points associated with the solid arrow for one surface and the points
with the dotted arrow for the second surface. The tracker then flows the two
new surfaces depicted rightmost in fig. (4.5) until x = 0 within an e,.

The level low method is applicable to generic, multiple black hole space-
times (criterion 2) and can detect apparent horizons from a single reasonable
guess (criterion 1). The drawbacks of the level flow method is the depen-
dence of AX on the spatial grid size, AN ~ N~2 where N? = NyN, is the

number of grid points, and the fact that I flow to a speed of zero (the flow
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Figure 4.5: Two-dimensional schematic representation of the three-
dimensional decision process to identify the two surfaces that will evolve to

the two apparent horizons. The last figure on the right depicts the final two
surfaces that will act as new test surfaces.

speed approaches zero as k approaches zero). Work is in progress to improve
the speed of this algorithm (criterion 3). Improvements have been made to
increase the efficiency of the current algorithm. The addition of the arctan?
function, eqn. (4.16), speeds up the algorithm during the fissioning process. A
further development has been the addition of an adaptive A-step routine that
monitors the number of A-iterations taken to solve in each A-step of the pro-
cess, and alters the A\-step accordingly. These improvements will be explained

in detail in the following chapter on code development.
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Chapter 5

Code Development

5.1 The Equation of Motion

The apparent horizon tracker is a program that uses the level low method to
solve the apparent horizon equation eqn. (3.16). The level flow method code
solves eqn. (3.16) on each spacelike hypersurface of the foliated spacetime
by iterating the equation of motion, eqn. (4.13) with eqn. (4.11) and speed
function, eqn. (4.16). Typical flow methods, as applied to the apparent horizon
problem in general relativity, flow the trial surface, S,, under eqn. (4.13) to a
single surface, the apparent horizon. In the level flow method, I flow the trial
surface to a set of surfaces containing the apparent horizon, (S ). (S, ) fill
the hypersurface and contain information on topology changes I use to search
for the apparent horizons.

As previously mentioned, the code needs only the components of the
dynamical variables v;; and K;; to initiate. Since our dynamical variables

have been determined by an evolution code in Cartesian coordinates and the
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apparent horizon code uses spherical coordinates to characterize the 2-surfaces,
the components of the 3-metric and extrinsic curvature are interpolated onto
the 2-surface. The interpolation scheme in the level flow algorithm was written
by Mijan Huq [38].

The equation of flow is computationally solved using a finite difference
scheme called the Crank-Nicholson method. The advantage of the Crank-
Nicholson method is in its combination of an implicit scheme for stability and
an explicit scheme for accuracy to second order. The Crank-Nicholson method
is used often for diffusive initial value problems. Fig. 5.1 depicts the molecule

used in the Crank-Nicholson method.

n+1
0 £ £ n+1/2
7 @ T n

i-1 i i+1

Figure 5.1: The Crank-Nicholson scheme averages explicit and implicit meth-
ods resulting in a second order accurate scheme that is usually stable at large
A-steps. The filled in circles are the values used to determine the values at the
empty circles. The empty squares are intermediate values.

For the level flow method, the finite difference equation is

4AN
n+l _ /n n n 2 n
Yt = yr. — ?(m - — c)(arctan(k}; — ¢)/Ko)* |V}, ). (5.1)

%] 2y 2y

For convenience, I define R™ to be equivalent to the right hand side of eqn. (5.1).
Eqn. (5.1) is non-linear making traditional methods of inverting the resulting

matrix to solve the Crank-Nicholson method difficult. Instead, I implement
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an iterative Crank-Nicholson scheme shown below in pseudocode format:
While £ > €, Do 1 = Az
Store ¢3! =yt
While || "1 — ™5 ||> €roterance
Store 1, = ¢t
Average " t1/2 = (4 ) /2
Interpolate ¢,,, and k,,, onto 2-Surface
Evaluate R"*'/2 using " +1/2
Update ¢! = ¢™ + AtR"1/2
End While
Save " = ¢t
End While

Iterated Crank-Nicholson converges to an exact solution of the implicit
problem. However, the detailed behavior of this convergence [57] shows that
the Crank-Nicholson solution at a particular iteration has an amplification
factor | A(| that oscillates around unity. The behavior varies in pairs: |A™| <
1 forn = 2,3; |A™]| > 1 for n = 4,5, etc. while | |.A™|—1| — 0 monotonically
as n — 00. n is counting the number of iterations it takes to get @ = u within
the specified €;erance- 1 maintain a Crank-Nicholson iteration of n = 2 or
n = 3. In the runs I show in the following chapters, € erance = 1076 and
€, = 107*. The value of €pperance determines how small the error is in the
iterative Crank-Nicholson scheme, and is kept less than h2.

The iterative Crank-Nicholson method provides a method of estimat-
ing the rapidity of convergence, since one can count the number of Crank-

Nicholson iterations. If the iterations exceed 3, I reduce the overall Courant
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factor, n, by 0.1AM\, i.e. AX — 0.9A\. Similarly, if the number of Crank-
Nicholson iterations drop to 1, I increase n by 0.1AN\.

Driving the value of €, down to machine precision is difficult in the
flow equation since the speed of the flow depends on k. The role of the ap-
parent horizon tracker as a locator of apparent horizons for the purpose of
masking the singularity does not require x = 0 to high precision. In fact, a
trapped surface with k£ < 0 would suffice. However, when investigating prop-
erties of the apparent horizons, specifically the area of the apparent horizon,
the uncertainty in the area is proportional to the uncertainty in x. Future
generations of our horizon tacking code will have new ways of driving the ¢,
down. Such issues are addressed in Chapter 8. One way I am already us-
ing to drive ¢, down is the arctan function in the equation of motion. The
effect is to shrink the size of Az?/A\ as k — 0, where Az = h. Fig. (5.2)
contains a couple of plots produced using MapleV. The plot of the left is the
function g(z) = & — ¢, where ¢ = 0. The plot on the right is the function
f(z) = 4(x — ¢)/n*arctan® ((x — ¢)/x,) where ¢ = 0 and z, = 0.02. The
arctan function acts like a break during the region close to zero but behaves
linearly far from 0. A blow-up of the behavior of f(x) close to 0 is shown
in fig. (5.3). The solution to f(z) = 0 is = 0, the functional dependence I

require in our speed function.

5.2 Convergence Tests

To test the level flow method, I follow Choptuik’s [20] treatment of tests for
accuracy of finite difference schemes. We are numerically solving a contin-

uum partial difference equation with finite differencing. We have a continuum
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0.4+

021 0.2+

Figure 5.2: The plot on the left is the function g(z) and the plot on the right
is function f(z). Note the flattening out of the slope in f(x) that I use to
control the A-evolution of the surface near breaking.

function, u, and a discretized function, 4. Given a differential operator, L, the

continuum partial differential equation can be written as:
Lu=0. (5.2)

When solving this equation via finite differencing, I incur two errors, the trun-

cation error

>
I
~>

u, (5.3)

and the solution error

é=u—1. (5.4)

The scheme is p order accurate if 7 = O(h?). We will be dealing with a second

order scheme so p = 2. As h — 0 I assume that the discretized function can
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Figure 5.3: The function f(x) is zoomed in on region of interest.

be expressed:

G =u— h%ey — h'es — ..., (5.5)

where e; are independent of the grid spacing, h. To check the convergence of
the finite difference scheme, I need at least three different grid resolutions, h,
2h, and 4h with corresponding functions iy, g, and 4,. Using eqn. (5.5),

the following relations for the functions per resolution are obtained

U, = u— h%ey—hles—... (5.6)
g = u—4h’ey — 16h'e, — . .. (5.7)
g, = u— 16h%ey — 256h%e, — .. .. (5.8)

The convergence factor that I use to determine the accuracy of the scheme is

Cr= Uzh — Ush (5.9)

Up — U2n

20



For a second order scheme, the convergence factor in eqn. (5.9) is Cy = 4 +
O(h?). By finding the convergence factor, I can determine whether or not I
am correctly finite differencing the equation.

