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Outline

Each topic, I, II, III, and IV, below, is posted as a separate file.
Because the breaks between the lectures themselves were
dictated by time, lecture breaks do not in general coincide with
the end of a topic.

I. General Relativistic Perfect Fluids

A. Definition of Perfect Fluid: Local Isotropy

B. The Einstein-Euler System

C. Barotropic Flows: Enthalpy, the Bernoulli Equation,
Injection Energy, and Conservation of Circulation

II. Relativistic Stars

A. Spherical Stars

B. Rotating Relativistic Stars



III. Gravitational Waves from Rotating Stars

A. Rotating Bumps on Neutron Stars

B. Waves From Dynamical Instability of A Rapidly Rotating,
Collapsing Core

C. Gravitational Wave Driven Instability of Nascent Neutron
Stars and of Old Stars Spun Up by Accretion

IV. Compact Binaries: Quasistationary Equilibria

A. Data Sets and Full Solutions with Helical Symmetry

B. First Law of Thermodynamics for Binary Black Holes and
Neutron Stars; Turning Point Instability; Locating the ISCO
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I. General Relativistic Perfect Fluids

Note: In these talks,

ε= energy density,
ρ= baryon rest-mass density,
n = baryon number density.

Thenρ = mBn, wheremB is the rest mass per baryon.

Energy-momentum tensor
A perfect fluid is a model for a large assembly of particles in
which a continuous energy densityε can reasonably describe the
macroscopic distribution of mass. One assumes that the
microscopic particles collide frequently enough that their mean
free path is short compared with the scale on which the density
changes, that the collisions enforce a local thermodynamic
equilibrium. In particular, one assumes that a mean velocity field



uα and a mean energy-momentum tensorTαβ can be defined in
boxes – fluid elements – small compared to the macroscopic
length scale but large compared to the mean free path. And on
scales large compared to the size of the fluid elements, the
4-velocity and thermodynamic quantities can be accurately
described by continuous fields. An observer moving with the
average velocityuα of the fluid will see the collisions randomly
distribute the nearby particle velocities so that the particles will
look locally isotropic.
Because a comoving observer sees an isotropic distribution of
particles, the components of the fluid’s energy momentum tensor
in his frame must have no preferred direction:Tαβuβ must be
invariant under rotations that fixuα. Denote by

qαβ = gαβ +uαuβ (1.1)

the projection operator orthogonal touα.
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Because the momentum current
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is a vector in the 3-dimensional subspace orthogonal touα, it is
invariant under rotations of that subspace only if it vanishes.
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Because the momentum current

qα
γ Tγβuβ

is a vector in the 3-dimensional subspace orthogonal touα, it is
invariant under rotations of that subspace only if it vanishes.

Similarly, the symmetric tracefree tensor
3Tαβ− 1

3qαβ 3T ≡ qα
γ qβ

δTγδ− 1
3q

αβqγδTγδ

transforms as aj = 2 representation of the rotation group and can
be invariant only if it vanishes.
It follows that the only nonzero parts ofTαβ are the rotational
scalars

ε≡ Tαβuαuβ (1.2)

and

P≡ 1
3
qγδT

γδ. (1.3)



More concretely, in an orthonormal frame withe0 alonguα,
T0i andT i j − 1

3δi jTk
k must vanish,

implying thatTαβ has components

‖Tµν‖=

∥∥∥∥∥∥∥∥
ε

P
P

P

∥∥∥∥∥∥∥∥ .
Summary:
The condition of local isotropy suffices to define a perfect fluid,
by enforcing an energy-momentum tensor of the form

Tαβ = εuαuβ +Pqαβ = (ε +P)uαuβ +Pgαβ. (1.4)



Departures from a perfect fluid
In neutron stars, departures from perfect fluid equilibrium due to
a solid crust are expected to be∼ 10−3 or smaller, corresponding
to the maximum strain that an electromagnetic lattice can
support.
On a submillimeter scale, superfluid neutrons and protons in the
interior of a neutron star have velocity fields that are curl-free
outside a set of quantized vortices. On larger scales, however, a
single, averaged, velocity fielduα accurately describes a neutron
star (Baym and Chandler 1983; Sonin 1987; Mendell and
Lindblom 1991). Although the approximation of uniform
rotation is consequently invalid on scales shorter than 1 cm, the
error in computing the structure of the star on larger scales is
negligible. In particular, withTαβ approximated by a value
< Tαβ > averaged over several cm, the error in computing the
metric is of order
δgαβ ∼ (1cm

R )2∼ 10−11.



