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12.3. In our estimates of the length of a protein, we have used the end-to-end dis-
tance. This very simple (to calculate) measure may not tell the whole story.
For example, a protein could contain a single fold or have a form like a “ball of
string,” and have the same end-to-end length. Investigate the behavior of the
mean-square size calculated in the following way. Let 7., be the location of
the, center of mass of the protein. One measure of the size of the chain is the
quantity A = < [; — #em|? > where 7} is the position of the ¢th amino acid and
the angular brackets denote an average over all pieces of the chain. Calculate A
as a function of temperature and compare its behavior to that of the end-to-end
distance.

*12.4. Perform a simulation of protein folding and examine the variation of the energy
as a function of (Monte Carlo) time. Use this, and any other approaches you can
devise, to reconstruct part of the energy landscape, as sketched in Figure 12.12.
Can you say anything about the number of wells as a function of their depth?
How does this distribution change as the protein chain is made longer? .

*12.5. Investigate the problem of metastability of protein folding by comparing the
structure obtained by two or more separate simulations of the same model pro-
tein. Consider a chain with 30 amino acids, and let it find two or more metastable
states by letting it fold at T = 1, as in Figure 12.11. Then compare the actual
structures of the different folded states. Are the structures similar or very differ-
ent? Can you estimate the size of the energy barriers that separate the different
metastable states?

122 EARTHQUAKES AND SELF-ORGANIZED CRITICALITY

Earthquakes often have a large and dramatic impact, which makes them a topic
of continuing interest. Earth’s crust contains numerous fault lines that separate
large pieces of material called plates. Each of these plates is fairly sturdy, but the
counections across a fault line are relatively weak. Over time the crust deforms,
exerting forces on the plates and leading to a gradual build up of potential energy.
This energy is released by the sudden movement of one plate relative to an adjacent
one. Such an event is an earthquake. While this general picture of earthquakes is
well established, there are many questions that are not settled. For example, we .
would like to know how to predict when earthquakes will occur and how large the

next quake associated with a particular fault line will be.

Geoscientists have been involved in modeling earthquakes for many years. In
this section we follow their lead and model two adjacent pieces of Earth’s crust as
masses that are able to slip past each other in response to a steadily increasing force.
Such a mechanical model involves Newton’s second law, which gives a small excuse
for considering this to be a physics problem. However, there is another feature of
earthquakes that makes them of interest to physicists. It has been proposed that
earthquakes may have some important features in common with the second order
phase transition we observed in connection with the Ising model in Chapter 8. In
order to understand this connection we need to introduce the so-called Gutenberg-
Richter law, which can be stated as follows. The size of an earthquake is often
measured using the Richter scale, which is commonly referenced by the popular
press. This is a logarithmic scale involving the magnitude of an earthquake. The
amount that one of Earth’s plates shifts relative to another during an earthquake is
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proportional to the moment of the event, M. This quantity is also proportional to
the energy released by the event. The magnitude of the quake, M, is equal to the
logarithm of the moment, so an earthquake with a magnitude of 7 on the Richter
scale is much more powerful than an event whose magnitude is 6. _

A logarithmic scale is convenient because earthquakes come in an extremely
wide range of sizes. Fortunately, the number of large quakes is much smaller than
the number of little ones. This “preference” for small events is well-documented
from observations and also follows a logarithmic form. This is known as the
Gutenberg-Richter law and can be stated mathematically as

PM) = AM™® = Ae™ M, | (12.2)

Here M = In M is the magnitude of an event,? P(M) is the probability (per unit
M) of having a quake of a given magnitude, A is a constant, and b is a factor
that lies somewhere in the range 0.8-1.5. The use of the term law in connection
with (12.2) is perhaps a bit too strong, as it is really just an empirical rule that
has been found to describe the distribution of earthquake magnitudes observed for
many different fault lines. Surprisingly, there is no fundamental understanding of
why earthquakes (or Earth itself?) follow this rule. In particular, why doesn’t
P(M) vary as etM, or even M~7?

