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For each rotationR in O3 there is a diffeoψ(R) : M→M that
leaves the metric invariant

ψ(R)gαβ = gαβ, (2.1)

One can pick local charts for which the metric has the form

ds2 =−e2Φdt2 +e2λdr2 + r2dΩ2; (2.2)

or (with r → exp
∫ r r−1eλdr), one obtains the isotropic form

ds2 =−α2dt2 + ψ4(dr2 + r2dΩ2). (2.3)
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Static, spherically symmetric spacetimes
As you know, the Einstein tensorGαβ has as its only
nonvanishing components
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Fromuα = uttα anduαuα =−1 we have

uα = e−Φtα. (2.7)

Hydrostatic equilibrium is then

logE = logh− logut =
∫ P

0

dP
ε +P

+ Φ, (2.8)

or

Φ′ =− P′

ε +P
. (2.9)

TheGt
t = 8πTt

t andGr
r = 8πT r

r equation giveλ andΦ in the
form,

e2λ =
1

1− 2m
r

, with m=
∫ r

0
ε 4πr2dr. (2.10)



Φ′ =
m+4πPr3

r(r−2m)
. (2.11)

Equating the two expressions forΦ′ in (2.11) and (2.9), we
obtain the equation of hydrostatic equilibrium, the
Tolman-Oppenheimer-Volkov Equation,

dP
dr

=−(ε +P)
m+4πPr3

r(r−2m)
. (2.12)

Note that the Newtonian limit(P� ε,R�M) of (2.11) is

Φ′ =
m
r2
,

so thatΦ becomes the Newtonian potential.
One obtains a barotropic star by integrating Eq. (2.12) and the
defining equation (2.10) form, with a given equation of state
P = P(ε). Explicitly, one begins with a central densityεc and
integrates up to the radiusRat whichP drops to zero (P is a
decreasing function ofr).



Φ is fixed outside the star byΦ =−λ, inside byE = ΦS ,
Φ = E − logh.



Rotating Relativistic Stars
The metricgαβ of a stationary axisymmetric rotating fluid has
two commuting Killing vectors,φα andtα , generating rotations
and time-translations. (tα agrees asymptotically with
time-translation, but within an ergosphere or horizon,tα will be
spacelike.) As before, the fluid velocity has the form

uα = ut(tα + Ωφα),
and the equation of hydrostatic equilibrium has the first integral

h
ut

= E = constant.

Geometry of a Rotating Star
The metric,gαβ, can be written in terms of dot products of the
Killing vectors,

tαtα, tαφα, φαφα, (2.13)

and a conformal factor,e2µ, that characterizes the geometry of the
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The metric,gαβ, can be written in terms of dot products of the
Killing vectors,

tαtα, tαφα, φαφα, (2.13)

and a conformal factor,e2µ, that characterizes the geometry of the
orthogonal 2-surfaces:

gtt = ∇αt∇αt =−e−2ν,
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gφφ = φαφα = e2ψ,
gtφ = tαφα =−ωe2ψ. (2.14)

Then

gtt = tαtα =−e2ν + ω2e2ψ, (2.15)

and

ds2 =−e2ν dt2 +e2ψ(dφ−ωdt)2 +e2µ(dϖ2 +dz2), (2.16)

whereϖ andz are cylindrical coordinates labeling the 2-surfaces
orthogonal totα andφα.
The Killing vectors have components,

tµ = δµ
t , φµ = δµ

φ (2.17)

and the symmetry means that the potentialsν, ψ, ω andµ
depend only onϖ andz. Because of the choice of an overall
conformal factor,e2µ, to describe the geometry of theϖ−z
surfaces, the exterior of a spherical star given by Eq. (2.16) is the



Schwarzschild geometry in isotropic coordinates,

eν =
1−M/2r
1+M/2r

, eψ = ϖ(1+M/2r)2, eµ = (1+M/2r)2.

