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Overview
• The Nature of Numerical Relativity

• ADM / 3+1 Formalism

• Initial Value Problem

• Recently Developed/Used Formalisms for Evolving Einstein’s Equations

• Coordinate Conditions

• Black Hole Excision and Apparent Horizon Location
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Caveats

• Will focus on “main stream”
numerical relativity, which itself is
primarily concerned with the
prediction of gravitational
waveforms from interactions and
collisions of compact objects
(black holes (BH) and neutron
stars (NS))

• In particular, will not discuss (today)

• Cosmological solutions (e.g. approaches to the singularity)

• Nature of black hole interiors, black hole singularities

• Numerical relativity in higher dimensions (e.g. black strings)

• Critical phenomena
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Caveats
• Will restrict attention to “space + time” (a.k.a. 3+1/ADM) approach to

numerical relativity

• Will not discuss

• Characteristic (null) approaches

• Approaches based on conformal Einstein equations (Friedrich 1981)

• Will largely restrict attention to finite-difference approaches to the
discretization of the field equations

• This excludes

• Spectral methods (but note significant ongoing effort by Caltech/Cornell
collaboration)

• Will also thus not discuss relative merits of the various approaches to
discretization, but note that at least some pursuing spectral techniques are
confident that we’ll all be in their camp eventually! Many of those of us not in
that camp (including HO Kreiss, it should be noted) are not so convinced
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The Nature of Numerical Relativity
• As with many other areas of computational science, basic job is the solution of

a system of non-linear, time-dependent, partial differential equations using
numerical methods

• Field Equations
Gµν = 8πTµν

are generally covariant, giving rise to separation of equations into those of
evolution type, plus constraints

• Determination of initial data is already highly non-trivial due to the constraints,
particularly to set “astrophysically realistic” conditions

• Tensorial nature of field equations, plus constraints, plus coordinate freedom
invites development of multitude of “formalisms”:

• Specific choice of dynamical variables (i.e. those quantities that will be
advanced in time via evolution equations)

• Specific form of field equations (e.g. multiples of constraints can be added
to evolution equations)

• Specific choices of coordinates, or classes of coordinate systems
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The Nature of Numerical Relativity
• Mathematical (as well as empirical) evidence shows that choice of formalism

can have significant impact on continuum well-posedness, as well as ability to
compute a convergent numerical solution

• STABILITY IS THE KEY ISSUE both at the continuum and numerical level

• Continuum: Well-posedness is always tied to some notion of stability

• Discrete: Lax equivalence theorem (or variations thereof) suggest that
stability and convergence are equivalent given consistency

• Constraints/coordinate freedom lead to many options in how discrete solution
is advanced from one time step to the next (Piran 1980)

• Free evolution: Constraints are solved at initial time, but then all dynamical
variables are advanced using evolution equations

• Partially constrained evolution: Some or all of the constraints are re-solved
at each time step for specific dynamical variables, in lieu of use of the
corresponding evolution equation

• Fully constrained evolution: All of the constraints are re-solved at each time
step, and all four degrees of coordinate freedom are used to eliminate
dynamical variables, leaving precisely two dynamical degrees of freedom to
be advanced using evolution equations
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The Nature of Numerical Relativity
• 3D work (i.e. computations in three space dimensions plus time) has been

biased to free evolution schemes

• Elliptic PDEs are considered expensive to solve

• Better formal understanding of treatment of boundaries for equations of
evolutionary type, particularly for strongly hyperbolic systems

• Theory is generally in better shape for hyperbolic systems than for mixed
hyperbolic/elliptic

• At the same time, empirical evidence from 1-, 2-, and even some recent 3D
calculations indicate that constrained schemes provide more facile route to
stability

• Substantial evidence that at least some free evolution schemes admit
non-physical modes (e.g. modes that violate the constraints), and that these
tend to grow exponentially; boundary conditions further complicate matters

