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Spectral Methods

• Method of choice for high spatial resolution in multidimensions.

• 3-d finite difference code:
resolution × 2 =⇒ # of grid points × 8, error × 1/4.

• Spectral code: error × 10−8.
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• Good for smooth solutions.

• Discontinuities like shocks are bad.

• Even mild non-smoothness (e.g. discontinuity in high-order
derivative of solution) spoils convergence of spectral methods.
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Spectral vs. Finite Difference

Finite difference methods: approximate the equation.

Spectral methods: approximate the solution.

Finite difference: replace continuum equation by equation
on grid points.

Spectral method: solution = truncated expansion in basis functions:

f (x) ' fN(x) =
N∑

n=0

anφn(x)

(Basis functions) + (Methods of computing an)→
(Flavors of spectral methods)
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Example

One-sided wave equation (advective equation) in 1-d:

∂u
∂t
=
∂u
∂x
, periodic on [0,2π], u(t = 0, x) = f (x)

Analytic spectral solution: expand u in Fourier series

u(t, x) =
∞∑

n=−∞

an(t)e
inx

dan

dt
= inan

an(t) = an(0)eint
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Get an(0) from the initial condition u(t = 0, x) = f (x): expand

f (x) =
∞∑

n=−∞

fne
inx

an(0) = fn
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For example,

u(t = 0, x) = sin(π cosx)

u(t, x) = sin[π cos(x+ t)]

Spectral coefficients:

an(0) =
1
2π

∫ 2π

0
sin(π cosx)e−inxdx

= (−1)(n−1)/2Jn(π), n odd
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Properties of Basis Functions
for Analytic Spectral Method

1. Complete set of basis functions.

2. Each basis function by itself obeys the boundary conditions.

3. Eigenfunctions of the operator in the problem, d/dx.

(Separation of variables)

Only property (1) essential for numerical spectral methods.
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Convergence of Spectral Solution

r.m.s. error: L2 =

[
1
2π

∫ 2π

0
|u(t, x) − uN(t, x)|2 dx

]1/2

=

 1
2π

∫ 2π

0

∣∣∣∣∣∣∣∑
|n|>N

an(0)einxeint

∣∣∣∣∣∣∣
2

dx


1/2

=

∑
|n|>N

|an(0)|2
1/2

Jn(π)→ 0 exponentially as n→ ∞.
So error decreases exponentially with N for any t ≥ 0.

Key feature of a good spectral method. (2nd order FD error ∼ 1/N2.)
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Resolution of Spectral Methods

Exponential convergence sets in when solution resolved.
Need ∼ π basis functions per wavelength.
(In example, need n & π for Jn(π) small.)

2nd order FD needs ∼ 20 points per wavelength for 1% accuracy.
(And accuracy improves much more slowly than with spectral
methods.)
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Choice of Basis Functions

Can’t always use Fourier series as basis functions — it depends on
the boundary conditions. Recipe for 99% of cases:

• Solution periodic: use Fourier series.

• Solution not periodic, domain a square or a cube: use Chebyshev
polynomials along each dimension.

• Domain spherical: use spherical harmonics.

Reason: eigenfunction expansions based on singular
Sturm-Liouville problems converge at a rate governed by the
smoothness of f , not by any special boundary conditions that f
satisfies.
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• Fourier series (sine, cosine, exponential): periodic boundary
conditions.

• Non-periodic solutions: orthogonal polynomials (Legendre,
Chebyshev, . . . ) Eigenfunctions of singular Sturm-Liouville
problems.

• Spherical domains: Ylm(θ, φ) ∝ Pm
l (cosθ)eimφ
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Why are Chebyshev Polynomials Popular?

• Eigenfunctions of singular Sturm-Liouville equation.

• Mapped trig. functions:

Tn(x) = cos(nθ), x = cosθ

So expansion in Chebyshev polynomials ⇐⇒ FFT.

• Derivatives of expansion ⇐⇒ FFTs.
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Computing the Expansion Coefficients an

1. Tau method.

2. Galerkin method. (cf. separation of variables, QM)

3. Collocation or Pseudospectral (PS) Method.

See Fornberg (1996) Appendix B for an example done all 3 ways.
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The Pseudospectral Method

• Reason: Easy to implement, especially for nonlinear problems.