In the level flow method, the evolved function is

=1y =r—~h0,o). (5.10)

In order to verify that the code is obtaining second order accuracy, I have
plotted the convergence factor versus the number of A-steps for the updated
variable, 1 as a function of 6 as given in eqn. (5.10) for two different sets of
data, a single Schwarzschild black hole and two Brill-Lindquist black holes. 1
also present the convergence factor for the discretized x in the Schwarzschild
case. The Schwarzschild and Brill-Lindquist data sets will be described in
detail in the next chapter. The three different resolutions, h, 2h, and 4h, are
obtained by changing the number of spatial grid points on the surface. The
number of grid points, N2, is related to the spatial step size in the level flow
method by

1
h=A# x —. 5.11
x (5.11)

We change the resolution by changing N and keeping the Courant factor con-
stant thus changing A\ proportionally as:

A) = Courant factor x A§?, (5.12)

where A6 is the spatial grid step size.

For the first data set, a single Schwarzschild black hole, I show two
convergence tests. Fig. (5.4) is a plot of the convergence factor, C, versus the
number of iteration for ¢/(#). In this case I have a fine spatial resolution of

h = 0.05, a medium resolution of A = 0.10, a course resolution of A = 0.20, and
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a A-step size of AX = 0.0012. Fig. (5.5) is a plot C versus A for the expansion,
k as a function of #. This plot shows a little jump in the convergence factor at
A = 950, this occurs when one of the surfaces in the level set has been found

and the flow starts to find the next surface.

5.5 - —

Convergence Factor

500 1000

Figure 5.4: Convergence factor for radial variable i) with h = 0.05, 2h = 0.10,
4h = 0.20, and A\ = 0.0012 for Schwarzschild data. Second order accuracy is
obtained.

The second case is for binary black hole data using Brill-Lindquist data.
In fig. (5.6), the two holes are of equal mass and are separated by a distance
equal to twice the mass of one of the holes. In fig. (5.6) the finest spatial
resolution is A = 0.05 (2h = 0.10 and 4h = 0.20) and the A-step is A\ =
0.00012.
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Convergence Factor
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Figure 5.5: Convergence factor for x(f) in the Schwarzschild data with h =
0.05, 2h = 0.10, 4h = 0.20, and AX = 0.0012. Second order accuracy is again
obtained, the jump at A = 950 occurs when one surface of the level set is found
and the flow starts again to find the next surface in the level set.

of ¢, is adjusted.

93



4.6 — —

>
S
T
|

Convergence Factor

i
i)

10 15

Figure 5.6: Convergence factor for radial variable i) with h = 0.05, 2h = 0.10,
4h = 0.20, and AX = 0.00012 for the Brill-Lindquist data. The differencing
scheme is second order accurate throughout the run.
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Chapter 6

Apparent Horizon Tracking in
Closed-Form Solutions of the

Einstein Equation

The level flow method of tracking apparent horizons has been designed to lo-
cate apparent horizons in single and multiple black hole spacetimes. Starting
from a reasonable initial surface, the surface deforms along the normals fol-
lowing the flow of the outgoing geodesics. To test the level flow tracker, I
locate apparent horizons in Schwarzschild, Kerr, and Brill-Lindquist data. In
particular, I also demonstrate the level flow method’s ability to detect binary

black holes in the Brill-Lindquist data.
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6.1 Schwarzschild Data

The Kerr-Schild metric provides a closed-form description of both the Schwarzschild

and the Kerr solutions to the Einstein equation and is given by:
Gab = Tab + 2Hlalba (61)

where 7, is the Minkowski metric, 1, =diag(—1,1,1,1). H is a scalar function
of the coordinates and [/, is an ingoing null vector with respect to both the

Minkowski and full metrics; that is [/, satisfies the relation:
Uablalb = gablalb =0. (62)

For the Schwarzschild solution, the metric given in eqn. (6.1) has the

scalar function, H, given by:

M
H=— 6.3
x (63)

and the components of the null vector are
l, =1 (6.4)

x
l, = — 6.5
- (65)

Y

z
l, = - 6.7
- (67)

where I have adopted rectangular coordinates (¢, x, y, z) with r = /a2 4+ y2 + 22,
and M the mass of the black hole. The resulting line element is known as the

Eddington-Finkelstein form of the Schwarzschild solution

2M AM 2M
ds® = — (1 — —) dt* + —drdt + (1 + —) dr® + r* (d6” + sin® d¢”) .
r

' ' (6.8)
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In these coordinates we see that there is no singularity of any sort at r =
2M. The metric component g;; vanishes at r = 2M but the metric remains
nonsingular - has a well defined inverse - there. The line element is well defined
through the event horizon up to r = 0 where a true physical singularity resides.

We track the apparent horizon in this situation for a single black hole of
mass, M. The closed form answer for the apparent horizon location is r = 2M
[45]. Fig. (6.1) shows the apparent horizon surface at slice § = 7/2 with a
solid line and ¢ = 7 with a dashed line; thus giving two circumferences of the
horizon. Both circles should line up and do given the low resolution of 172
points on the sphere. A higher resolution plot, 33% points, is given in fig. (6.2).
Here the slices appear almost as one. This shows the tracker can accurately
find spherical horizons in this case.

The area of the event horizon for the Schwarzschild solution of the

Kerr-Schild metric is given by [45]

A= dmr? (6.9)
where r is the event horizon radius given by

ry =2M (6.10)

The event and apparent horizons coincide for these cases, assuming no dy-
namics. Using eqn. (6.10) and a numerically calculated radius, 7pym, we find
that r, = 2.00M and 7., = 2.007M, resulting in a 0.35% error where the
percent error = ((ry — Tpum)/7+) X 100. The numerical radius, 7., is cal-
culated using the maximum distance in the z-direction, the direction of spin.
The area calculated using the eqn. (6.9) is A = 167M? = 50.265482M2.