For equilibria, these are the main corrections. For dynamical
evolutions – oscillations, instabilities, collapse, and binary
inspiral, one must worry about the microphysics governing, for
example viscosity, heat flow, magnetic fields, superfluid modes,
and turbulence.



B. The Einstein-Euler Equations
A perfect-fluid spacetime is a spacetimeM,g whose source is a
perfect fluid. That is, the metric satisfies

Gαβ = 8πTαβ,

with Tαβ a perfect-fluid energy-momentum tensor. The Bianchi
identities imply

∇βTαβ = 0,

and this equation, together with an equation of state, determines
the motion of the fluid.
The projection of the equation∇βTαβ = 0 alonguα yields an
energy conservation law, while the projection orthogonal touα is
the relativistic Euler equation. For an intuitive understanding of
these equations, it is helpful to look first at conservation of
baryons.
Conservation of baryons
The baryon massM0 of a fluid element is conserved by the
motion of the fluid. The proper volume of a fluid element is the



volumeV of a slice⊥ uα through the history of the fluid element;
and conservation of baryons can be written in the form
0 = ∆M0 = ∆(ρV). The fractional change inV in a proper time
∆τ is given by the 3-dimensional divergence of the velocity, in
the subspace orthogonal touα:

∆V
V

= qαβ∇αuβ∆τ. (1.5)

Becauseuβuβ =−1, we haveuβ∇αuβ = 1
2∇α(uβuβ) = 0, implying

qαβ∇αuβ = ∇βuβ.

With uα∇αρ =
d
dτ

ρ, conservation of baryons takes the form

0 =
(∆ρV)

V
= ∆ρ + ρ

∆V
V

= (uα∇αρ + ρ∇αuα)∆τ,
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qαβ∇αuβ = ∇βuβ.

With uα∇αρ =
d
dτ

ρ, conservation of baryons takes the form

0 =
(∆ρV)

V
= ∆ρ + ρ

∆V
V

= (uα∇αρ + ρ∇αuα)∆τ,
or

∇α(ρuα) = 0. (1.6)

A more formal derivation is given below, in part to introduce a
perturbation formalism that one needs to discuss the Hamiltonian



formalism, stellar oscillations and stability, the virial theorem,
and thermodynamics of neutron stars and black holes.



Conservation of energy
uα∇βTαβ = 0

0 = uα∇βTαβ = uα∇β[εuαuβ +Pqαβ]
= −∇β(εuβ)+Puα∇β(gαβ +uαuβ)
= −∇β(εuβ)−P∇ ·u
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Relativistic Euler equation:
qα

γ∇βTβγ = 0



Relativistic Euler equation:
qα

γ∇βTβγ = 0

0 = qα
γ∇β[εuβuγ +Pqβγ]

= qα
γεuβ∇βuγ +qαβ∇βP+qα

γP∇β(uβuγ)
= εuβ∇βuα +qαβ∇βP+Puβ∇βuα





(ε +P)uβ∇βuα =−qαβ∇βP. (1.8)



Newtonian limit: Letebe a small parameter of orderv/c or
vsound/c, whichever is larger.

uµ = (1,vi)+0(e2)
P/ε = 0(e2)
ε = ρ +0(e2)

(1.7)=⇒ ∂t(ρut)+ ∂i(ρui) =−P(∂tu
t + ∂iu

i)
∂tρ + ∂i(ρvi) = 0+0(e2)

(1.8)=⇒ ρuµ∇µu
i =−∇iP

ρ(∂t +v j∇ j)vi + ρ∂iΦ =−∇iP.
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Relativistic energy conservation, Eq. (1.7), also implies the
Bernoulli equation, expressing energy conservation in a
Newtonian flow. We have only looked at its lowest-order form,
obtaining conservation of mass at order(v/c)0; to extract
Newtonian energy conservation, one must keep terms at the next
nonvanishing order, orderv2/c2.