• Instead of an, work with y(x j).
{x j} = Collocation points.
Gaussian quadrature points associated with basis functions.

• physical space ⇐⇒ spectral space.
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PS is an Interpolating Method

yN(x) =
N∑

n=0

anφn(x)

• Polynomial that interpolates the solution.

• Require yN(x) = y(x) at the N + 1 collocation points.

• As N→ ∞, errors in between x j tend to zero exponentially fast
(if we do things right).
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Spectral Methods and Gaussian Quadrature

∫ b

a
y(x)w(x) dx≈

N∑
i=0

wiy(xi)

w(x) = weight function
Factors out singular behavior, so y(x) smooth.
wi = weights (confusing!)
xi = abscissas

Derivation: choose the 2N + 2 wi and xi, so that formula is exact for
polynomials 1, x, x2, . . . , x2N+1.
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Textbooks: Gaussian quadrature related to the orthogonal
polynomials w.r.t. w(x)

〈φn|φm〉 ≡

∫ b

a
φn(x)φm(x)w(x) dx= δmn

xi = N + 1 roots of φN+1(x).
wi = formula in textbooks.

Discrete inner product of two functions:

〈 f |g〉G ≡
N∑

i=0

wi f (xi)g(xi)

Subscript G→ Gaussian.
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Discrete orthogonality relation

〈φn|φm〉G = δmn, m+ n ≤ 2N + 1

Proof: Evaluate
∫ b

a
φn(x)φm(x)w(x) dx= δmn by Gaussian quadrature.

Integrand = polynomial of degree m+ n ≤ 2N + 1.
But Gaussian quadrature integrates polynomials of degree ≤ 2N + 1
exactly. QED.

20



Formula for PS Coefficients by Gaussian Quadrature

Approximate y(x) by PS interpolating polynomial,
Collocation points = Gaussian quadrature points:

PN(x) =
N∑

n=0

ānφn(x), PN(xi) = y(xi), i = 0,1, . . . ,N

Theorem: ān = 〈y|φn〉G exactly.
Proof:

〈PN|φm〉G =

N∑
n=0

ān〈φn|φm〉GyPN(xi)=y(xi)
y

y δmn
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Relation Between Spectral and
Pseudospectral Expansions

y(x) =
∞∑

n=0

anφn(x), an = 〈y|φn〉 =

∫ b

a
y(x)φn(x)w(x) dx

PN(x) =
N∑

n=0

ānφn(x), ān = 〈y|φn〉G =

N∑
i=0

wiy(xi)φn(xi)

(Lanczos 1938)
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Relation:

ān = 〈y|φn〉G

=

∞∑
m=0

am〈φm|φn〉G since y =
∞∑

m=0

amφm

=

N∑
m=0

am〈φm|φn〉G +
∑
m>N

am〈φm|φn〉G

= an +
∑
m>N

am〈φm|φn〉G

Thus ān exponentially close to an if N large enough.
Reason for name: PS coefficients are not the actual spectral
coefficients, but very close to them. Don’t distinguish.
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Gauss-Lobatto Quadrature

Gaussian quadrature collocation points = roots of φN+1(x).
All lie inside (a,b).

Another version of Gaussian quadrature that includes the two
endpoints of the interval: Gauss-Lobatto quadrature.

Gauss-Lobatto quadrature points are as effective as ordinary
Gaussian points.

Advantage: can impose boundary conditions at the endpoints.
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Digression: Gaussian Quadrature is Itself a
Spectral Method

Integration with equally spaced points:
N + 1 weights =⇒ degree of exactness = N.

Gaussian integration: degree of exactness = 2N + 1.

But main advantage: converges exponentially with N for smooth
functions:

ā0 = 〈y|φ0〉G = φ0

N∑
i=0

wiy(xi)

converges exponentially to

a0 = 〈y|φ0〉 = φ0

∫ b

a
y(x)w(x) dx
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Fourier Series and Gaussian Quadrature

Fourier collocation points equally spaced. E.g.,

x j = 2π j/N, j = 0,1, . . . ,N − 1

Fourier series: interpolates y(x) by a trigonometric polynomial.

Gaussian quadrature: midpoint rule.
Gauss-Lobatto quadrature: trapezoidal rule.