The apparent horizon tracker returns areas depending on the resolution of
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Figure 6.1: Apparent horizon located in Eddington-Finkelstein form of the
Schwarzschild metric for a run with 172 grid points on the sphere. The solid
line corresponds to # = 7/2 slice and the dashed line the ¢ = 7 slice. The

located horizon is close to spherical. the grid coordinates are given in units of
M.

the grid, of Apum(N = 17) = 50.11M?, A,um(N = 33) = 50.23M?, and
Apum(N = 65) = 50.26 M2, where N2 is number of grid points on the surface.
As expected, A,um — A as N increases. The area of a 2-surface is computed
by:

Apum = / \/Edacdy, (6.11)

S

where h is the determinant of the 2-metric, A, and x and y are coordinates.
The numerical area is determined from eqn. (6.11) by calculating the deter-

minant at every point in the grid and using a trapezoidal integration scheme

[38].
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Figure 6.2: Apparent horizon located in Eddington-Finkelstein form of the
Schwarzschild metric for a run with 33% points on the surface. The solid line
corresponds to § = /2 slice and the dashed line the ¢ = 7 slice. the two are
impossible to distinguish at this resolution.

6.2 Kerr Data

The Kerr solution is a second solution given by the Kerr-Schild metric, eqn. (6.1).
The Kerr solution is the solution for a spinning black hole, 7.e. a black hole
with an internal angular momentum per unit mass given by a. In rectangular

coordinates (t,z,v, z), the scalar function and null vector are given by:

Mr3
= o (6.12)

and

rr+ay ry—ar z

r24+a2’ r2 4 a2 ’;)’ (6.13)

Zli = (1’
where u = (t,z,y,z), M is the mass of the black hole, a = J/M is the angular

momentum per unit mass of the black hole in the z-direction, and r is obtained
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from:

.’E2+y2 22

fr.2+a2 7«2 ( )
2 1 2 2 1 2 2 2,2
rt =50 =)+ /(P — @) + @2, (6.15)

with p= \/FF 7 2.

The difference here is the addition of angular momentum. We test two
cases, a = 0.5M and a = 0.9M. Fig. (6.3) presents a = 0 again and the
a = 0.5M and a = 0.9M cases. The solid line is again the § = /2 slice and
the dashed line is the ¢ = 7 slice. The expected result, that the deformation

in the ¢ = m slice is increasing with a is found. The radius of the horizon is

Figure 6.3: The three plots correspond to the location of the apparent horizons
for black holes with three different values of angular momentum. The units of
the graph are M, and the solid line is again the § = 7/2 slice and the dashed
line is the ¢ = 7 slice.

given by

re=M—VM?—-a? (6.16)

in the direction of the spin. The solution to eqn. (6.16) for ¢ = 0.5M is
r. = 1.8660M and the numerical solution we obtain for the horizon radius is

Tnum = 1.8671 M, an error of 0.059%. In the a = 0.9M case, r, = 1.44M and
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Trnum = 1.46 M, with a 1.39% error. The area of the horizon for each case can
be calculated using

A=A4r(ri +d®) (6.17)
eqn. (6.9) and numerically using eqn. (6.11). In the a = 0.5M case, eqn. (6.9)
gives A = 46.89M?, numerically 1 obtain A,.. = 46.88M?, resulting in a
0.21% error. In the a = 0.9M case, A = 36.09M? and A, ., = 36.39M with a

0.83% error. The errors will decrease as ¢, is driven closer to zero.

6.3 Brill-Lindquist Data

In this section, we study a binary black hole system using Brill-Lindquist data
[14]. This data is useful to us for two reasons: We can verify previous results
of the critical separation, and study an example of how the tracker works in
finding multiple apparent horizons. The Brill-Lindquist data is probably the
simplest multi-black hole data set. The 3-metric is time symmetric, K, = 0,

and is conformally flat:

Yab = Y 1ab (6.18)
where N
M;
=1 E 6.19
v ’ il (6:19)

and N is the number of holes (N = 2), M; is the mass of ith the black hole
and the r; are the radial distances from the origin of the coordinate system to

the centers, (g, Cyi, Ci), of the black holes

T = \/(x —C2i)? 4+ (Y — i)+ (2 — i) (6.20)
We use isotropic coordinates to express the metric as
ds* = p*(dr?* + r*d6* + r*sin® d¢?) (6.21)
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with

r; = /1% + d? — 2d;r cos b, (6.22)

where d; is the distance between the holes and the center of the coordinate
system. When they are far apart, each hole has an apparent horizon of radius
M/2 in these coordinates. The area of each of the holes when they are well
separated is 16w M?2.

The limiting separation of the holes between single and double horizons
was found by Brill and Lindquist [14] to be 1.56, Cadez 1.5344-0.002 [18] and
[1.5,1.6] by Alcubierre et. al. [2]. We found a critical separation 1.53(5). The
apparent horizon at the critical separation of 1.535 is shown in fig. (6.4) using

the level flow code with 332 grid points.

1k d =1.535M -

o
T
1

1 L L L L 1 L L L L 1
-1 0 1

Figure 6.4: Separation of 1.535M with a 332 grid. The area was determined
numerically to be 184.16 M2

The horizon found for a separation, d = 1.5, less than the critical sepa-

ration, is shown in fig. (6.5). Fig. (6.6) is a plot of the ly-norm of the maximum
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of k(6) for the separation d = 1.5M at each iteration plotted versus the num-
ber of A-steps. This is one of the checks in the level flow code to ensure that
the apparent horizon equation is still being solved. We expect the expansion
to continue to decrease if we have started outside the apparent horizon and
are flowing inward. As we will see in fig. (6.10), the expansion increases as

fission occurs in a data set with separated holes.

d=15M

1 L L L L 1 L L L L 1
-1 0 1

Figure 6.5: Separation of 1.5M with a 33? grid. The area is 185.41 M2,

As we increase the separation between the two holes to a separation
greater than the critical separation, we can test the apparent horizon tracker
in the case of multiple apparent horizons. We demonstrate with a separation
of d = 2.0M. The initial surface flows to the point of fissioning where the
topology of the surface changes from a one surface into two surfaces. Fig. (6.7)
is a plot of the initial surface that begins the flow. The level set found during
this flow is depicted in fig. (6.8). Each of the surfaces in fig. (6.8) has a

constant expansion, kK = ¢, and was used to indicate a topology change in the
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Figure 6.6: The absolute value of the maximum of expansion, «, per iteration,
A every 20th step. The kinks at A = 1000 and A = 2000 are from restarting
the code with a different A-step.

test surface. The values for the expansion are ¢; = 0.14, ¢ = 0.12, ¢c3 = 0.1,
and ¢4, = 0.08. The last single surface just before the topology change is not
a surface in the level set, it is plotted in fig. (6.9). At this point the tracker
begins to flow two surfaces.

In contrast to a separation of d = 1.5M where there is no fission, here
as fissioning becomes imminent, the x begins to increase. Fig (6.10) is a plot
of the absolute value of the maximum across the surface of the expansion, x,
versus A up to the point of fission. The increase in the expansion is one of the
signals of imminent fission. As the algorithm tries to find a surface with Kk = 0
everywhere, it is driven into two surfaces. Once the new surfaces are found,
the maximum of the expansion begins a monotonic decrease as in fig. (6.6).
The exaggerated peanut shape in fig. (6.12) and fig. (6.13) is taken at the same
time as fig. (6.9).
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Figure 6.7: The starting surface of the level flow method for a separation of
d=2.0M

Once the fissioning is detected by the code, it automatically begins
flowing two new surfaces of the same resolution as the parent surface. The
following series of snapshots is a subset of the set of surfaces found by the
apparent horizon tracker as it follows the fission of the initial guess surface
into two surfaces. The tracker starts with a spherical starting surface that
deforms along the gradient field. As the points defining the surface flow, the
distance between the points can become too small for the finite difference
scheme at that resolution. Fig. (6.11) illustrates the difficulty of flowing the
points of a surface. Redistribution of the points on the surface is taken care
of automatically by updating hte center and radius on the fly.