The Gutenberg-Richter law is also interesting for what it implies about the .
amount of energy released in a typical event. Since the energy released is pro-
portional to M, the -average energy of an event is just the integral of M over the
distribution (12.2)

Ea.verage = / EA €_bM dM ~ / M C“bM dM . (123)
0 0

Since M ~ eM (and given the observed range of b) this integral diverges! Fortu-
nately it appears that such “average” earthquakes don’t happen very often.’® More
seriously, power law distributions such as (12.2) which have awkward (or infinite)
averages, are quite rare in nature. Perhaps the best-documented and understood
case in which such distributions occur is near a second-order phase transition. You
may recall that in our studies of the Ising model in Chapter 8 we noted that many
quantities exhibit power law singularities at a critical point. For example, the cor-
relation length associated with fluctuations of the magnetization is infinitely large
when T = T,.. This analogy has suggested to some researchers (see Bak and Tang
[1989]) that Earth is effectively located at a critical point as far as earthquakes
are concerned. The fact that there is a sort of earthquake phase transition for a
certain value of Earth’s density and temperature, etc., might seem unlikely, but
it is at least plausible. However, it would be even more surprising to find that
Earth just happens to have a temperature and density that place it very near this
transition. The interesting speculation is that some feature of this phenomena qu-
tomatically causes Earth to be located at the transition. This scheme is known

12We could choose to use either natural or base-10 logarithms. Here we follow the convention
" employed in Carlson and Langer (1989) and Carlson (1991).
13This strongly suggests that the Gutenberg-Richter law must break down at large M.
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FIGURE 12.14: Model of two plates separated by a fault line at which an earthquake can occur.
Imagine this to be a top view of Earth’s surface, with the fault line running between the blocks and
the bottom plate.

as self-organized criticality. The relevance of this concept to any real systems is
not universally accepted, but this discussion does emphasize the striking nature of
power law distributions such as (12.2). It has also prompted many researchers to
try to account for such distributions in terms of (semi)realistic models, and that is
the subject of this section.

The model we consider is copied from one proposed by Burridge and Knopoff
(1967), and discussed by Carlson and Langer (1989); it is shown in Figure 12.14. We
imagine that two of Earth’s plates are moving slowly relative to one another. One
of the plates is the bottom surface (the lower, thick horizontal line) in Figure 12.14,
while the other plate is the top surface. Caught between them is a portion of the
crust modeled by a collection of blocks. For simplicity we will assume that the
blocks are arranged in a line, but we can also consider a two-dimensional array
(we will explore this possibility in the exercises). The blocks are connected to each
other by a force that is modeled as springs, with force constants k.. The blocks
are also connected to the top plate via “leaf” springs,4 kp. The only other force
in the problem is a frictional force between the blocks and the bottom plate, which
we will describe in detail shortly.

The top plate in Figure 12.14 is assumed to move to the right with a constant
velocity vg. Thus, through the leaf springs it exerts an ever-increasing force on the
blocks. When this force is small, the frictional force from the bottom plate will
prevent the blocks from moving, and energy will build up in the potential energy of
the leaf springs. Eventually the force from these springs will overcome the frictional
force, and one or more blocks will move suddenly. This is an earthquake. Since the
blocks are connected to each other by the springs k., the motion of one block can
cause other blocks to move as well. If this motion spreads to involve many blocks,
one slip will lead to a large quake.

An important ingredient in the model is the frictional force between a block
and the bottom surface. We refer to this force as friction because it is assumed to
exhibit the general features we all learn in our elementary mechanics courses. When
a block is stationary relative to the bottom plate the force is static friction, while if

14While most springs have a helical form, leaf springs are a single strip of material. They resist
bending (that is, “spring” back) much like a stem or leaf would if they were bent and then released.
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FIGURE 12.15: Schematic of the frictional force between a block and the bottom plate as a function
of the velocity of the block. ' :

it is moving we are dealing with kinetic friction. Furthermore, we are taught that
the maximum force of static friction is greater than the force of kinetic friction.
This is sometimes referred to as a stick-slip force, since once an object begins to
move, the frictional force becomes smaller, resulting in a sudden increase in the
velocity. Figure 12.15 shows the general form we will use for the frictional force.
It always opposes the relative motion of the block and the surface, and is largest
when the velocity of a block relative to the bottom plate, v, vanishes. We will follow
previous work on this model (see Carlson and Langer [1989]), and assume that the
magnitude of this frictional force decreases with increasing |v|. Unfortunately, there
is no fundamental understanding of such frictional forces (in contrast, for example,
to the Van der Waals force), so it is hard to put this important feature of the model
on a solid basis. We can, however, investigate how the form of this force affects the
properties of the model, and we will return to this point below.