C. Barotropic flows: enthalpy, the Bernoulli equation, injection
energy, and conservation of circulation
A fluid with a one-parameter EOS is called barotropic. Neutron
star matter is accurately described by a one-parameter EOS
because it is approximatelyisentropic: It has nearly constant
(nearly zero) entropy per baryon. (There is, however, a
composition gradient in neutron stars, with the density of protons
and electrons ordinarily increasing outward, and this dominates a
departure from a barotropic equation of state in stellar
oscillations).
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A fluid with a one-parameter EOS is called barotropic. Neutron
star matter is accurately described by a one-parameter EOS
because it is approximatelyisentropic: It has nearly constant
(nearly zero) entropy per baryon. (There is, however, a
composition gradient in neutron stars, with the density of protons
and electrons ordinarily increasing outward, and this dominates a
departure from a barotropic equation of state in stellar
oscillations).

The quantity

h = (ε +P)/ρ
is the enthalpy per unit rest mass. In the Newtonian limit,

h−1−→ u+P/ρ, (1.9)

the Newtonian specific enthalpy, withu the internal energy per
unit mass.



A stationary flow is described by a spacetime with a timelike
Killing vector, tα, the generator of time-translations that leave the
metric and the fluid variables fixed:

£tgαβ = £tu
α = £tε = £tP = 0. (1.10)



A stationary flow is described by a spacetime with a timelike
Killing vector, tα, the generator of time-translations that leave the
metric and the fluid variables fixed:

£tgαβ = £tu
α = £tε = £tP = 0. (1.10)

Bernoulli’s law is the Newtonian conservation of enthalpy for a
stationary flow, and its relativistic form is

£u

(
huβt

β
)

= £u

(
ε +P

ρ
uβt

β
)

= 0. (1.11)

To obtain Eq. (1.11), one uses the relation,

uα∇αh
h

=
uα∇αP
ε +P

, (1.12)

which itself follows from conservation of energy and baryon
number: That is, from

uα∇αε
ε +P

=−∇αuα =
uα∇αρ

ρ
, (1.13)



we have,

uα∇α

(
ε +P

ρ

)
=

1
ρ

(uα∇αε +uα∇αP)− ε +P
ρ2

uα∇αρ =
uα∇αP

ρ
.

(1.14)

Because

£uuα = uβ∇βuα +uβ∇αuβ = uβ∇βuα, (1.15)

the Euler equation, (1.8), becomes

£u(huα) =−∇αP
ρ

. (1.16)

Contracting this form of the Euler equation withtα and using
Eq. 1.10, we obtain Eq. (1.11).
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Because

£uuα = uβ∇βuα +uβ∇αuβ = uβ∇βuα, (1.15)

the Euler equation, (1.8), becomes

£u(huα) =−∇αP
ρ
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Contracting this form of the Euler equation withtα and using
Eq. 1.10, we obtain Eq. (1.11).

The derivation holds for any Killing vector that Lie-derives the
fluid variables, and, for an axisymmetric flow, yields
conservation of a fluid element’s angular momentum in the form,

£u(huβφβ) = 0. (1.17)



From a mathematical perspective, introducing a conserved
baryon number is merely convenient. Instead of defining the
specific enthalpy byh = (ε +P)/ρ, one can take as the definition

h = exp
∫ P

0

dP
ε(P,s)+P

. (1.18)

Again one has Eq. 1.12,

uα∇αh
h

=
uα∇αp
ε + p

, (1.19)

implying the corresponding Bernoulli equation,

£u(huβt
β) = 0. (1.20)

One needs additional physics, the relations,ε/ρ−→ 1 and
h−→ 0, asP−→ 0 for fixeds, to make the identification,

h =
ε +P

ρ
. (1.21)



To ordere2 in uα andε,

ut = 1+
1
2
v2 + Φ, ε = ρ +u,

and the relativistic Bernoulli equation takes its Newtonian form,

(∂t +£v)(hNewt+
1
2
v2 + Φ) = 0.
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and the relativistic Bernoulli equation takes its Newtonian form,
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1
2
v2 + Φ) = 0.

Hydrostatic equilibrium
A rotating star has a timelike Killing vectortα and a rotational
Killing vector φα (equivalently,∂∂∂φ and∂∂∂t). The star’s 4-velocity
uα lies along a linear combination of these vectors, along the
helical Killing vector

kα = tα + Ωφα.