Once the level set of surfaces indicates a fission is occurring, a first guess
at the two surfaces is made, and the two new surfaces are flowed. This is taken
care of by estimating a new center and radius and flowing the new surfaces

again. The final apparent horizons are known to ¢, = 107%.
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Figure 6.8: The level set of surface for the d=2.0M case. Each surface has a
constant kK = ¢, at each point. In this case the values for ¢, are ¢; = 0.14,
co = 0.12, ¢c3 = 0.1, and ¢4 = 0.08. The level set is used to indicate the change
in topology associated with multiple surfaces.

d=2.0M
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o
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Figure 6.9: The single surface is about to fission into two surfaces.
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d=2.0M

0.3

[max(k)|
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Figure 6.10: The absolute value of the maximum of expansion, &, per iteration
is plotted. The increase in the expansion is caused by imminent fission.

Figure 6.11: The surface is defined via the flow of its points. The points
can “bunch” on the surface during flow. If the distance between points on

the surface becomes too small, the iterative finite difference scheme fails to
converge.
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Figure 6.12: This series of snapshots depicts the flow of an initial surface
until its fission for the binary Brill-Lindquist black holes separated by 2M.
The lower left plot is a first try at determining the final two surfaces. The
cusps are due to a typical drawback associated with using points to define the
flowing surface. The points crowd together in regions of greater flow. The
next snapshot, on the lower right, shows the code’s automatic correction; and
shows the apparent horizons of the binary Brill-Lindquist data to an accuracy
of 107
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Figure 6.13: The series of pictures shown in fig. (6.12) are placed in one plot.
The < is the initial guess, the O is the surface that is found indicating the
need to search for two surfaces, and the A is the results locating the apparent
horizons for Brill-Lindquist data.
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Chapter 7

Binary Black Hole Evolutions

In this chapter, I demonstrate the ability of the apparent horizon tracking
code to locate multiple apparent horizons in a generic spacetime. 1 discuss
the results of tracking the apparent horizons in a spacetime containing two
colliding Kerr-Schild black holes. The spacetime is simulated with the evolu-
tion code developed by the National Science Foundation’s Binary Black Hole
Grand Challenge [7]. The initial data are the metric and extrinsic curvature
of two superposed Kerr-Schild black holes [43], which were first evolved by
Correll [24]. As I will explain further in § 7.3, the initial data implemented
is an approximation to the complete initial data set with ~ 10% error in the
constraint equations. The complete initial data set is under development at
The Pennsylvania State University [16]; however, the approximate data set

suits our purpose of demonstrating the apparent horizon tracker.
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7.1 Kerr-Schild Metric

We chose a Kerr-Schild metric [45] for two reasons: 1) The metric is well
defined at the event horizon, and 2) The metric is Lorentz form-invariant in a
simple sense, under boosts (v > 0). The Kerr-Schild metric describes both the
Schwarzschild and Kerr solutions to the Einstein equation. Eqn. (6.1) gives
the metric; eqn. (6.12) gives the scalar function, and eqn. (6.13) gives the null
vector.

The Kerr-Schild metric is cast into the 341 form in Cartesian coordi-

nates by comparison with the standard 3+1 form of the metric:
ds® = —a’dt® + v;;(da’ + Bdt)(da? + B dt). (7.1)

The following definitions are the 3-metric v;;, the lapse function «, and the

shift vector §; = ;4%

1
@ = ——= and (7.3)
V1+2HP2

The relation between the lapse and shift dictates that the horizon stays at a
constant coordinate location in a nonboosted Kerr-Schild solution. The 3+1
split of the Kerr-Schild metric results in a 3-metric that depends on I; and
H as functions of (t,z,y,2) and an extrinsic curvature that depends on the

following functions of (t,z,y,2): l;, 9;l,, H, and 9, H.
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7.2 Boosted Kerr-Schild Metric

The Kerr-Schild metric is form-invariant under a Lorentz transformation ap-
plied in a straightforward way: the Minkowski background, the scalar H, and
the null vector, {,,, are transformed as Lorentz objects; and the metric is recast.
This is entirely equivalent to doing a coordinate transformation on g, that
coincides with the coordinate transformation implied by the Lorentz boost
given in eqns. (7.5)-(7.7). Let a single black hole exist in a rest frame, O, with
coordinates (t,Z,7,Z). Let O be another frame with coordinates (¢, z,y, z).
Frame O is boosted relative to frame O via 9; = (d,,%,,0,) with a speed,
v, using the following transformation in which the black hole is moving with

speed v in direction v; in the O frame:

AL = (7.5)
AL = —uyiy (7.6)

with (51-]-19"171' =1land vy =1/ V1 =02, With this transformation, a new null
vector [, and a new function H are determined:
L = Ny (7.8)
H = H(AZJ‘:,,). (7.9)
The form of the spacetime metric and its 3+1 decomposition remains un-
changed in terms of [, and H.
To give a specific example, consider the Eddington-Finkelstein form of

the metric, eqn (6.1). Let frame O move relative to O with a velocity, v, in

the x-direction. The coordinates of @ are related to the coordinates of O via

t = ~(t—ox), (7.10)
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T = vy(xz—ot), (7.11)
vy o= v (7.12)
z = z, (7.13)

where v is the boost velocity and v = 1/v/1 — v? with ¢ = 1. The coordinate

transform between frames @ and and O is

.o

A” = S (7.14)
After the boost, [; becomes

Since H is a scalar, it is invariant under this transformation. (The transfor-
mation changes only the coordinate labels of its argument point). The null

vector and scalar function become explicitly:

2

r? = Az —vt) +y°+ 27 (7.16)
i = (1 —vy(lx—wvt)/r) (7.17)
l. = y(v(xz—vt)/r—wv) (7.18)
ly, = y/r (7.19)
l, = z/r (7.20)
H = M/r. (7.21)
The metric in the O frame is given by:
G = AfjAfgag. (7.22)

The lapse function and shift vector are defined as in eqn. (7.3) and eqn. (7.4).