Textbooks: low-order methods.
True for arbitrary functions.
But for periodic functions, exponentially convergent.
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Cardinal Functions

Polynomial interpolation for any function f (x):

PN(x) =
N∑

i=0

f (xi)Ci(x)

Ci(x) = cardinal functions.
Polynomial of degree N, 1 at ith collocation point, zero at others:

Ci(x j) = δi j
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One explicit representation (Lagrange interpolation formula):

Ci(x) =
N∏

j=0
j,i

x− x j

xi − x j

Choice of basis functions ⇐⇒ choice of collocation points x j

⇐⇒ choice of cardinal functions
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Alternative Expression for Ci(x)

φn(x) = set of orthogonal polynomials
Collocation points = zeros of φN+1(x) (Gaussian quadrature points)
Then Ci(x) is almost φN+1(x),
except φN+1(x) vanishes at all the grid points. Near x = xi:

φN+1(x) = φN+1(xi) + (x− xi)φ
′
N+1(xi) + · · ·

so divide out the zero at x = xi

Ci(x) =
φN+1(x)

(x− xi)φ′N+1(xi)
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PS Interpolation vs. the Runge Phenomenon

Runge phenomenon: If grid points equally spaced,
error in PN(x) can→ ∞ as N→ ∞.

But error shows up near endpoints.

Fix: make points more concentrated toward endpoints
(e.g., Gaussian points).
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Practical Formulas

Textbooks: formulas for Ci(x) for standard basis functions.

In practice, will see we need derivatives of Ci(x),
the differentiation matrices.
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Spectral vs. Grid Point Representation

Ly = f (L linear for simplicity)

Spectral Space Physical Space

y(x) =
N∑

n=0

anφn(x) y(x) =
N∑

j=0

y jC j(x)

N∑
n=0

anLφn(x) = f (x)
N∑

j=0

y jLC j(x) = f (x)

Impose at collocation points only:
N∑

n=0

anLφn(x j) = f (x j)
N∑

j=0

y jLC j(xi) = f (xi)

i.e., La = f , where L jn = Lφn(x j) i.e., L(c)y = f , where L(c)
i j = LC j(xi)
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Relation Between Representations

Grid point values→ spectral coefficients:

ai = 〈φi | y〉 =
∑

j

w jφi(x j)y j (spectral ⇐⇒ PS)

a = My, where Mi j = φi(x j)w j

Spectral space La = f → LMy = f . So physical space L(c)y = f →

L(c) = LM, L = L(c)M−1

Also, a = My =⇒ y = M−1a

Since y =
∑

anφn, M−1 = matrix that sums spectral series→ yi:

M−1
i j = φ j(xi)
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Check:

MM−1|i j =
∑

k

MikM−1
k j

=
∑

k

[φi(xk)wk][φ j(xk)]

= 〈φi|φ j〉G

= δi j (by discrete orthogonality)
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Using the FFT

Large N, Fourier or Chebyshev basis:
Use FFT for transformations a = My and y = M−1a

Simple programs: just do matrix multiplication.
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Differentiation Matrices

Key ingredient in PS method:

L(c)
i j = LC j(xi)

So must take derivatives of C j(x) at the {xi}:

D(1)
i j = ∂xC j(xi), D(2)

i j = ∂
2
xC j(xi), . . .

• Compute ahead of time and store.

•

∂y
∂x

←→

N∑
j=0

D(1)
i j y j (matrix multiplication)
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Using the FFT for Differentiation

Matrix multiplication of a vector is O(N2).

Fourier basis functions eikx, alternative:

y
FFT
→ a

a → ika (A)

ika
inverse FFT
→ y′

Chebyshev basis functions: O(N) recurrence in step (A).

Procedure is O(N logN).
Typically faster than matrix multiplication only for N & 16 – 128.
So just use matrix multiplication for simple programs.
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Options for Computing Differentiation Matrices

1.

Ci(x) =
N∏

j=0
j,i

x− x j

xi − x j

2.