• Expect studies constrained versus free evolution to be continued in the future,
though developments with, e.g. generalized harmonic approaches, may make
such studies less pressing
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The Nature of Numerical Relativity
• Coupling to matter: Introduces all of the complications associated with the

numerical treatment of matter field(s)

• Solution properties

• Don’t expect (physical) shocks to (generically) develop in gravitational
variables

• Do expect singularities, and must be avoided in numerical work, unless one is
interested in probing singularity structure

• Large dynamic range in many problems of interest; for example in binary
black hole collisions, must resolve dynamics on the scale of the BH horizon,
as well as many wavelengths of characteristic gravitational radiation

• Gravitational waves tend to be a relatively small effect, but must be
computed precisely for maximal utility in the context of terrestrial detection
of gravitational radiation
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ADM / 3+1 Formalism
(Choquet-Bruhat 1956, ADM 1962, York 1979)

• Manifold with metric (M, gµν) foliated by spacelike hypersurfaces Σt

• Coordinates xµ = (t, xi)

• Future directed, timelike unit normal

nµ = −α∇µt

where α is the lapse function

• Shift vector βµ defined via
tµ = αnµ + βµ

βµnµ = 0
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ADM / 3+1 Formalism

• Hypersurface metric γµν induced by gµν

γµν = gµν + nµnν

• Mixed form of γµν projects into hypersurface

⊥µ
ν = δµ

ν + nµnν

• Metric compatible covariant derivative in slices

Dµ ≡⊥ν
µ∇ν

Dµγαβ = 0
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ADM / 3+1 Formalism

• 3+1 line element

ds2 = −α2dt2 + γij

(
dxi + βidt

) (
dxj + βjdt

)
• Extrinsic curvature (second fundamental form)

Kij = −1
2
Lnγij

• 3+1 form of Einstein’s equations Gµν = 8πTµν derived by considering various
projections of Einstein/Ricci and stress-energy tensors

• Projections of Tµν

ρ ≡ nµnνTµν

jµ ≡ − ⊥α
µn

βTαβ

Sµν ≡ ⊥α
µ ⊥β

νTαβ
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ADM / 3+1 Formalism

• Constraint Equations: From G0i = 8πT0i, which do not contain 2nd time
derivatives of the γij

• Hamiltonian Constraint

R+K2 −KijK
ij = 16πρ (1)

where R is the 3-dim. Ricci scalar, and K ≡ Ki
i is the mean extrinsic

curvature.

• Momentum Constraint
DiK

ij −DjK = 8πji (2)
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ADM / 3+1 Formalism
• Evolution Equations: From definition of extrinsic curvature, Gij = 8πTij, and

Ricci’s equation.

Ltγij = Lβγij − 2αKij (3)

LtKij = LβKij −DiDjα+ α
(
Rij +KKij − 2KikK

k
j

)
−

8πα(Sij −
1
2
γij(S − ρ)) (4)

• Cauchy Problem for Einstein’s Equations (vacuum): Prescribe {γij,Kij} at
t = 0 subject to (1-2), specify coordinates via choice of α and βi, evolve to
future (or past) using (3-4)

• Bianchi identities guarantee that if constraints are satisfied at t = 0, will be
satisfied at subsequent times; i.e. evolution equations preserve constraints

• Extent to which this is the case in numerical calculations has been a perennial
issue in numerical relativity
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Initial Value Problem
(Lichnerowicz 1944, York 1979, Cook 2000, Pfeiffer 2003)

• Key question: Which of the 12 {γij,Kij} do we specify freely at the initial
time, and which do we determine from the constraints?

• York-Lichnerowicz approach: Specify dynamical variables only up to overall
conformal scalings, and perform decomposition of extrinsic curvature into trace,
longitudinal, and transverse pieces.