In fact, we have plotted the shift vector and lapse function for this boosted
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Eddington-Finkelstein case in fig. (7.1). Fig. (7.1) shows a slice through the
Eddington-Finkelstein in the xz-plane of a single black hole moving up the
page with a velocity 0.5c. Contours of constant o are depicted as cardioids
and the inner ellipse is the horizon. The line segments indicate the magnitude
of 3; and are directed out of the horizon. Note that the shift vector has a

magnitude greatest in the wake formed as the black hole moves up the page.

e [~ ~ N \ V' o 7 s - -]
- —~ Y \ \ forz ” - -
4
S TN \ bz 7 e - =
0.9
sl - — o~ A fos - 0 ]

Figure 7.1: Contours of constant « are plotted as cardioids. The ellipse is the
apparent horizon, which coincides with the event horizon. The shift vectors
indicated by the line segments are directed away from the horizon and are
greatest in the wake of the black hole as it moves up the page. This plot
was generated using Mathematica for the Eddington-Finkelstein form of the
Kerr-Schild metric. Coordinate labels are in units of M.
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7.3 Initial Data

An isolated Kerr-Schild black hole has the metric:
Yij = iy + 2HLl;. (7.23)

Approximate data for two Kerr-Schild black holes is constructed by superpos-

ing two isolated black hole metrics [24]. The resulting metric is

Vi = @)Yis T @)Yi5 — Mij (7.24)

with the = symbol indicating a quantity conformally related to the physical

. _ 4,\
metric, v;; = ¢*Yi;-

W)Y5 = Thy + (1)H(T‘1)(1)li(1)l]’ and (725)

@Y = M+ eH(r2)eliol; (7.26)

are the the isolated Kerr-Schild metric forms with /; and H corresponding to
the single black holes. The two holes have comparable masses, M; ~ M,
coordinate separation 715, and velocities v; and v, assigned to them. For the

argument of H and [;, we use

r? = (z—x)(x—2,)6; and (7.27)

r? = (v —x9)(x — mQ)jéij (7.28)

with z1° and z5? the coordinate positions of the holes on the initial slice.
Following Matzner, Huq, and Shoemaker [43], the extrinsic curvatures
of the two isolated black holes are added to obtain a trial K, o+ for the binary

black hole system given as:

~

0k, =K} + @K}

%
J J

(7.29)
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The subscript 0 indicates that this is an approximation to the true extrinsic
curvature of the binary black hole spacetime. (1)1%; and (z)ffj are the individual
extrinsic curvatures associated with the isolated Kerr-Schild metric and their
indices are raised and lowered by their individual metrics, eqn. (7.23). Matzner
et al. then follow the York prescription for initial data, separating the trace
part of the extrinsic curvature, K = K (1) + K(2); from the traceless part of
(O)Kabi

A

1,
OKa = @F+ 3k (7.30)
©E® = ¢ E®). (7.31)

Note that the hatless quantity, (O)E“b , is the traceless part of the zeroth guess
extrinsic curvature associated with the physical metric g,,. A first attempt at

writing the momentum constraint leads to

2
Dy(0)E:) = 3 DK #0. (7.32)

However, there is a violation of the momentum constraint due to the connec-
tions (Christoffel symbols) from hole(1) multiplied by the extrinsic curvature

of hole(2) and vice versa
(E) (@) + (@ K*) (T s) (7.33)

(and similar terms) not predicted by eqn. (7.29) (where I'q, = 17 (7gap +
Yab,a — Yab,a) and , denotes a partial derivative). To determine the correct
binary black hole constraints, a longitudinally contributing term is added to
the traceless part of the extrinsic curvature. The new traceless part of the

extrinsic curvature becomes:
A% = (O)ECb + (lw)Cb, (7.34)
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where w® is an undetermined vector and (lw)® is the longitudinal addition
given as:

2
(lw)® = Dw® + D w* — gvbCded. (7.35)

Matzner et al. demand the solution of the momentum constraint, which in

terms of the traceless and trace of parts of the extrinsic curvature is

2
DyA®  — gDCK =0, or (7.36)

2
Dy(lw)® = §DCK—Db((0)ECb). (7.37)

This is an elliptic equation for w®. Using the following due to York [63]
DyA® = ¢~ 10Dy A%, (7.38)

the momentum constraint can be written as:

A A~

2 ~ ~C ~ e
Dy(lw)® = SDK =4 *¢% Dy ((0)E?). (7.39)

Now w® can be determined up to the function ¢ which is as yet undetermined.
In order to obtain w® and ¢, the momentum and Hamiltonian constraints
must be solved simultaneously. The Hamiltonian constraint following York’s

development is
. . 2 . . S
8A¢ — Rp — §K2¢5 + ¢ (0 Bij + (lw)ij) (0 EY + (lw)7) =0,  (7.40)

where R = R¢™* — 8¢5A¢ was used. The solution to the coupled set of
equations, eqn. (7.39) and eqn. (7.40), for w* and ¢ constitutes a solution to
the constraint equation. This involves solving the coupled elliptic equations
eqn. (7.36) and eqn. (7.37).

A program to produce such solutions is being carried out by the group

at the Pennsylvania State University [16]. The evolutions presented in this
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dissertation have the initial data constructed from the zeroth guess extrinsic
curvature, eqn. (7.29), and the superimposed metric, eqn. (7.24). The data de-
scribes two Kerr-Schild black holes initially separated by a coordinate distance
exceeding 10M where M is the mass of one of the holes. The data violates
the initial value equations by an error on the order O(M/r), approximately
10% for black holes separated by 10M. We find this an acceptable error con-
sidering the resolution of the run I include in this dissertation, which is 81°
and a discretization size of h = 0.25M. We monitor the relative errors in the
Hamiltonian and momentum constraints during the subsequent evolution, and

find them to be small, of order 15% — 30%.

7.4 Binary Black Hole Evolution

The specific initial setup we implement is of two black holes of equal mass,
M, both with initial spins in the positive z-direction, a = 0.5M 2, boosted
towards each other in the z-direction with an initial velocity, v = 0.52. The
black holes are a coordinate distance 10M apart in the z-direction and 2M
apart in the y-direction at coordinate positions (z,y, z) (—5M, —1M,0M) and
(5M,1M,0M) on a Cartesian grid at the initial time, t = 0. The evolution is
by a standard Cauchy code (a ¥;; and Kw code) which uses black hole excision.
The evolution has 812 points distributed over the grid with a discretization
size of h=0.25M. The domain is £10M in all directions. The computational
evolution uses iterative Crank-Nicholson and singularity excision.

The excision masks are initially centered on the black holes. In a full
implementation, the code would follow the apparent horizons by locating the

apparent horizons on each time step, and revising the excision masks based on
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the apparent horizon location(s). Here I am concerned with the behavior of
the location of the apparent horizon in the evolving spacetimes, and with the
understanding of the behavior of the evolution code for different treatments
of the apparent horizon location. In the first instance I use an extrapolated
estimate of the mask locations based on the known location at the initial
configuration. Figure (7.2) plots the location of the two masked regions on the

initial time slice.

Figure 7.2: The data setup at t=0 contains a black hole at (—5M, —1M,0M)
with ¥ = (0.5,0,0) and a second black hole at (5M,1M,0M) with ¥ =
(—0.5,0,0) as indicated by the arrows. Both holes have angular momentum
about their axes, @ = (0,0,0.5M) indicated by the symbol ®.
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We use the following lapse function and shift vector from the start of
the evolution until the two black holes merge (the post-merger lapse and shift

are defined later in the text)

ap = o+ @a—1 and (7.41)
o = b+ b (7.42)
where
1
no = and (7.43)
1+ 2(1)H(1)lt
Wb = 2Hmliwls, (7.44)

and likewise for (zya and (o) B3¢ corresponding to the second black hole. This
superposition of the isolated black holes’ lapse and shift is not at all sophisti-
cated, and better choices [43] may lead to significantly longer evolutions. Here,
this choice appears acceptable. Our future evolutions will investigate better
choices for the lapse and shift. Figure (7.3) depicts the contours of constant
lapse values and the shift vectors for two Eddington-Finkelstein (a = 0) black
holes superposed in the manner described above. The shift vectors behave in
a similar manner to that of the single boosted black hole in fig. (7.1). The
upper hole has a speed of 0.5¢ directed straight down the page and the lower
hole has a speed of 0.5¢ directed up the page.