One can choose coordinatest andφ for which

tα∇αt = 1, φα∇αφ = 1, (1.22)
tα∇αφ = 0, φα∇αt = 0. (1.23)
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Hydrostatic equilibrium
A rotating star has a timelike Killing vectortα and a rotational
Killing vector φα (equivalently,∂∂∂φ and∂∂∂t). The star’s 4-velocity
uα lies along a linear combination of these vectors, along the
helical Killing vector

kα = tα + Ωφα.

One can choose coordinatest andφ for which

tα∇αt = 1, φα∇αφ = 1, (1.22)
tα∇αφ = 0, φα∇αt = 0. (1.23)

Then

uα = ut(tα + Ωφα) = utkα.



In the relativistic Euler equation, one can write the covariant
accleration vectoru·∇uα as a Lie derivative:
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accleration vectoru·∇uα as a Lie derivative:

£uuα = uβ∇βuα +uβ∇αuβ (1.24)

= uβ∇βuα. (1.25)

Now

£uuα = £utkuα = ut£kuα +kβ∇αutuβ (1.26)

=
uβ

ut
∇αutuβ =−∇α logut. (1.27)

Sinceuβ∇βP = utkβ∇βP = 0, we have

q β
α ∇βP = ∇βP (1.28)
∇βP

ε +P
= ∇β logh (1.29)

Euler’s equation thus has the form,

−∇α logut =−∇α logh⇒ ∇α log
h
ut

= 0;



with first integral

h
ut

= E , constant throughout the star. (1.30)

This is the (first integral of) the equation of hydrostatic
equilibrium for a uniformly rotating, barotropic star.



with first integral

h
ut

= E , constant throughout the star. (1.30)

This is the (first integral of) the equation of hydrostatic
equilibrium for a uniformly rotating, barotropic star.
E is theinjection energy per baryon, the energy needed to lower
a collection of baryons at zero temperature from infinity, expand
a volume to accomodate them, add kinetic energy to match the
rotation of the star, and insert them in the star.



In the numerical relativity literature the relativistic equation of
hydrostatic equilibrium is often (mistakenly, I believe) called
Bernoulli’s law.
In Bernoulli’s law,

hut is conserved along the fluid worldlines;
In the equation of hydrostatic equilibrium,

h/ut is constant througout a uniformly rotating star.
The Newtonian limit ofhut is

hNewt+ 1
2v

2 + Φ;
the Newtonian limit ofh/ut is

hNewt− 1
2v

2 + Φ.



The flow of an isentropic fluid conserves circulation:
If one defines a relativistic vorticityωαβ by

ωαβ = ∇α(huβ)−∇β(huα), (1.31)

the differential conservation law is the curl of the Euler equation,

£uωαβ = 0. (1.32)

The corresponding integral law is obtained as follows. Letc be a
closed curve in the fluid, bounding a 2-surfaceΣ; and letcτ be
the curve obtained by moving each point ofc a proper timeτ
along the fluid trajectory through that point:

cτ = ψτ ◦c.

From the relation,

£uωαβ = ∇α£u(huβ)−∇β£u(huα), (1.33)



we have,

0 =
∫

Σ
£uωαβdSαβ =

∫
c
£u(huα)d`α (1.34)

=
d
dτ

∫
c
ψ−τ(huα)d`α =

d
dτ

∫
cτ

huα d`α. (1.35)

Stokes’ theorem was used to obtain the equality on the first line;
and the equality on the second line follows from the invariance of
an integral under diffeos:∫

ψτc
ψτσαd`α =

∫
c
σαd`α, or

∫
c
ψ−τσαd`α =

∫
ψτc

σαd`α.

The first integral of the vorticity conservation equation is then
conservation of circulation: The line integral,∫

cτ
huα d`α =

∫
cτ

ε +P
ρ

uα d`α, (1.36)

is independent ofτ, conserved by the fluid flow.



The most interesting feature of this conservation law is that it is
exact in time-dependent spacetimes, with gravitational waves
carrying energy and angular momentum away from a system. In
particular, oscillating stars and radiating binaries, if modeled as
barotropic fluids with no viscosity or other dissipation, exactly
conserve circulation.