Before we consider in detail how to calculate the behavior of the model, it is
worthwhile to make a few comments with regard to model building. Our goal in
studying this model is not to reproduce the detailed behavior of Earth near any
particular fault line. Instead, our aim is to determine what properties a system
must have to exhibit a power law distribution of earthquake sizes (12.2). We have
already encountered systems with simple harmonic forces similar to the spring forces
in Figure 12.14.}> The only unusual feature of the model we are considering here is
the frictional force, so we expect that this must be the key for obtaining power law
behavior. Confirming this suspicion, or showing it to be false, will be our initial
concern. If we do find power law behavior, then we can conclude that we have

15We saw in Chapter 3 that this force leads to simple harmonic motion. The interesting chaotic
behavior was found only when we considered deviations from a purely harmonic force.
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(perhaps) captured the essential physics of the problem. If power law behavior is
not found, we will be forced to continue our search to identify the key ingredient
responsible for (12.2). This could require that we consider other functional forms
for the frictional force, or that we generalize the model in other ways.

This is the motivation behind model building in theoretical physics. The goal
is not simply to construct a simulation that reproduces nature,'® but rather to
identify the essential physics responsible for the interesting behavior. This process
can, of course, be iterated as we attempt to bring a medel ever closer to reality.

Now let us return to our earthquake model and consider the forces in a little
more detail. The model consists of N blocks whose positions are z; where i ranges
from 1 to N (see Figure 12.14), and for simplicity we assume that all have the
same mass, m. The force between two adjacent blocks is due to the spring that
connects them. The force from a spring is given by Hooke’s law, and has the form
F = —kAzx, where k is the force constant and Az is the amount that the spring

is stretched or compressed relative to its relaxed state. It is convenient to measure - -

each x; with respect to the equilibrium position of block i. Hence, z; = 0 if a block
is at its equilibriym location,, The force on block 7 from its -neighboring blocks is
then :

Fb = - kc (xi e $i+1) = k)c (:B,, — .’Iti_l) . (12.4)

Finally, we note that our system will have “free” ends. The blocks at each end will
be connected to oaly one other block.1”

The force of the leaf spring on block 4 has a similar form, F = — p(Ti — Tleat )-
We assume that at ¢t = 0 the leaf springs are all unstretched, so that initially
Tieaf = 0 for each block. The horizontal bar moves with velocity vg, SO Tiear increases
with time according to Zjear = vot. The force of the leaf spring on block 4 is then

F} = — kp (:117, — xleaf) = - kfp (IZ - ’Uot) . (12.5—)

The only remaining force is that due to friction with the bottom plate. We
will assume that it has the form shown in Figure 12.15. When the velocity of a
block is zero the frictional force will take on whatever value is necessary to keep
the block at rest. That is, the frictional force will oppose the other forces on the
block so that the sum of all of the forces (friction included) vanishes. However, the
static frictional forcé is limited ta a maximum magnitude of Fy, so if the sum of the
other forces exceeds this level, the block will experience a nonzero force and begin
to move. If the block is moving we are then dealing with kinetic friction, which we
will assume is given by _

Fy sign(v;)

By o= — SOEENTE) 12.6
{ 1+ |vifvg|’ (12.6)

161n such a case we could say that the computer understands the problem; we want to understand
it, too. :

17"We will leave the study of the effects of periodic boundary conditions to the interested reader.
In this problem periodic boundary conditions seem unphysical. In particular, we might imagine
that some earthquakes start at the end of a fault and propagate inward. Such behavior would not
be possible if the model employed periodic boyndary conditions.




410 Chapter 12 Interdisciplinary Topics

where vy is a parameter that determines the velocity dependence of the force. When
v; = vy, the frictional force drops to half of its v;- = 0 value. The factor sign(v;)
ensures that Fy always opposes the motion.

Using springs to model the interactions between blocks and between a block
and the opposite side of the fault line may seem a bit contrived, but it is actually
on firm mathematical footing for the following reason. The energy of interaction
between two blocks will, in general, be a function of the separation between the
blocks; let us call this function U(Az), where Az = z;,1 — x;. Assuming that
U(Az) is a well-behaved function, we can perform a Taylor expansion '

(Az)?