• Introduce base/background metric, γ̃ij, conformal factor ψ

γij = ψ4γ̃ij

• Decompose Kij into trace/trace-free (TF) parts

Kij = Aij +
1
3
γijK

γijAij = 0
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Initial Value Problem
• Define

Aij = ψ−10Ãij

(motivated by DjA
ij = ψ−10D̃jÃ

ij)

• Split Ãij into longitudinal/transverse pieces

Ãij = Ãij
TT + Ãij

L

D̃jÃ
ij
TT = 0

Ãij
L = 2D̃(iW j) − 2

3
γ̃ijD̃kW

k ≡ (˜̀W )ij

W i is a vector potential.

• Consider divergence of Ãij

D̃jÃ
ij = D̃j(˜̀W )ij ≡ (∆̃`W )i

∆̃` ≡ vector Laplacian
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Initial Value Problem
• In practice, is more convenient to give freely specifiable part of Ãij as a

symmetric trace free (STF) tensor itself; “reverse decompose” Ãij
TT as

Ãij
TT = T̃ ij − (˜̀V )ij

where T̃ ij is STF and V i is another vector potential.

• Define Xi ≡W i − V i, then

Ãij = T̃ ij + (˜̀X)ij

• Constraints become

∆̃ψ =
1
8
R̃ψ +

1
12
K2ψ5 − 1

8
ÃijÃ

ijψ−7 − 2πψ5ρ

(∆̃`X)i = −D̃jT̃
ij +

2
3
ψ6D̃iK + 8πψ10ji

which are 4 quasi-linear, coupled elliptic PDEs for the 4 “gravitational
potentials” {ψ,Xi}
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Initial Value Problem
• Common simplifying assumptions:

• Conformal flatness: γij = fij, with fij the flat 3-metric

• Maximal slice: K = 0
• “Minimal radiation”: T̃ ij = 0

• Constraints become

∆̃ψ = −1
8
ÃijÃ

ijψ−7 − 2πψ5ρ = −1
8
(˜̀X)ij(˜̀X)ijψ−7 − 2πψ5ρ

(∆̃`X)i = 8πψ10ji

• Note that in vacuum (ρ = ji = 0), the momentum constraint is linear and
decouples from the Hamiltonian constraint
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Puncture Method for Black Hole Initial Data
(Brandt & Brügmann 1997)

• Consider vacuum constraints with previously mentioned simplifying assumptions

∆̃ψ +
1
8
(˜̀X)ij(˜̀X)ijψ−7 = 0

(∆̃`X)i = 0

where ∆̃, ˜̀ and ∆̃` are flat-space operators

• The momentum constraints can be solved analytically (Bowen & York 1980) to
produce data corresponding to black holes with specified linear and angular
momentum

• These solutions can then be superimposed to generate solutions of momentum
constraints representing multiple holes

• Hamiltonian constraint must then be solved numerically, and one must deal
with singular behaviour of ψ as r → 0
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Puncture Method for Black Hole Initial Data
(Brandt & Brügmann 1997)

• Traditional approach introduced inner boundaries at ri = ai around each hole
with ri measured from hole center, then imposed mixed (Robin) conditions to
guarantee that final solution did describe one or more black holes (i.e. that the
solution contained apparent horizons)

• In context of finite difference methods, inner boundaries proved troublesome,
particularly in 3D case in cartesian coordinates (not so much of a problem for
finite element, spectral approaches)

• Key idea of puncture approach: “Factor out” singular behaviour of ψ via
following ansatz for N black holes:

ψ =
1
α

+ u =
N∑

i=1

M

2|~r − ~ri|
+ u

where the ~ri are the locations of the punctures, and 1 + 1/α is the
Brill-Lindquist conformal factor
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Puncture Method for Black Hole Initial Data
(Brandt & Brügmann 1997)

• Hamiltonian constraint becomes

∆̃u+
1
8
α7(˜̀X)ij(˜̀X)ij(1 + αu)−7 = 0

with boundary condition

lim
R→∞

u = 1 +O(R−1)

• Authors showed that by solving this equation everywhere on R3 (i.e. without
any points excised), data that is asymptotically flat near punctures is generated,
but more importantly, data do represent time instants of black hole spacetimes