Eqn. (7.41) and eqn. (7.42) for the lapse and shift are used until the two
single black holes approach close enough to be enclosed in a single apparent
horizon. At that time, a weight function is used to gradually alter the lapse
and shift to accommodate the new single black hole. The new lapse function
is

o= ! (7.45)

V14 2Mg/rs’
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Figure 7.3: Two Eddington-Finkelstein (¢ = 0) black holes showing contours
of constant lapse. The upper hole has a speed of 0.5¢ directed straight down
the page and the lower hole has a speed of 0.5¢ directed up the page. The
arrows show the magnitude and direction of the shift vector.

and the shift vector is

i = il (7.46)

where Mg = My + M5 and rg = \/m For the post-merger results
given in this dissertation, we used a lapse and shift each defined in terms of
a mass Mg/2. This may have contributed to shortening the length of the
post-merger evolution achieved. We are carrying out further evolutions with
post-merger lapse and shift as in eqns. (7.45) and (7.46). At any rate, there is
no affect on the apparent horizon tracking. The intermediate lapse function

and shift vector, while they are being blended with a weight function, are

a = (1-W)ap+Was and (7.47)
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B = (1-W)pp+Wp (7.48)

respectively. The weight function effecting the change is

2 3
t—1tp t—1tp
W=1-3 2 7.49
<t1—tF> " (tf—tF> (749)

where t < t; = W = 0 corresponding to a = ap and t > tp = W = 1,

corresponding to a = a,g and similarly for 3;. The time ¢; is the time when a
single spherical mask of radius 4M will fit inside the single apparent horizon
enclosing both black holes and the time tr was chosen to allow a gradual
transition.

In a numerical Cauchy simulation of a spacetime, outer boundaries must
be placed at an arbitrary, finite distance rather than at the physically appro-
priate infinity. Conditions are placed at these outer boundaries that approx-
imate the behavior of the region stretching to infinity. However, errors are
inevitable except in very simple situations. The grazing collision of two black
holes is not a simple situation, so we work to minimize the errors with the least
amount of effort. The outer boundary condition chosen for this evolution is
a blended Dirichlet condition [30], a means of providing approximate analytic
data at the boundaries. We solve the initial data problem at the boundaries
at each time step. For the run described here, the Dirichlet data specified
at the boundaries is for two black holes even after the holes merge. We are
presently modifying the algorithm for the outer boundary to one in which a
transition between the double and single hole occurs also in the approximate
boundary condition. A smooth transition between the numerical interior data
and the analytic boundary data is implemented by blending through a few
spatial points near the boundary. The geometry of the blending is based on

the cubical computational domain faces. Future evolutions will be done with a
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spherical blending geometry. The spherical geometry is more closely adapted
to the topology of the outgoing gravitational waves generated in the encounter
than is the cubical; and has been seen in experiments to generate fewer errors
at the boundary than does the cubic blending.

The inner boundary associated with avoiding computations near the
singularities of the black holes was discussed in Chapter 1. We discussed
that the evolution code currently implements a masking technique to remove
the singularities based on the estimated locations of the apparent horizons at
each instant of time. For the first simulation described here, the location of
the apparent horizons for the two black holes is estimated based on Lorentz
transformations from the initial of position of each isolated black hole. This
guess determines the masked region. But this works only so long as the guess
is close to the true location of the apparent horizon. If the mask falls outside
of the true apparent horizon location, the evolution will fail.

In carrying out a simulation with this extrapolated location for the
masks, failure does occur, apparently due to incorrect prediction of the location
of the horizons at time approximately 3.5M, where M is the mass of each black
hole. Fig. (7.4) is a plot of the component g,, with x = z = 0 versus y and
time. This plot “misses” the masks; however fig. (7.5) is plot of g,, with
y = z = 0 along the z-axis as a function of time and show the two masks.
The two masked regions in fig. (7.5), seen as two small flat regions at £5M at
t = 0M with an increasing amplitude in g,, near the masks. The amplitude
is at a maximum at the last recorded time of the run. Fig. (7.6) is a plot of
the normalized Hamiltonian constraint along the y-axis (z = z = 0) versus
time. The normalized Hamiltonian constraint is designed to range between

—1 to 1 by taking the Hamiltonian constraint and dividing it by the norm of
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its components as given by:

HC = K?— K K+ R? (750
[HC| K+ [Kil | K9] + |R| '
where |...| indicate that the absolute value of the component has been taken.

The fig. (7.6) is of the same view as fig. (7.5) in that it gives the time history
of the y-axis which does not intersect the masks. Fig. (7.7) also plots the
variation of the constraint but along the z-axis versus time with y = z = 0.
This figure is a good diagnostic. We see spikes growing with time near the
masks. These strong deviations from zero are errors in Hamiltonian constraint
plausibly caused by the extrapolated mask locations not correctly masking
the region inside the apparent horizon. As in fig. (7.5), the amplitude of
the normalized Hamiltonian constraint has a maximum at the last time step.
Fig. (7.8) and fig. (7.9) show sequences of plots of the metric function, g,,, and
the normalized constraint, HC/|HC|. These plots are in the xy-plane since the
initial separation of the holes is in the xy-plane. The increasing spikes seen in
Hamiltonian constraint are really inside of the apparent horizon. The growth of
these errors eventually stops the evolution at 3.5M. The increasing deviation
from 0 of the normalized Hamiltonian constraint at the outer boundaries is a
result of our choice of boundary conditions. Better outer boundary conditions

are being researched.
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Figure 7.4: The metric component, g,.,, sliced at x = z = 0 and plotted versus

y and ¢ from ¢t = OM to t = 3.5M. From this view, the masks cannot be seen.
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Figure 7.5: The metric component, g.., sliced at y = z = 0 is plotted versus
x and t from times ¢ = OM to t = 3.5M. The masked region can be seen at
—5M and 5M at t = 0 on the x-axis. g,, is growing with time near the masks.

yM]

05 ™M)

Figure 7.6: The normalized Hamiltonian constraint is sliced at x = z = 0 and
plotted versus y from times ¢t = O0M to t = 3.5M. A small deviation from 0 is
seen along the outer boundary.
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HC/HC]|

Figure 7.7: The normalized Hamiltonian constraint is sliced at y = z = 0 is
plotted versus x and t from times ¢t = OM to t = 3.5M. The error in the
Hamiltonian constraint is growing with time around each masked region.
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Figure 7.8: The metric component, g,., is sliced at z=0 and plotted through
a sequence of times. The spikes increase with time, an indication that our
masking procedure is failing.
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Figure 7.9: The normalized Hamiltonian constraint is sliced at z=0 and plotted
through a series of times. The spikes in the data are interior to the apparent
horizon.
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7.5 Black Hole Evolution with Apparent Hori-
zon Tracking