(2.18)

Asymptotically, the relations

eψ = ϖ(e−ν +O(r−2)), eµ = e−ν +O(r−2), (2.19)

hold for the potentials, (2.18), and for the metric (2.16) as well,
because any stationary, asymptotically flat spacetime agrees with
the Schwarzschild geometry to orderr−1. If, following Bardeen
and Wagoner (1971), we write

β := ψ + ν, ζ := µ+ ν, (2.20)

then, asymptotically,ζ, which vanishes for isotropic
Schwarzschild, is itself of orderr−2.
The angular velocityω≡−tαφα/φβφβ, measures the dragging of
inertial frames in the sense that particles with zero angular
momentum move along trajectories whose angular velocity



relative to infinity isdφ/dt = ω. A natural tetrad is the frame of
zero-angular-momentum-observers (ZAMOs), with basis
covectors

ω(0) = eνdt, ω(1) = eψ(dφ−ωdt), ω(2) = eµdϖ, ω(3) = eµdz,
(2.21)

and the corresponding contravariant basis vectors are

e(0) = e−ν(∂t + ω∂φ), e(1) = e−ψ∂φ, e(2) = e−µ∂ϖ, e(3) = e−µ∂z.
(2.22)

The nonzero components of the four velocityuα along these
frame vectors can be written in terms of a fluid 3-velocityv in the
manner

u(0) =
1√

1−v2
, u(1) =

1√
1−v2

. (2.23)

Then

ut = uα∇αt =
e−ν
√

1−v2
, uφ = uα∇αφ = Ωut, (2.24)



whereΩ is the angular velocity of the fluid relative to infinity
(measured by an asymptotic observer with 4-velocity along the
asymptotically timelike Killing vector,tα). The 3-velocity,v,
written in terms ofΩ, is

v = eψ−ν(Ω−ω). (2.25)

Note that2πeψ is the circumference of a circle centered about the
axis of symmetry (thez-axis); that is,eψ agrees for spherical stars
with r sinθ, wherer andθ are the usual Schwarzschild
coordinates (not the isotropic coordinates introduced above).



The nonvanishing tetrad components ofTαβ are

T(0)(0) =
ε + pv2

1−v2
, T(0)(1) = ε + p

v
1−v2

, (2.26)

T(1)(1) =
εv2 + p
1−v2

, T(2)(2) = T(3)(3) = p. (2.27)
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The four potentials are determined by four components of the
field equation

Gαβ = 8πTαβ, (2.28)

whose selection is a matter of taste. Following Bardeen and
Wagoner (1971), Butterworth and Ipser (1976) and several
subsequent authors based their code on the following four
equations, in which∇ is theflat 3-dimensional covariant
derivative operator of the metric:dϖ2 +dz2 + ϖ2dφ2.



e−β R(0)(0) = e−β+2νRtt : (2.29)

∇2ν− 1
4
eβ−4ν∇aω∇aω =−8πe−β[(ε + p)

1+v2

1−v2
+2p];(2.30)

eβ−2νR(0)(1) = 2Rt
φ :

∇a(e2β−4ν∇aω) =−16π eβ−2ν(ε + p)
v

1−v2
;(2.31)

e−β(G(2)(2) +G(3)(3)) = eβ−2µ(Gϖϖ +Gzz)
∇a∇aβ = 16πe−βp; (2.32)

and

e2µG(2)(3) = Gϖz :

µ,ϖ β,z+µ,zβ,ϖ = β,ϖz+β,ϖ β,z+2ν,ϖ ν,z−β,zν,ϖ +
1
2
e2β−4ν−2µω,ϖ ω,z.

Alternatively, one can use a 4th elliptic equation forµ.



Living Reviews: Nick Stergioulas
Codes by Wilson; Bonazzola & Schneider; Butterworth & Ipser;
JF, Ipser, Parker; Lattimer et al; Komatsu, Eriguchi, Hachisu;
Cook, Shapiro, Teukolsky; Stergioulas (rns, a public domain
code, available at http://www.gravity.phys.uwm.edu/rns);
Bonazzola, Gourgoulhon, Salgado, Marck; Ansorg,
Kleinwachter, Meinel.



AKM Lorene/ SF SF BGSM KEH
rotstar (260x400) (70x200)

p̄c 1
rp/re 0.7 1e-3
Ω̄ 1.41170848318 9e-6 3e-4 3e-3 1e-2 1e-2
M̄ 0.135798178809 2e-4 2e-5 2e-3 9e-3 2e-2
M̄0 0.186338658186 2e-4 2e-4 3e-3 1e-2 2e-3
R̄circ 0.345476187602 5e-5 3e-5 5e-4 3e-3 1e-3
J̄ 0.0140585992949 2e-5 4e-4 5e-4 2e-2 2e-2
Zp 1.70735395213 1e-5 4e-5 1e-4 2e-2 6e-2
Z f

eq −0.162534082217 2e-4 2e-3 2e-2 4e-2 2e-2
Zb

eq 11.3539142587 7e-6 7e-5 1e-3 8e-2 2e-1
|GRV3| 4e−13 3e-6 3e-5 1e-3 4e-3 1e-1

Code Comparison



Method:

1. Start with a guessed solution (e.g., for a spherical
configuration).
Solve the 4 field equations by Newton-Raphson, putting the
linearized operator on the left side and the nonlinear terms on
the right. (KEH solve by keeping only a flat-space laplacian
on the each left side and solving by using the known Green’s
function).