• Technique has become very popular over the past few years, primarily due to its
ease of implementation in 3D Cartesian coordinates
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BSSN Formalism
(Shibata & Nakamura 1995, Baumgarte & Shapiro 1998)

• Key ideas: Eliminate mixed second derivatives in Rij via introduction of
auxiliary vbls; evolve conformal factor, K separately in spirit of “spin
decomposition” of geometric quantities

• Conformal metric
γ̃ij = ψ4γij = e−4φγij

φ =
1
12

ln γ so that γ̃ = 1

• TF part of extrinsic curvature (note different scaling relative to initial data
approach)

Ãij = e−4φAij

Ãij = γ̃imγ̃jmÃij = e4φAij

• Conformal connection functions

Γ̃i ≡ γ̃jkΓ̃i
jk = −∂jγ̃

ij
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BSSN Formalism
• Get set of evolution equations

∂tφ =
1
6
αK + βi∂iφ+

1
6
∂iβ

i

∂tK = −γijDjDiα+ α(ÃijÃ
ij +

1
3
K2) + 4πα(ρ+ S) + βi∂iK

∂tγ̃ij = −2αÃij + βk∂kγ̃ij + 2γ̃k(i∂j)β
k − 2

3
γ̃ij∂kβ

k

∂tÃij = e−4φ((−DiDjα)TF + α(RTF
ij − 8πSTF

ij )) + α(KÃij − 2ÃilÃ
l
j) +

βk∂kÃij + 2Ãk(i∂j)β
k − 2

3
Ãij∂kβ

k

∂tΓ̃i = −2Ãij∂jα+ 2α(Γ̃i
jkÃ

kj − 2
3
γ̃ij∂jK − 8πγ̃ijSj + 6Ãij∂jφ)

βj∂jΓ̃i − Γ̃j∂jβ
i +

2
3
Γ̃i∂jβ

j +
1
3
γ̃mi∂m∂jβ

j + γ̃mj∂m∂jβ
i

• Crucially, momentum constraint is used to eliminate ∂jÃ
ij in the derivation of

∂tΓ̃i
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BSSN Formalism
Comparison with Standard ADM

• Evolution of the extrinsic
curvature component Kzz at
the origin using harmonic
slicing and βi = 0. Solid line
computed using the BSSN
equations, dotted lines with
standard ADM. (Source:
Baumgarte & Shapiro 1998)

• As a result of this work, the
BSSN approach was rapidly
and widely adopted in 3D
numerical relativity

• Additional modifications
leading to better numerical
performance have also been
introduced, some will be
mentioned below
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KST Formalism
(Kidder, Scheel & Teukolsky 2001)

• Performed systematic investigation of impact of constraint addition, definition
of dynamical variables on hyperbolicity of field equations and efficacy for
numerical calculations

• Constraints:

C ≡ 1
2
(R−KijK

ij +K2)− 8πρ = 0

Ci ≡ DjK
j
i −DiK − 8πji = 0

• Auxiliary variables:
dkij ≡ ∂kγij

• Additional constraints:

Ckij ≡ dkij − ∂kγij = 0

Cklij ≡ ∂[kdl]ij = 0 ⇒ ∂k∂lγij = ∂(kdl)ij
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KST Formalism
• Evolution equations:

∂̂0γij ≡ −2αKij

∂̂0dkij ≡ −2α∂kKij − 2Kij∂kα

∂̂0Kij ≡ F [ ∂adbcd, ∂a∂bα, ∂aα, · · ·]

where ∂̂0 ≡ ∂t − Lβ

• Introduce densitized lapse, Q

Q ≡ ln(αγ−σ)

where σ is the densitization parameter, Q, βi considered arbitrary gauge
functions independent of the dynamical vbls.
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KST Formalism
• System 1: Add constraints via 4 parameters {γ, ζ, η, χ}

• New evolution system: (γ here not to be confused with det γij)