The previous evolution stopped at 3.4M with increasing errors in the normal-
ized Hamiltonian constraint near the masked region. At the present time, the
apparent horizon tracker is not automatic in the evolution code. With the
computed metric and extrinsic curvature in hand, I locate the apparent hori-
zons in the 3.4M computed spacetime using the level low method described
in Chapter 5 using N? = 332 points distributed on the 2-surface. I found
two important pieces of information: 1) that the masks no longer are centered
within the apparent horizon, and 2) that the apparent horizon at 3.4M en-
veloped both black holes. The first point means the masks lagged behind the
true location of the apparent horizons. The mask location for moving black
holes is determined by extrapolating the motion of the black hole linearly, the
masks were given a constant velocity of +(0.5¢,0,0). However, the apparent
horizon locations show that there is an effective acceleration of the horizons
toward one another. This acceleration means that the black holes move faster
in the x and y directions than the extrapolated motion of the masks. Thus the
masks undershoot the positions of the horizons and the evolution fails since
either the singularity is uncovered or the mask is outside of the apparent hori-
zon, hidding parts of the spacetime in causal contact with the observer. We
estimated the coordinate speed of the apparent horizons to be approximately
+(0.55¢, 0.06¢, 0).

The second point, that a single apparent horizon envelopes both black
holes at 3.4M, together with the increase in speed is a key to making the
evolution continue past 3.4M. By increasing the speed to 4(0.55¢,0.06¢, 0),
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we were able to keep the code running past the merger of the two black holes.
We used the merger at 3.4M to predict when to change from two masks to a
single mask. The mask geometry is spherical, so the two masks are kept until
both singularities are predicted to be within a sphere of radius 4M. From the
apparent horizon locations at t = 0M to t = 3.4M, we predicted that a single,
spherical mask at 5M would be successful. The lapse function and shift vector
were changed to eqn. (7.45) and eqn. (7.46) according to the weight function
given in eqn. (7.49). I then use the apparent horizon tracker on the last few
instants of this evolution. The tracker finds that there is a single apparent
horizon enveloping the holes at 3.4M. From 3.4M to 8.3M a single black hole,
resulting from the merger to two black holes is evolved. The evolution has
gone to merger!

The following plots are of the metric function g,, and the normalized
Hamiltonian constraints. They are plotted versus time from 0M to 8M to
demonstrate what is happening as the two holes move together. Fig. (7.10)
is the time dependence of the metric component sliced at x = z = 0 plotted
versus y and ¢, and fig. (7.11) is sliced at y = z = 0 plotted versus x and t.
Both figures show the masked region of the two holes merge into one mask at
5M based on the locations of the apparent horizons. Fig. (7.12) is the time
dependence of the Hamiltonian constraint sliced at x = z = 0 and fig. (7.13)
is sliced at y = z = 0. Notice that the errors in the normalized Hamiltonian
constraint almost disappear as we merge into a single masked region although
there is some error propagating in from the outer boundaries. In comparing
fig. (7.10) to fig. (7.4), we see the masked region due to forming single hole
clearly; however, comparing fig. (7.11) to fig. (7.5) is more more interesting.

We see that the spikes along the masked regions decrease in fig. (7.11) as a
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single mask is formed. Similarly, comparing fig. (7.13) and fig. (7.7) shows
a decrease in amplitude in the spikes near the mask in fig. (7.13) as a single

mask is formed.
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Figure 7.10: The metric component, g,,, is sliced at x = z = 0 from times
of OM to 8M. This plot shows the time dependence on the numerical grid

function. In contrast to fig. (7.4), g, decreases in time once a single mask is
used.

Fig. (7.14) and fig. (7.15) are snapshots of the metric component and
normalized Hamiltonian constraint at particular times during the evolution.
These times correspond to the times we have located apparent horizons seen in
fig. (7.19). All snapshots show z = 0 data. These figures show the movement
of the two holes towards each other and their eventual merger. The deviation
from 0 in the normalized Hamiltonian constraint, fig. (7.17) and fig. (7.15) is
due to incorrect blending to the numeric solution at the boundary. The spikes

in the corners are due to our choice of a cubical geometry in the blending region,
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Figure 7.11: The metric component, g,,, is sliced at y = z = 0 from times
of OM to 8M. This plot shows the time dependence on the numerical grid
function. In contrast to fig. (7.5), g, decreases in time once a single mask is
used.

future runs will use spherical blending. Further errors arise because I do not
switch to a single mask for at the outer boundary in this run, but continue
to use two moving holes as data. Fig. (7.16) and fig. (7.17) show snapshots
of the metric component and the normalized Hamiltonian constraint at the
time before we choose a single mask, 5M, the time after we have completed
the single hole transition, 5.3M, and the last reasonable time step of the

evolution, 8.1M, when we choose a single mask
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Figure 7.12: The normalized Hamiltonian constraint is sliced at x = z = 0
from times of OM to 8M. This time dependent plot also demonstrates the
reduction of error as the single, merged mask is used.

HC/IHC|
1
0.5
0
05
1

Figure 7.13: The normalized Hamiltonian constraint is sliced at y = 2 = 0
from times of OM to 8M. This time dependent plot also demonstrates the
reduction of error as the single, merged mask is used.
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Figure 7.16: A time series of the metric component, g,,, is sliced at z = 0.
The spikes are greatly reduced from the previous evolution, fig. (7.8). The
snapshots were taken at the times corresponding to the beginning and end of
the weighted merger from a double masked region to a single masked region;
and the final time of the evolution.
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7.6 Apparent Horizons in the Binary Black
Hole Merger

The apparent horizons are tracked using the level flow method discussed in
Chapter 4. Fig. (7.18) shows the progression of the horizons through the evo-
lution including the masked region used in the evolution code. As long as the
masked region lies inside the apparent horizon, no information is lost. How-
ever, if the masked region is too small, the singularity may become uncovered.
This is a problem when the black holes merge into a single apparent horizon
but the two masks remain separate .

The apparent horizons obtained in X(¢ = 0.0M), X(t = 2.8M), X(t =
3.4M), and X(t = 7.8M) are plotted in fig. (7.19). Already at 2.8M, the
apparent horizons have deviated from their approximately spherical shape no-
ticeable at OM. The effect of the holes on each other is in evidence. The
dramatic change in the shape of the apparent horizon between times 3.4M,
the first time a single apparent horizon envelopes both black holes, and 7.8 M
is seen in fig. (7.20). This large change in shape suggests strong dynamics
which could lead to strong radiation. There is also an apparent rotation of the
horizon as the holes spin towards each other. We are working to extend the
domain off the computation to allow extraction of the waveforms in this evo-
lution and reconstruction of the event horizon. Runs with different black hole
angular momentums, and angular momenta in different directions are being
planned.