5
where U’ is the first derivative of U evaluated at Az = 0, etc. The corresponding
force is F' = —dU/d(Ax)

FAz) = - U - (Ag)U" —.... % (12.8)

By definition, this force vanishes when the blocks are at their equilibrium spacing,
so U’ must be zero. For small Az we thus have F =~ —(Az)U"”, which is just Hooke’s
‘law with k = U”. Hence, the form of Hooke’s law is a natural result for a force that
arises from a well-behaved (Taylor expandable) potential energy function. This is
one reason why springs are a popular ingredient in the models devised by physicists.
They are in fact a very natural and general way to describe an interaction.

On the other hand, the basis of the frictional force (12.6) is not nearly as
firm. As we have already noted, there is no fundamental understanding of friction.
The best we can do is assume a simple form such as (12.6) and study the kind of
behavior it yields. We will return to this point later.

Putting all of these forces together with Newton’s second law yields an equa-

-tion of motion for each block

dz.’Ei
dt?

This can be written as two first-order differential equations,

U(Az) = U@©) + (Az)U" + U’ +..., (12.7)

m; = k. (l‘,;+1 +xio1—2%;) + ky (vot — x;) + Fy . (12.9)

@ _ . (12.10)

dt
dvi ’
m; —Et_ = ke (:Ez'_;_l + Ty — 2:51) + kp (’Uot — xz) + Ff . (1211)

and this system of equations can be solved using the Euler method. As usual, we
discretize time into steps Af. At every time step we use the velocity of each block
to estimate its position at the next step. We also calculate the force on each block
and use it to obtain the velocity at the next time step. Note that the forces are
functions of the current positions, so to be consistent with respect to the spirit of
the Euler method we must calculate the forces on all of the blocks before updating
the positions and velocities.'®

18Updating in a different order could easily yield the Euler-Cromer method. For this problem
the Euler and Euler-Cromer methods are both acceptable algorithms.
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The programming is similar to what we have encountered in several previous
cases, including the projectile and pendulum problems. For a system of N blocks we
have to keep track of N different positions along with the corresponding velocities.
The only really new feature is the frictional force. In order to model this force
properly there are several different cases that must be considered. '

® The block is not moving at time-step n, and the sum of the forces from the block
springs and the leaf spring is smaller (in magnitude) than Fy. The static frictional
force will then adjust itself to precisely cancel the other forces. Since the total force
will thus be zero, the velocity at time step 7 + 1 will also be zero.

e The block is not moving at step n, and the sum of the forces from the block springs
and the leaf spring is greater than Fy. The frictional force will have a magnitude
of Fy, and oppose the sum of the other forces. The total force will not be zero. and
the velocity at the next time step will be nonzero.

e The block is moving at step n. We calculate the velocity for time step n+ 1 using
the (kinetic) frictional force (12.6), along with the forces from the block and leaf
springs. If this new velocity has the same sign as the velocity at step n, everything
is fine and the calculation proceeds in the usual way. However, if the new velocity
would be opposite to the previous velocity, this means that the frictional force is
sufficiently large that it will “capture” the block; that is, bring it to rest. In this
case the velocity at time step n + 1 must be set to zero.

This description of the frictional force is actually much longer than the number
of lines needed to implement it in a program. However, it does show that a force
that is a discontinuous function generally requires some extra care.

We are now ready to consider the behavior of our earthquake model. It
contains 5 parameters, k,, k;, m, Fp, and vg. Some of these can be gffectively
removed by the appropriate choice of units, but there will still be a large number
of parameter choices to explore. In most of the simulations below we will use the
following values: m = 1, k, = 40, k. = 250, Fy = 50, and vy = 0.01. These values
appear to give fairly typical behavior; other parameter values will be considered in
the exercises (see also Carlson and Langer [1989] and Carlson [1991]).