∂̂0Kij = (· · ·) + γαγijC + ζαγmnCm(ij)n

∂̂0dkij = (· · ·) + ηαγk(iCj) + χαγijCk

• Hyperbolicity analysis: Compute characteristic speeds, eigenvectors of principal
part of evolution system as function of {σ, γ, ζ, η, χ}

• Find two cases yielding strong hyperbolicity; in both instances must have
σ = 1/2; one case has two free parameters, other has one

• Show that constraints evolve as per the evolution equations; same characteristic
speeds; constraint evolution is strongly hyperbolic when evolution scheme is
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KST Formalism
• System 2: Start with System 1, but redefine dynamical variables Kij, dkij

using 7 additional parameters {â, b̂, ĉ, d̂, ê, k̂, ẑ}

• Generalized extrinsic curvature: Pij

Pij = Kij + ẑγijK

• Generalized metric derivative: Mkij

Mkij = Mkij[ dkij, γ
mndkmn, γ

mndmnk, γij, {â, b̂, ĉ, d̂, ê, k̂}]

• Redefinitions do not change:

• Eigenvalues of evolution system

• Strong hyperbolicity of system

• Redefinitions do change:

• Eigenvectors, characteristic fields

• Nonlinear terms in non-principal parts of evolution systems
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KST Formalism
• Recover several previously studied systems (Fritelli & Reula 1996,

Einstein-Christoffel (Anderson & York 1999)) with appropriate choices of the
12 parameters.

• System 3: Sub-case of System 2; generalized Einstein-Christoffel system with
free parameters {η, ẑ}

• Study numerical evolution of Schwarzschild hole using spectral method and
Painlevé-Gullstrand coordinates

ds2 = −dt2 +

(
dr +

√
2M
r
dt

)2

+ r2dΩ2

(fixed gauge) on domain from inside horizon to some Rmax

• Search parameter space for particularly long lived evolutions

• Find evidence for exponentially growing “constraint violating” mode, that
appears not to be due to the numerics.

• Some dependence of longevity of runs on Rmax, but only up to a point
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KST Formalism
Illustration of Constraint Violating Instability

• Momentum constraint CX vs
time for evolutions of a
Painlevé-Gullstrand slicing of
a Schwarzschild black hole
using the Generalized
Einstein-Christoffel system
with η = 4/33 and ẑ = −1/4
Angular and temporal
resolutions are fixed, and the
various lines show several
radial resolutions. Outer
boundary is at 11.9M ; if it is
moved out to 40M run time
extends to ∼ 1300M for the
same accuracy. (Source:
Kidder, Scheel & Teukolsky
2001)
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Coordinate Conditions
HOW DO WE DEFINE/DETERMINE GOOD COORDINATE

SYSTEMS/CONDITIONS FOR USE IN NUMERICAL RELATIVITY?

• Desirable features: (not exhaustive, some may not be consistent with others)

• Cover region(s) of spacetime of interest

• Avoids physical singularities

• Remain non-singular/non-pathological

• Simplify equations of motion
• Eliminate variables from update scheme
• Cast equations into particularly nice form (e.g. harmonic coordinates)

• Simplify physics
• Traditional use of coord. freedom, e.g. spherical coords. for spherical

problems
• Co-rotating coords for binary inspiral, absorb bulk dynamics into coord.

system, more dynamic range available for secular dynamics
• Symmetry seeking coordinates (Garfinkle & Gundlach 1999)
• Known asymptotic states (e.g. Kerr BH) have unique/recognizable

representation
• Maintains linearity between “dynamical vbls.” and “physical vbls.”
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Coordinate Conditions
• Desirable features:

• Computationally efficient (elliptic conditions are generally avoided)

• Compatible with hyperbolicity, well-posedness (STABILITY!)

• Facilitates well posed-discrete problem (STABILITY!)