2. Updateh from the first integral of the equation of hydrostatic
equilibrium, and use the EOS to findP,ε.

3. Find the new surface of the star.

4. Use the updatedε,P and the updated potentials to recompute
the right-hand sides of the field equations.

5≡ 1.



Use spherical harmonics (Legendre polynomials) or Chebyshev
polynomials for theθ dependence. Forr dependence, directly
specify function on the grid, using finite differences for radial
derivatives, or use spectral decomposition with Chebyshev
polynomials.
The accuracy of spectral methods was initially limited by the
Gibbs phenomenon at the stellar surface, but the most recent
spectral codes by the Meudon group and by Ansorg et al.
overcome the problem by using two or three domains fitted to the
stellar surface. Ansorg et al. obtain near-machine accuracy with
two domains and a Chebyshev expansion for bothr andθ.



r

q

Ansorg et al.’s model of a uniformly rotating, uniform-density
star rotating at maximum angular velocityΩK: the star rotates at
the angular velocity of a satellite in Keplerian orbit at the
equator. The two lobes mark the boundaries of the ergosphere.
Uniformly rotating stars with realistic equations of state reach
ΩK before an ergosphere appears.



The set of equilibrium configurations of a uniformly rotating star
is two-dimensional, specified, for example, byM0 andΩ. The
2-dimensional surface of equilibria shown on the next page is
ruled by lines of constantJ andM0. For fixedJ, the maximum
mass configuration marks the onset of instability to collapse.
This instability line is also the set of points points at whichJ is a
maximum along a sequence of constantM0.
(JF, Ipser, Sorkin; Cook, Shapiro, Teukolsky).
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Although not shown in the figure, at low density there is a similar
line of minimum mass configurations. Below the minimum mass,
configurations are unstable to explosion - they are unbound.
Candidates for realistic equations of state typically have
maximum masses for uniform rotation below2.5M�.
A hard upper limit on the mass of uniformly rotating,
self-gravitating stars is found by using the stiffest EOS consistent
with causality (vsound= dP/dε = 1), matching at a densityεm to a
known low-density EOS.

M < 6.1M�

(
2×1014g/cm3

εm

)1/2

(2.33)

JF,Ipser; Koranda, Stergioulas, JF(See, e.g. Cook, Shapiro,
Teukolsky, for upper mass limits for a representative sample of
candidate EOSs).



The next two sections were not part of the oral lectures and can
be regarded as an appendix to topic II on stellar equilibria.

Injection Energy
The quantityE has a natural physical interpretation, as the
energy per unit mass needed to inject matter into the star, with
the injected fluid in the same local state (same composition,
density, and entropy density as the surrounding star). We will
compute the initial energyδM needed to inject a ring of fluid into
a rotating star, after dropping it to its new location, a circleC
about the axis of symmetry.
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The next two sections were not part of the oral lectures and can
be regarded as an appendix to topic II on stellar equilibria.

Injection Energy
The quantityE has a natural physical interpretation, as the
energy per unit mass needed to inject matter into the star, with
the injected fluid in the same local state (same composition,
density, and entropy density as the surrounding star). We will
compute the initial energyδM needed to inject a ring of fluid into
a rotating star, after dropping it to its new location, a circleC
about the axis of symmetry.
Drop a box from infinity with energyδM, rest mass
δM0 = mBδN, entropyδS , and angular momentumδJ.
If the box has, at infinity, four-momentumpα, then

δM =−pαtα, δJ = pαφα.

When the freely falling box reaches a point in the star, its energy



measured by an observer at rest with respect to the fluid is

δE =−pαuα,

whereuα = ut(tα + Ωφα) is the fluid four-velocity.

δE = ut(pαtα + Ωpαφα)
= ut(δM−ΩδJ). (2.34)

The relation is more often written in the form

δM =
δE
ut

+ ΩδJ. (2.35)

In adding baryon massδN baryons, with locally measured

energy
ε
n

per baryon, one is directly adding an energy
ε
n

δN.