In addition to these parameters, we must specify the initial conditions. For
simplicity we will always assume that the initial velocity of each block is zero, but
this still leaves us with the choice of initial positions. One choice is to begin with
the blocks all located in their equilibrium positions. In this case the forces on all
of the blocks from both types of springs is zero at ¢ = 0. Such a perfectly ordered
start is not very realistic, but is useful for illustrating a few important points.
Some results for this case are shown in Figure 12.16, where we plot the position
and velocity of a particular block as functions of time. This simulation involved 25
blocks, but since the initial conditions were uniform, the behavior of every block
was the same as that shown here. That is, they all moved together, and the
springs k. were never stretched or compressed. We see from Figure 12.16 that the
block remained at £ = 0 until ¢ ~ 120. During this time the opposite side of the
fault was moving steadily at speed vy and the force from the leaf spring gradually
increased. This force was not able to overcome friction until £ = 120, at which point
the entire system of blocks began to move. The blocks moved approximately 2 units
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FIGURE 12;;16:’ Behavior of block 10 in a 25-block system, with a coinpletely ordered start. ‘Left:
position of block 10 as a function of time; right: velocity of the same Block. The velocity was zero
except for the two very narrow spikes at t ~ 120 and ~ 330.

before the frictional force brought them to a halt. The process then repeated. The
force from thie leaf springs grew until it overcame friction at ¢ ~ 330, and the blocks
all movéd again, etc. Thé corresponding velocity is also shown. It was zero until
the blocks moved, at which point it exhibited a large-but very narrow peak. Of
course, this is just the derivative of the position as a function of time.

The two displacements in Figure 12.16 correspond to an abrupt motion of
the system of blocks. These are earthquakes. The quakes found with an ordered
start are very special, since the blocks all move tdéether and the events occur
at regularly spaced intervals.l® This will change when we start the blocks with
random initial positions. However, before we do that it is useful to compare the
behavior in Figure 12.16 with some simple, analytic results. Because of the special

initial conditions, the block springs k. were never stretched or compressed. We

thus need consider only a single block moving in response to the leaf spring and the
force of friction. Initially, the force from the leaf spring was kp(vot — z) = kpugt,
since £ = 0 was the initial condition. The block will not move until this exceeds
Fy, which occurs at ¢t = Fp/ (kpvo). For the parameters used in here this yields
t =120, in good agreement with Figure 12.16. The block should then move until
the frictional force (12.6) is equal to the force from the leaf spring. We will leave it
to the exercises to check that the displacements in the two events in Figure 12.16
agree with the expected value. The peaks in the velocity can be estimated in a
similar way.

The results in Figure 12.16 are useful since they allow us to check our program
against analytic results. This behavior also brings out an important programming
issue. The earthquakes occur over very short time compared to the interval

19We only showed two quakes here, but if we had shown the behavior for longer times

, you
would have seen that the quakes do indeed repeat at regular intervals.
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between quakes. The duration of a quake is too small to resolve on the scale in
Figure 12.16, but is of order 0.5 time units. This implies that the time step in our
simulation must be a small fraction of this to avoid significant numerical errors.
Our usual practice is to use a time step that is 1% of the characteristic time scale
of the problem, which would thus be ~ 0.005. The time between quakes is on the
order of 100 time units, so this would lead to ~ 2 x 10* time steps between events.
A simulation using a large number of blocks would thus take a lot of computer time.
Moreover, there would be nothing happening for the vast majority of this time.

There are two ways to deal with this problem: use a fast computer and just
be patient, or use two different time steps according to the following strategy.??
During the times when no blocks are moving we use a (relatively) large time step.
The only motion during these periods involves the top plate, and since it moves
with a constant velocity, the use of a large time step does not introduce any errors.
A small time step (~ 0.005 in the above example) is used during the times when the
blocks are moving. This strategy is straightforward, except that we need to have a
systematic way to switch back and forth between time steps. One convenient way
to make these switches is as follows. When the blocks are not moving, the larger
time step is used to calculate the new velocities. If the velocity of any block is
nonzero at the next time step; an earthquake is imminent. We then “back up” to
the previous time step and continue the calculation with the smaller value of the
time step until after the upcoming quake is finished. When the velocities of all
of the blocks are again zero, the time step is set back to the larger value and the
calculation proceeds. The results in Figure 12.16 were obtained with this algorithm,
using a large time step of 0.03 and a small time step of 0.003. We will leave it to the
exercises to check that these values are sufficiently small that the numerical errors
were negligible. .