• Compatible with excision techniques

• IMPORTANT NOTE: When things get sufficiently non-linear/time-dependent,
coordinate choices will only go so far in optimizing calculation; physics of
situation, which varies from scenario to scenario, and which is not known a
priori dictates, e.g., what discretization scale is necessary
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Coordinate Conditions: Traditional Choices
• Geodesic (Gaussian-normal) Coordinates:

α = 1 βi = 0

See e.g. May and White 1966. Singularity seeking, but may have some utility
in context of excision techniques. Provide substantial simplification of 3+1
equations.

• Normal Coordinates:
βi = 0

Historically has been widely used, particularly in initial phases of code
development due to simplification of evolution equations—many early codes
had difficulty with “shift”/“advective” terms.
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Coordinate Conditions: Traditional Choices
• Maximal Slicing:

K = 0 ⇒ DiD
iα = α(KijK

ij + 4π(ρ+ S))

Estabrook et al 1973. Volume of hypersurfaces maximized with respect to
continuous deformations within spacetime. Widely used due to singularity
avoidance, compatibility with York IVP approach, simplifying property

Need to solve elliptic equation at every time step—often considered
computationally too expensive
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Harmonic Coordinates
• Coordinate functions xµ are harmonic

∇α∇αx
µ = 0

• In 3+1 context yield following for lapse and shift

(∂t − βj∂j)α = −α2K

(∂t − βj∂j)βi = −α2
(
γij∂j lnα+ γjkΓi

jk

)
• Appeal is that field equations reduce to non-linear wave equations, widely used

in early hyperbolic formulations (e.g. Choquet-Bruhat 1952)

• Used in 3D by Landry & Teukolsky 2000 in preliminary study of neutron star
coalescence
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Harmonic Coordinates
• Also used in 3D by Garfinkle 2002 to study generic singularity formation in

spacetimes with topology T 3 ×R with scalar field matter source.

• Harmonic slicing (or variants) has also been used in several other 3D
computations over the past few years, as will be discussed below

• Disadvantages:

• Harmonic slices may tend to be singularity seeking instead of singularity
avoiding

• Harmonic coordinates may be susceptible to coordinate singularities
(coordinate shocks, Alcubierre 1997)
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Generalized Harmonic Coordinates
• Introduce specified source functions, Hµ

∇α∇αx
µ = Hµ

Hµ to be chosen, for example, to stave off coordinate singularities

• Open question: What are good choices for the Hµ for scenarios of current
interest, such as binary inspiral?

• Implementation note: Harmonic coords. yield wave equations for gµν—can
discretize directly in second order form (Pretorius in progress) without need for
auxiliary vbls.

• Leads to economical storage requirements, particularly relative to many of the
first-order hyperbolic approaches used in conjunction with finite-differencing.
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Bona-Masso Slicings
(Bona et al 1995)

• Considered slicing conditions invariant under xi → x̃i on each
hypersurface—condition must be expressed in terms of “slicing scalars” and
their proper time derivatives

• Restricting to first order scalars get

(∂t − βi∂i) lnα = −αf(α)K

with f(α) ≥ 0
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Bona-Masso Slicings
• f = 0: Geodesic slicing (with α = 1 initially)

• f = ∞: Maximal slicing

• f = 1: Harmonic slicing

• f = 2/α: “1 + log” slicing; for case βi = 0, can integrate slicing equation to
get

α = 1 + ln γ

• Empirically, “1 + log” slicing has singularity avoidance properties similar to
maximal and is inexpensive computationally

• Has been used extensively in 1D and 3D black hole work, as will be seen below
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Minimal Strain / Minimal Distortion
(Smarr & York 1978)

• Consider hypersurface “strain” and “distortion” tensors

Θij ≡ −1
2
αKij + Lβγij

Fij ≡ γ1/3Ln

(
γ−1/3γij

)
and extremize ∫

Σ

ΘijΘijdV∫
Σ

FijF
ijdV

w.r.t. βi

• In both instances, get system of elliptic equations for βi
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Minimal Strain / Minimal Distortion
• Minimal strain

DiD
iβj +DiD

jβi − 2Di(αKij) = 0

• Minimal distortion

DiD
iβj +

1
3
DjDiβ

i +Rj
iβ

i − 2Di(α(Kij − 1
3
K)) = 0

As name suggests, this choice tends to minimize distortion of spatial coords.
during an evolution, as well as the rate of change of metric vbls.