From the 1st law of thermodynamics, if one addsδN baryons
with entropyδS, one is adding energyδE given by

δE = TδS+
ε +P

n
δN.

or



δE = TδS+
ε +P

ρ
δM0. (2.36)

Again the presence ofε +P instead ofε arises from the work
PδV done to create a spaceδV for the new baryons. With

δM0 = ρδV, we havePδV =
P
ρ

δM0.



δE = TδS+
ε +P

ρ
δM0. (2.36)

Again the presence ofε +P instead ofε arises from the work
PδV done to create a spaceδV for the new baryons. With

δM0 = ρδV, we havePδV =
P
ρ

δM0.

Finally from Eqs. (2.35) and (2.37)

δM =
ε +P
ρut

δM0 +
T
ut

δS+ ΩδJ. (2.37)

The coefficient ofδM0 is the energyE , the injection energy per
unit rest mass of matter with zero initial entropy and angular
momentum.
Why is E is constant in a star with constant entropy per baryon
and constant angular velocityΩ? An equilibrium configuration is
an extremum of mass at fixed angular momentum, entropy and
baryon number: Small changes in the structure of the star leave



the mass fixed. In particular, suppose one moves a ring of fluid
from one location to another in a uniformly rotating white dwarf
or neutron star, stars that are approximately barotropic becauseT
is approximately zero (that is,kT << εF).
Changing the location of the ring is equivalent to moving it out to
infinity and back in to a new location in the star. According to
Eq. (2.37) withT = 0

δM =
[(

ε +P
nut

)
2

−
(

ε +P
nut

)
1

]
δN +(Ω2−Ω1)δJ. (2.38)

For uniformly rotating star,δM = 0 implies(
ε +P
nut

)
2

=
(

ε +P
nut

)
1

, (2.39)

and we conclude thatE is constant throughout the star.
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Variational Principle for Relativistic Fluids
We will show that a perfect fluid with EOSε = ε(P), has an
action of the form

Ifluid =
∫

ε
√
−gdx. (2.40)

The action is a functional of the fluid’s history. If one thinks of a
fluid as a coherently moving collection of particles, a fluid
configuration is specified by giving the location of each particle.
Beginning with some (arbitrarily chosen) initial fluid spacetime,
ε,P,uα and metricgαβ, one can specify another fluid spacetime
with the same number of baryons by giving its metricḡ and a
diffeo X that maps the original fluid to its new position.



A precise way of saying that an actionI is an extremum is to say
that for any smooth family of historiesXλ,gλ αβ,

δI ≡ d
dλ

I(λ) = 0,

with I(λ) = I(Xλ,gλ αβ). To verify thatI is an extremum when
the field equations are satisfied, we need to varyε and

√
−g; and

to find the change inε, we will need to find the change inuα.
Variations of the metric and fluid
First order departures from an initial configuration can be
described in two ways. The Eulerian perturbations in the
quantitiesQ(λ) are defined by

δQ =
d
dλ

Q(λ)|λ=0 (2.41)

and compare values ofQ at the same point of the spacetime. In
the region occupied by the original fluid, one can also introduce



the Lagrangian perturbations

∆Q =
d
dλ

[X−λQ(λ)]|λ=0 (2.42)

= (δ +£ξ)Q, (2.43)

whereξα generates the family of diffeomorphismsXλ. That is,
the curveλ→ Xλ(P) has tangentξα(P) at the pointP. The field
ξα is termed a Lagrangian displacement and may be regarded as
the connecting vector joining fluid elements in the unperturbed
configuration to the corresponding elements in the perturbed
spacetime.
The first order changes in the variablesQ can be expressed in
terms of the displacementξα and the Eulerian change in the
metric

hαβ = δgαβ. (2.44)

In fact, we will see that perturbations of the fluid variables can all
be written in terms of∆gαβ,

∆gαβ = hαβ + ∇αξβ + ∇βξα. (2.45)



We begin with the change in the four-velocityuα. Let t→ c(t) be
the initial path of a fluid element,cλ = Xλ ◦c the new path.
BecauseXλ dragsc to cλ, the Lagrangian change inc and in its
tangent vector vanishes. That is, ifwα is tangent toc, then
wα

λ = Xλw is tangent tocλ. ThusX−λwα
λ = wα, independent ofλ,

implying

∆wα = ∂λ(X−λwα
λ) = ∂λwα = 0. (2.46)