A simulation with an initially ordered configuration is not very realistic, since
we don’t expect Earth’s crust to ever be perfectly uniform. The behavior is quite
different when the blocks are given a disordered initial configuration. If we dis-
place them initially from their equilibrium positions by random amounts in the
range +£0.001, we find the results shown in Figure 12.17. Here we show only four
quakes and it is seen that they had different magnitudes, that is, different total
displacements. In addition, the time until the next quake varied from event to
event.

It is intriguing that such a small initial displacement (only 0.1% of the spabing
between blocks) is able to produce such dramatically different behavior. It turns out
that the behavior found in Figure 12.16, with a perfectly ordered start, is unstable
with respect to any initial displacements from equilibrium, no matter how small.
That is, the behavior is extremely sensitive to small deviations from a perfectly
ordered start. This should remind you of chaotic systems and their extreme sensi-
tivity to initial conditions; this is our first indication that this earthquake model is
not a “simple” mechanical system. ’

20The use of two (or more) time steps is often referred to as an “adaptive” step-size procedure.
The example we describe here is a very simple one, but does illustrate the basic idea. Such an
approach is useful in simulations involving functions or behaviors that have significant structure
limited to small regions of time or space.
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FIGURE 12.17: Behavior of block 10 in a 25-block system. Each block was given a random initial
displacement from its equilibrium position. This displacement was in the range —0.001 to +0.001.
Left: position of block 10 as a function of time; right: velocity of the same block.
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So far we have examined the behavior by follov:kring the motion of a single
block. However, since we expect that there can be earbtbquakes that do not involve
all of the blocks, it is usefyl to view the same behavior using the perspective plots
in Figures 12.18 and 12.19, which show the behavior of the entire system. With an
ordered start all blocks move together, as we had anticipated. In contrast, with a

~ disordered start the quakes are much less organized. There are numerous events in

a time interval that would contain only one or two quakes for the case of an ordered
start. Some of these events involve many blocks, while in others only a few blocks
are in motion. We thus have a distribution of earthquake sizes.

One of our primary goals is to try to understand the origin of the Gutenberg-
Richter law, and to do this we need to add one more feature to the simulation. As
we mentioned earlier, the magnitude of an earthquake is the natural logarithm of
the earthquake moment. The moment M is proportional to the total displacement,
which can be found by summing (integrating) v; At for each block over the course

" of the event. The moment of an event is thus

M= 3 ( > v,-At> : ) (12.12)

n=time \i=blocks

where the sums are over all blocks ¢ and over the time steps n for which the velocities
are not all zero. The magnitude of the event is then M = In M. After accumulating
the results for a large number of events we can obtain the distribution P(M) by
dividing the M axis into bins and counting the number of events that fall into each
bin. Results for P(M) are shown in Figure 12.20, where the figure on the left shows
the distribution for the system of 25 blocks we have considered i all cases to this
point. On this semilogarithmic plot the Gutenberg-Richter law (12.2) is a straight
line with slope —blog;,(e) ~ —0.43b. The results from the simulation are certainly
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FIGURE 12.19: Resuits for the simulation of Figure 12.17 in which the blocks were in an initially
disordered configuration. Time goes from left to right, block number from front to back, and the
vertical axis is position (left figure) or velocity (right figure). The tifve span covered in the position
plot is t = 0 to 1000, but for purposes of clarity the velocity plot shows ‘a smaller range, t =300 to

~ 500.
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FIGURE 12.20: Earthquake distributions for systems of various sizes. These histograms were obtained
from a collection of approximately 7000 events for the 25- and 100-block systems and 3000 events
for the 500-block simulation. The vertical axis is the number of events per histogram bin and is thus