• Both have been used for 2D, 3D black hole and neutron star work, but
generally deemed too expensive computationally, complex to implement

• Provided motivation for conditions that approximated behaviour of those
choices, but which were more efficient
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Driver (Dynamical) Conditions
(Balakrishna et al 1996)

• Sought active enforcement of coordinate conditions, motivated by secular
“drifts” when conditions were “passively” enforced

• K driver:

∂tK + cK = 0 c > 0 ⇒ K → 0 exponentially

• Rewrite as

DiD
iα−KijK

ijα− βiDiK − 4π(S + ρ)α− cK ≡ L[α] = 0

• Convert elliptic PDE to parabolic one

∂tα = εL[α]

• For properly chosen ε and c (non-trivial problem), α “diffuses” to maximal
solution, and idea can be applied to other elliptics (e.g. minimal
distortion/strain)
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Driver Conditions
• Alcubierre & Brügmann 2001 constructed coordinate condition closely related

to minimal distortion based on conformal connection Γ̃i ≡ γjkΓ̃i
jk; instead of

Γ̃i = 0, impose
∂tΓ̃i = 0 Γ̃i(0, xi) = 0

• Yields complicated elliptic equation for βi, write schematically as

L[βi] = 0

• Then solve
∂tβ

i = εL[βi] ε > 0

• Alcubierre et al 2001a also tried hyperbolic version

∂2
t β

i = Ψ−4ε1∂tΓ̃i − ε2∂tβ
i ε1, ε2 > 0

where Ψ is the time-independent Brill-Linquist conformal factor
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Black Hole Adapted Coordinates
• Kerr-Schild form of Kerr Metric

ds2 = (ηµν + 2Hlµlν) dxµdxν

ηµν = diag(−1, 1, 1, 1)

ηµνlµlν = gµνlµlnu = 0

H =
Mr

r2 + a2 cos2 θ

where a is the angular momentum parameter

• 3+1 form

α = (1 + 2H)−1/2

βi = 2Hli

γij = ηij + 2Hlilj
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Black Hole Adapted Coordinates
• For a = 0 reduces to ingoing Eddington-Finkelstein coordinatization of

Schwarzschild.

• Dynamical variables well behaved across horizon

• Have been used extensively in recent years in studies of single black hole
evolutions, as well as in construction of 2-BH initial data and evolutions thereof
(Brandt et al 2000)

• Open question: Can this system be effectively generalized for use in generic BH
interactions?
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Black Hole Excision Techniques
(Unruh c1982)

• Motivation 1: Simulation of BH spacetimes need to avoid physical singularities

• Traditionally, coord. freedom was used for this purpose (e.g. maximal slicing),
but coordinate pathologies generally arose on a dynamical timescale

• Lead to violation of principle of simulation linearity (A. Brandt’s Golden Rule of
Numerical Analysis)

Cost of simulation ∝ Amount of physical process simulated

• Typically in BH calcs., dynamical vbls. and/or their gradients would grow
without bound, while “physical dynamics” was perfectly bounded.

• Resulted in disheartening and persistent era wherein exponential increase in
computer power yielded approximately linear increase in physical time for which
BH spacetimes could be simulated
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Black Hole Excision Techniques
• Motivation 2: BH simulations need to abide by the “Golden Rule” (eventually

at least!)