Now wα will not, in general have norm−1; even if we chooset
to be proper time along the original path,t will not be proper
time alongcλ. As a result, the Lagrangian change in the
four-velocity is nonzero, depending on the change in the metric
along the fluid trajectory,∆gαβuαuβ. We have

uα =
wα

(−wβwβ)1/2
=

wα

(−gβγwβwγ)1/2
;



∆uα = −1
2

wα

(−wδwδ)3/2
(−∆gβγw

βwγ) (2.47)

=
1
2
uαuβuγ∆gβγ. (2.48)

The change in baryon density can similarly be written in terms of
∆gαβ, because the number of baryons in a fluid element is
conserved, and baryon conservation allows us to relate the
change in baryon density to the change in a volumeV orthogonal
to uα. The rest mass of baryons inV is

M0 =
∫

V
ρ
√

3q, (2.49)

with 3q the determinant of the metricqab orthgonal touα.
3q = detq.. (2.50)



FromN(λ) = N, we have

0 =
d
dλ

∫
Vλ

ρ(λ)
√

q(λ) =
∫

V
∆[ρ
√

q], (2.51)

implying

∆(ρ
√

q) = 0.

Now the volume of a fluid element perpendicular touα is
proportional to

√
q, and the fractional change in its volume is

∆V
V

=
∆√q
√

q
.

Recall, for any matrixM(λ),
d
dλ

detM(λ) = detM(λ) Tr
d
dλ

M(λ).

Then
∆ q
q

= qab∆qab.



Becauseqαβ is the projection operator onto a subspace
orthogonal touα, andqab is the restriction ofqαβ to that subspace,
qab∆qab = qαβ∆qαβ = qαβ∆gαβ.

∆ q
q

= qαβ∆gαβ;

and∆(ρ
√

3g) = 0 implies

∆ρ
ρ

=−1
2
qαβ∆gαβ (2.52)

The equation means that the fractional increase inρ is equal to
the fractional decrease in the volume orthogonal to the 4-velocity.
Next, to find the change∆ε in the energy density, we use the
energy conservation equation:

0 = ∆(uα∇βTαβ) = −∆[(ε + p)∇βuβ +uβ∇βε] (2.53)

= −uβ∇β[∆ε +
1
2
(ε + p)qαβ∆gαβ] (2.54)



with first integral

∆ε =−1
2
(ε + p)qαβ∆gαβ. (2.55)

This expresses the fact that the flow is isentropic. In terms of the
comoving rest-mass density,ρ, the first law of thermodynamics
implies

∆ε
ε + p

=
∆ρ
ρ
, (2.56)

equivalent to (2.55), with∆ρ
ρ given by (2.52).

The Lagrangian change in the pressure is similarly given by

∆p = γp
∆ε

ε + p
=−1

2
γpqαβ ∆gαβ, (2.57)

where the adiabatic indexγ is defined by

γ =
∂ logp(ρ,s)

∂ logρ
=

ε + p
p

∂
∂ε

p(ε,s). (2.58)



Variation of the action
Using, as usual, the relation

d
dλ

∫
Vλ

f ε =
∫

V
£ξ( f ε) =

∫
V

£ξ( f
√
−g)d4x,

we have

δIfluid =−
∫

∆(ε
√
−g)d4x.

Now
1√
−g

∆
√
−g =

1
2
gαβ∆gαβ (or ∆εγδζη = εγδζη

1
2
gαβ∆gαβ ),

implying

1√
−g

∆
(
ε
√
−g
)

= −1
2
[(ε + p)qαβ− εgαβ]∆gαβ−

1
2
[εuαuβ + pqαβ]∆gαβ

= −1
2
Tαβ∆gαβ. (2.59)



Then

δTfluid =
∫

1
2
Tαβ∆gαβ

√
−gd4x =

∫
1
2
Tαβ(hαβ +2∇αξβ)

√
−gd4x

=
∫

(
1
2
Tαβhαβ−∇αTαβξβ)

√
−gd4x. (2.60)

Requiring thatδIfluid = 0 for all ξ gives the equations of motion,

∇αTαβ = 0. (2.61)

Requiring thatδIGR+ Ifluid = 0 for all hαβ with

IGR =
1

16π

∫
R
√
−gd4x, (2.62)

gives the field equations,

Gαβ = 8πTαβ. (2.63)

Here we use

δIGR =
1

16π

∫
(−Gαβ)hαβ

√
−gd4x. (2.64)



Note that to obtain the field equations from an action for matter +
gravity, one must define the energy momentum tensor by

Tαβ = 2
δImatter

δgαβ
. (2.65)