Our selection of apparent horizons are plotted in all three planes in
fig. (7.21). The distortion of the holes as the move toward each other is seen,

especially in the y axis. The apparent horizons of the holes shrink in the
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0.0M 2.8M

3.4M

Figure 7.18: Snapshots of the apparent horizon(s) with the masks included.
The mask for each black hole is the region represented as the diamonds in the
interior of each apparent horizon. The axes are all ¥ vs. x with a range of

[xmz'n . xmam] - [ymm . ymam] = [_10 : 10]

z-direction giving them a flattened appearance.
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Figure 7.20: The apparent horizons are plotted up the page as a function of
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other to illustrate the deformation of the horizons.
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Until we have evolved the spacetime to quiescence and found the event
horizon, the apparent horizon is the best indicator of the dynamics occurring
in this problem. Although the above evolution is short, the most dramatic
dynamics have occurred. At 3.4M the black holes merge and evolve another
4.4M as a single black hole. Referring to fig. (7.20), we see a rotation in the
apparent horizon. At 3.4M, the apparent horizon is thinner along the y-axis
and fatter along the x-axis. This is expected since the holes are approaching
each other with greatest speed along the x-axis. However, as the single hole
evolves to 7.8 M, the horizon becomes shortened along the z-axis and elongated
along the y-axis. This rotation results from the collision of two spinning black
holes offset in the y and x axes. The internal angular momentum of each single
black hole plus the orbital angular momentum of the single holes contribute
to the angular momentum of the final spinning, single black hole. The final
angular momentum per unit mass of the black hole is unknown; however, this
simple addition implies the angular momentum per unit mass of the black
hole approaches M. We cannot conclude how long the merged black hole will
take to reach a static equilibrium, approaching a Kerr black hole with angular
momentum without a longer evolution.

A second and related indicator of the dynamics is the change in the area
of the apparent horizon during the evolution. A plot of the area is in fig. (7.22)
with the areas of the apparent horizons at times prior to 3.4M added together.
At the initial time step, the area is 43.6 M2 for each black hole. At time 2.8M,
each hole has an area of 44.2M?; therefore, the area has remained basically
unchanged during this early part of the evolution. Once the black holes merge,
at t = 3.4M, the area increases to 184M?. Based on merging Schwarzschild

hole simulations, the mass will approximately double; the radius will double
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and the area will quadrupole with very In this case we would expect an area
of approximately 176 M? for the merged hole, so the merged black hole has an
area exceeding expectations by about 5%, not a significant error considering
the accuracy of the computation. As the evolution continues, the area of the
apparent horizon continues to increase: at t = 5.6 M the area is 292M? and at
t = 7.8M the area is 310M2. The increase in area indicates infall of radiation
into the black hole. By the end of this evolution, the area has increased by a
factor of 1.6. Considering the dynamics of the situation, we conjecture that a
large amount of radiation is being produced and falling into the black hole. We
also conjecture that the event horizon is considerably bigger than the apparent
horizon at early times in the evolution. In the future, once the dynamics of
the collision are played out, we will identify the event horizon.

400.0

300.0 - =

200.0 B

area [M**2]

100.0 - B

0.0 . . .
0.0 2.0 4.0 6.0 8.0

time [M]

Figure 7.22: The numerically computed area of the apparent horizon versus
time for the binary black hole grazing collision.
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Chapter 8

Conclusions & Future Work

8.1 Significance of Results

There are two major results in this dissertation: 1) The development of a
generic multi-black hole apparent horizon tracker, and 2) The use of appar-
ent horizon tracking in the first grazing collision of binary black holes imple-
menting excision. The purpose of the work on apparent horizon tracking was
to create a code with the capability to detect multiple apparent horizons in
generic spacetimes. We have shown the tracker at work in a situation of great
importance to numerical relativists, the merger of two Kerr-Schild black holes.
We saw the two horizons tracked from a single initial guess merge into a single
apparent horizon during the simulation. A significant step towards building a
laboratory to study strong field gravitation!

Other codes [44] with the capability to evolve a binary black hole space-
time to merger in a grazing collision do not use excision to mask the singular-

ities, but rather “traditional” techniques of lapse choices that avoid the singu-
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larities such as maximal slicing. These techniques do not excise the singularity
region with apparent horizons, instead they avoid evolving the spacetime in
the vicinity of the singularity by using a lapse that does not reach the sin-
gularity. This leads to problems at later times in the simulation due to large
gradients in the coordinates near the singularity. These codes can run the col-
lision longer then the excision method described here; however, they are at the
limit of that technique. Longer evolutions are not possible with non-excision
techniques despite increases in resolution.

The key to the success of the binary black hole merger presented here
was better predictions of the locations of the apparent horizons and especially
the knowledge of when a single apparent horizon envelops both black holes.
This was the motivation behind designing an apparent horizon tracker capable
of finding multiple apparent horizons. We listed a set of criteria for apparent
horizon trackers that included: (1) The robustness of the tracker due to its
lack of dependence on changes to the initial guess; (2) The generality of the
tracker in its applicability to generic spacetimes including multiple back hole
spacetimes; and (3) The efficiency of the tracker algorithm in CPU time. We
have demonstrated the ability of the level flow method in criteria 1 and 2.
Improvement with regard to the third criterion, however, is part of the future

work.

8.2 Near-Future Work

The building of a theoretical laboratory for astrophysically relevant black hole
interactions is a work in progress. This dissertation discussed the building

of a single tool in the laboratory’s toolbox. The apparent horizon tracker
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eventually will be integrated into an evolution code. In this thesis we used the
3+1 evolution code developed by the NSF Computational Grand Challenge
Alliance. We are in the process of integrating the tracker into the AGAVE code
[1], a code based on the Grand Challenge Alliance code with infrastructure
from the CACTUS [17] distribution.

The speed of the horizon tracker in its current implementation is poor.
Although the tracker is comparable in speed to other trackers (fast flow [33])
at particular resolutions [5]; it is still the case that this code is approximately
four times slower than the evolution for a particular size run, for example
81 x 81 x 81. A major contributing factor to the slowness of the level flow
code is the interpolation from the Cartesian grid where the metric and extrinsic
curvature components are defined to the 2-surface. Since the apparent horizon
locations are not needed at every time step, the tracker not be run at every
time step; therefore, the speed of the method is not a top priority. However
work to increase the speed of the tracker is in progress. I have created a To-Do

list for future efforts in the apparent horizon tracker
e Speed up the level flow method.
e Parallelize the apparent horizon tracker.
e Integrate the level flow apparent horizon tracker into the evolution code.

Our collaborators at The Pennsylvania State University have prelim-
inary results [16] of initial data for multiple black holes. We hope to track
the apparent horizons for this initial data and to evolve the data soon. The
work in this thesis will be directly applicable to the completed initial data

set. Making the simulations run longer is extremely important to get at the
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physics of the situation. Two pieces of information that will be important as
we continue to improve the longevity of the binary black hole simulation are
gravitational wave extraction and event horizon tracking. With this in mind,

a current to-do list for the evolution code includes:
e Blend to single hole at the outer boundary.
e Blend to a spherical geometry.
e Push out outer boundary (requires parallel version).
o Refine resolution (requires parallel version).
e Use constraint satisfying initial data.
e Extract gravitational radiation.
e Track the event horizon.

Finally, a note on putting the pieces of the puzzle together. This work
is a highly collaborative operation, with different pieces being developed by
different groups. We remain in close collaboration and substantial steps toward
putting the puzzle together are underway. Our current efforts will not give us
the complete solution to the binary black hole merger problem, but we have

already taken dramatic steps in that direction.
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