• Unruh’s first suggestion: Given that BH interiors are causally disconnected from
the exterior universe, excise insides of BHs from the computational domain
(was originally greeted with considerable scepticism in the NR community, but
has since transmuted into an “obvious” idea that verges on dogma)

• Unruh’s second suggestion: Since event horizons require knowledge of the
complete spacetime, use the apparent horizons as surfaces within which to
excise

• Idea was championed and explored by Thornburg in his graduate work, but first
successful implementation (in spherical symmetry) was due to Seidel & Suen
1992, and is now used extensively in 3D black hole work
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Excision: Mathematical/Computational
Considerations

• Free evolution schemes particularly those where α, βi are either specified
functions or satisfy evolution equations themselves have advantage

• Key idea is that equations of motion themselves are applied at excision
surface—i.e. no boundary conditions per se are required

• Hyperbolic formulations even more advantageous due to identification of
characteristics, and fact that all disturbances propagate along characteristics

• Especially natural for spectral methods, since evaluation of EOM (derivatives)
is independent of location within computational domain

• In principle, “No BC” approach should also work for finite difference codes, but
generally require modification of difference equations at/near excision surface
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Excision: Mathematical/Computational
Considerations

• Constrained evolution: Excision has also been employed in this case, primarily
in 1D (spherical) and 2D (axisymmetric) situations

• ANIMATION Spherical example: Choptuik, Hirschmann & Marsa 1999.
Einstein Yang-Mills collapse—tuning to a “colored” black hole.

• ANIMATION Axisymmetric example: Pretorius 2002. Head-on collision of two
black holes, each generated via collapse of a massless scalar field pulse

• Inner (excision) boundary poses a problem for elliptics

• Dynamical vbls. Can use corresponding evolution equation at/near excision
surface.

• Gauge vbls. Not clear what can be done here, Pretorius’ work shows
inconsistency of constrained evolution w.r.t. evolution equations, once
trapped surfaces have been detected and excised.

• Open Question: Is is possible to devise appropriate BC’s for elliptic coordinate
conditions to generate consistent evolution?

• Driver conditions may provide one route.
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Finding Apparent Horizons / Marginally Trapped
Surfaces

• On any hypersurface, Σt, consider closed 2-surface, S with outward pointing
normal, sµ, sµsµ = 1. Then

kµ = sµ + nµ

is tangent field to outgoing null geodesics emanating from S

• Marginally trapped surface (MTS) has vanishing expansion, Θ

Θ = ∇µk
µ = 0

• In 3+1 language, find (York 1979)

Θ = Dis
i −K + sisjKij = 0 (5)
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Finding Apparent Horizons
• Adopting spherical coordinates on S, and some origin interior to S, consider

ϕ(r, θ, φ) = r − ρ(θ, φ) (6)

where r is the coordinate distance from the origin.

• MTS is then defined by the level surface ϕ = 0

• Substitution of (6) in (5) yields 2nd order elliptic equation for ϕ (in S) that can
be solved in a variety of ways

• Finite difference approach: (Huq et al 2002, Thornburg 2003); solve non-linear
elliptic equation for ϕ directly using finite difference approximation, global
Newton iteration, and sparse solver (such as incomplete LU-conjugate gradient)
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Finding Apparent Horizons
• Spectral methods: (Nakamura et al 1984/1985); expand ρ in spherical

harmonics

ρ(θ, φ) =
lmax∑
l=0

l∑
m=−l

almYlm(θ, φ)

and then use iterative algorithm to determine coefficients alm that solve MTS
equation.

• Variation (Libson et al 1994), convert root-finding to minimization of∫
Θ(alm)2

• Curvature flow: (Tod 1991); convert elliptic problem to parabolic one by
deformation of trial surface S via

∂xi

∂τ
= −siΘ
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Finding Apparent Horizons
• Level flow: (Shoemaker et al 2000). Extends curvature flow by tracking

collection of level surfaces; can detect change in topology of apparent horizon.

• Many implementations of AH locators now, and some benchmarks, no clear
winners in terms of efficiency

• Also not clear how vital AH location is for excision strategies, may be able to
choose appropriately parametrized surfaces that are “suitably trapped” (e.g.
Pretorius 2002), and thus obviate need for AH detection at each time step (or
even every few time steps)

• Locators certainly continue to be useful for, e.g., detecting (approximately)
when black holes have formed in collapse computations
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