proportional to the probability density of events.
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in explaining the Gutenberg-Richter law. However, we have been able to show that
this simple mechanical model is capable of exhibiting power law bebavior over at
least a limited range. To some small extent this lends support to the proposals
concerning self-organized criticality mentioned at the beginning of this section. As
for the relevance to real earthquakes, it-has been suggested that the Gutenberg-
Richter law may actually fail at large M, so perhaps part of ourjproblem is with the
law itself, rather than the model.?2 Of course, it is also possible that the problem
lies with the model. You will recall our philosophy of model building, according to
which we strive to construct the simplest model that contains the essential physics
‘ of the phenomena of interest. It is certainly conceivable that our simple model
has omitted some key element(s). Possibilities include the following: (1) The di-
] l mensionality of the fault system; a two-dimensional array of masses might be more
‘ appropriate than the one-dimensional arrangement considered above. Here the sec-
ond spatial dimension would correspond to depth beneath Earth’s surface. (2) We
l ’ ! \ have assumed uniform values of m, k., and kp. For a real fault the analogous pa-
[ ” ’ m hll |l rameters will not be constants, but vary with position. (3} The frictional law (12.6)
“ l has no fundamental basis. We could certainly imagine other plausible possibilities.
These are just a few of the ways in which the model could be modified, and we
will leave such studies to the exercises. While we have not been able to answer
o all of the questions concerning earthquakes posed at the beginning of this section,
these simulations do shed some light on the problem, and serve to illustrate the
model-building process in theoretical physics.

e in an initially
» back, and the
in the position ;
nge, t = 300 to EXERCISES 7 )

12.6. Consider the simulation in Figure 12.16 in which 25 blocks were given a perfectly
ordered arrangement at the start. Continue this simulation to longer times and
show that the earthquakes occur at regularly spaced intervals (as we claimed
above).

12.7. Perform a simulation with 25 blocks, allowing for some randomness in either the

o of Mechinsios masses (let m; vary from 0.5 to 2.0) or in the spring constants (elther ke or

e kp). Compare your results for the distribution of earthquake magnitudes with

500 blocks the results in Figure 12.20. The objective is to see if adding some disorder can

lead to better agreement with the Gutenberg-Richter law or reduce the excess

number of events at high M, or both.
S T 12.8. Assume that the blocks are all initially in their equilibrium positions and obtain

. : analytic estimates for the time between quakes, the displacement of a block

during a quake, and the maximum velocity during a quake. Compare these

estimates with the results in Figure 12.16.

o 2z 4 s *12.9. Explore the properties of a two-dimensional earthquake model. A calculation of

Magnitude this kind is described in the references.

*12.10. Investigate how the distribution of earthquake magnitudes depends on the form
s were obtained chosen for the frictional force. As an example, consider the case Fy = Fp when
nd 3000 events v = 0 (static friction) and Fy = —sign(v)Fp/2 for v # 0 (kmetlc friction). You
bin and is thus should find (see Figure 12.21) that with this friction law there is no longer an

excess of events at large M, so the results are more realistic than that obtained

22This is a difficult issue to resolve, since the number of large quakes is (fortunately) small,
making it hard to get a good estimate of P(M) at large M.
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FIGURE 12.21: Earthquake distribution for a syste?'n of 100 blocks and the friction law described in
Exercise 5. The straight line corresponds to the Gutenberg-Richter law (12.2) with b ~ 0.35.

with the frictional force (12.6). However, the slope for small M now corresponds
to a value of b that is much smaller than 1, so the model still seems to lack
an important ingredient. Study the behavior with other forms for the frictional
force and try to determine one that gives a power law with a larger value of b.

12.3 NEURAL NETWORKS AND THE BRAIN

The Ising model consists of a large number of very simple units, that is, spins,
which are connected together in a very simple manner. By “connected” we mean
that the orientation of any given spin s;, is influenced by the direction of other
spins through the interaction energy J 38;85. The behavior of an isolated spin, as
outlined in our discussions leading up to mean-field theory, was unremarkable.
Things only became really interesting when we considered the behavior of a large
number of spins and allowed them to interact. In that case we found that under the
appropriate conditions some remarkable things could occur, including the singular
behavior associated with a phase transition. In this section we will explore a rather
different system, which shares some of these features. '

The human brain consists of an extremely large number (~ 102) of basic units
called neurons, each of which is connected to many other neurons in a relatively
simple manner. A biologically complete discussion of neurons and how they function
is a long story. Here we will give only a brief description of those features that seem
to be most relevant to a physicist’s understanding of the brain.A schematic picture
of two neurons is given in Figure 12.22. Each neuron has a body (called a soma), {
along with dendrites and an axon.?® The size scale depends on the type of neuron,

23There are other parts as well, but keep in mind that we are giving only a simplified description
here.