Ci(x) =
φN+1(x)

(x− xi)φ′N+1(xi)

3. Look up the explicit formulas in books.

4. Use the program given by Fornberg (1998). Algorithm computes
any order of differentiation matrix given only {xi}.

Obviously, the last choice is the easiest.
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Interpolation by Matrix Multiplication

To evaluate solution at points , collocation points: interpolation.
Method 1:

ai =
∑

j

w jφi(x j)y j, y(x) =
∑

n

anφn(x) (Clenshaw)

Method 2:

y(xk) =
∑

j

y jC j(xk) matrix multiplication)

Fornberg’s program→ C j(xk) for any set {xk}.
(Differentiation matrix of order 0 = interpolation matrix.)
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PS Derivatives vs. FD Derivatives

At center of equally spaced grid:

h f ′(x) = −1
2 f (x− h) + 1

2 f (x+ h) +O(h2)

= 1
12 f (x− 2h) − 2

3 f (x− h) + 2
3 f (x+ h) − 1

12 f (x+ 2h) +O(h4)

= . . .

Centered differences: limN→∞(weights) = finite.
One-sided approximations (or partially one-sided): weights diverge.
So high order FD approximations→ large errors near boundaries.

Grid points closer together near end points (Gaussian points):
FD approximation convergent as N→ ∞.
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PS method: exact derivative of PN(x) passing through data
at the N + 1 grid points.

FD method using same points→ same result (PN(x) unique).

PS method:

• Way to find high-order numerical approximations to derivatives at
grid points.

• Satisfy the equation at the grid points (like FD).

• Variable coefficients or nonlinearities: multiply the functions at the
grid points. (Big advantage over tau and Galerkin methods.)
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Example (from Appendix B of Fornberg 1996)

y′′ + y′ − 2y+ 2 = 0, −1 ≤ x ≤ 1,

y(−1) = y(1) = 0

Exact solution:

y(x) = 1− (ex sinh 2+ e−2x sinh 1)/ sinh 3

Use Chebyshev polynomials with N = 4:

y =
4∑

n=0

anTn(x)

Gauss-Lobatto collocation points (endpoints for b.c.’s):

xi = cos
iπ
4
, i = 0, . . . ,4
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[D(1)y] i =



−11
2 4+ 2

√
2 −2 4− 2

√
2 −1

2

−1− 1
2

√
2 1

2

√
2

√
2 −1

2

√
2 1− 1

2

√
2

1
2 −

√
2 0

√
2 −1

2

−1+ 1
2

√
2 1

2

√
2 −

√
2 −1

2

√
2 1+ 1

2

√
2

1
2 −4+ 2

√
2 2 −4− 2

√
2 11

2





y0

y1

y2

y3

y4



[D(2)y] i =



17 −20− 6
√

2 18 −20+ 6
√

2 5

5+ 3
√

2 −14 6 −2 5− 3
√

2

−1 4 −6 4 −1

5− 3
√

2 −2 6 −14 5+ 3
√

2

5 −20+ 6
√

2 18 −20− 6
√

2 17





y0

y1

y2

y3

y4
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Require differential equation to hold at interior points xk, k = 1,2,3.
Uses middle 3 rows of these matrices.
B.c.’s y0 = y4 = 0 =⇒ omit first and last columns.

−16+ 1
2

√
2 6+

√
2 −2− 1

2

√
2

4−
√

2 −8 4+
√

2

−2+ 1
2

√
2 6−

√
2 −16− 1

2

√
2



y1

y2

y3

 =

− 2

− 2

− 2


Solution: 

y1

y2

y3

 =


101
350+

13
350

√
2

13
25

101
350−

13
350

√
2


Exact: y(x = 0) = 0.52065, compared with y2 = 0.52000.
Error is about 10−16 for N = 16.
Second-order FD: error ∼ 1/10 smaller for N = 16.
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Exercise

Solve same problem as above, but with b.c.

y′(1) = 0

instead of y(1) = 0.

One way: set first row of D(1) matrix to zero.
Then have to include point x = 1 with interior collocation points.

Exact solution for checking:

y = 1−
2ex+1 + e4−2x

2+ e6
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The Method of Lines

Spectral in space, ODE in time, e.g.:

∂y
∂t
=
∂y
∂x

y(t, x) =
∑

j

C j(x)y j(t)

∂y
∂t

∣∣∣∣∣
i
= ẏi,

∂y
∂x

∣∣∣∣∣
i
=
∑

j

D(1)
i j y j

Now use e.g. Runge-Kutta.
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