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Abstract

The (logarithmic) Mahler measure of an n-variable Laurent polynomial,
P (x1, . . . , xn), is defined by

m (P ) =
∫ 1

0
. . .

∫ 1

0
log
∣∣P (e2πit1 , . . . , e2πitn

)∣∣ dt1 . . .dtn.

Using experimental methods, David Boyd conjectured a large number of
explicit relations between Mahler measures of polynomials and special val-
ues of different types of L-series. This thesis contains four papers which
either prove or attempt to prove conjectures due to Boyd. The introductory
chapter contains an overview of the contents of each manuscript.
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was prepared jointly, while the research and preparation of Section 3.2 is due
to myself, and the research and preparation of Section 3.3 is due to Laĺın.
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Chapter 1

Introductory Chapter

1.1 Introduction

Constants such as π and ζ(3) occupy a special place in the history of num-
ber theory. In the past, famous mathematicians including Newton, Euler,
Cauchy and Ramanujan expended a great deal of energy searching for effi-
cient ways to calculate these numbers. They were motivated by more than
simple curiosity, as they lacked the calculators that we now take for granted.
Research in this direction helped spur the development of a variety of impor-
tant mathematical tools, including calculus, complex analysis, the theory of
elliptic functions, and the theory of hypergeometric functions. This thesis
falls under the final category, and can loosely be described as an effort to
obtain new hypergeometric formulas for special values of L-functions.

The generalized hypergeometric function is usually defined in terms of
a power series involving Pochhammer symbols (which are also known as
generalized factorials). The Pochhammer symbol is defined by

(x)n :=

{
1 if n = 0,
x(x + 1) . . . (x + n − 1) if n ≥ 1,

and the generalized hypergeometric function can be written as

pFq

(a1,...,ap

b1,...,bq
; x
)

:=
∞∑

n=0

(a1)n . . . (ap)n

(b1)n . . . (bq)n

xn

n!
.

By specializing the ai’s and bi’s we can reduce many elementary and special
functions to hypergeometric functions. Bessel functions of the second kind
are probably the most important non-hypergeometric special functions.

It is a classical fact that hypergeometric functions satisfy interesting
transformations: Dixon’s, Whipple’s and Saalschutz’s theorems are all ex-
amples [2]. One consequence of this fact is that new series expansions are
continually being discovered for familiar special constants. While Nicolas
Mercator discovered the first infinite series for log(2) in 1668, we recently
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Chapter 1. Introductory Chapter

found a new identity via numerical searches:

6F5

(
3
2
, 3
2
, 3
2
,1,1, 32

15
5
2
,2,2,2, 17

15

;
1
16

)
?= −2112

17
+

3072
17

log(2). (1.1.1)

In equation (1.1.1), and throughout the rest of this thesis, we will use “ ?=” to
denote an unproven equality that holds to at least 60 decimal places. Equa-
tion (1.1.1) exemplifies many hypergeometric formulas, in that the simplicity
of the identity obscures the reason why it exists at all. The Borwein brothers
tackled a similar problem when they proved Ramanujan’s seventeen formu-
las for 1/π (see [22], [9], and [15]). While the theory of elliptic functions
ultimately underpins Ramanujan’s claims, equation (1.1.1) is equivalent to
an unproven conjecture about Mahler measures of elliptic curves.

This thesis stems from the observation that Mahler identities are inti-
mately tied to formulas for generalized hypergeometric functions. The (loga-
rithmic) Mahler measure of an n-variable Laurent polynomial, P (x1, . . . , xn),
is defined by

m(P ) :=
∫ 1

0
. . .

∫ 1

0
log
∣∣∣P (e2πiθ1 , . . . , e2πiθn

)∣∣∣ dθ1 . . .dθn.

Boyd conjectured a large number of interesting relations between values of
L-series of elliptic curves and Mahler measures of polynomials in [10]. For
example, he showed that the following conjecture (which Denninger also
considered [17]):

m
(

1 + x +
1
x

+ y +
1
y

)
?=

15
4π2

L (E, 2) , (1.1.2)

with E having conductor 15, holds to at least 60 decimal places. Since the
majority of Boyd’s conjectures translate into hypergeometric identities, this
gives rise to an entirely new class of closed form evaluations of the general-
ized hypergeometric function. The L-series of an elliptic curve is a funda-
mental arithmetic quantity, hence identities like equation (1.1.2) should be
regarded with the same interest as most formulas for π or ζ(3).

1.2 Mahler measure background

The field of Mahler measure encompasses the study of both single-variable,
and multi-variable polynomials. The first area is closely related to the study

2



Chapter 1. Introductory Chapter

of heights of polynomials. Jensen’s formula provides the operative result:

m (P (x)) =
∑
|α|>1

P (α)=0

log |α|,

by relating Mahler measures of monic polynomials to their zeros. Single-
variable Mahler measures often appear in studies of Salem and Pisot num-
bers, and are especially relevant for Lehmer’s problem:

Lehmer’s Problem: Does there exist a monic, non-cyclotomic polynomial
P (x) ∈ Z[x], with P (0) �= 0, such that m(P (x)) < m (P0(x)) = log (1.17 . . . ),
where P0(x) = 1 − x + x3 − x4 + x5 − x6 + x7 − x9 + x10 ?

In general, the Boyd-Lawton theorem shows that multi-variable Mahler
measures arise as limit points of sequences of single-variable Mahler measures
[11]. For example, in the two-dimensional case we have

lim
n→∞m (P (x, xn)) = m (P (x, y)) . (1.2.3)

Unfortunately, it is unreasonable to expect a single result like Jensen’s for-
mula to describe all of the interesting identities for multi-variable Mahler
measures. Formulas exist which involve special values of polylogarithms,
elliptic dilogarithms, Riemann and Dedekind zeta functions, Dirichlet and
elliptic curve L-functions, and even L-series of K3 hypersurfaces. In general,
it is usually far easier to prove identities between Mahler measures, than to
actually relate them to L-functions [23].

1.3 An overview of the manuscripts in this thesis

Despite the fact that no one has proved (1.1.2), several special cases of
Boyd’s conjectures have been rigorously established. Rodriguez-Villegas
demonstrated that Boyd-like identities hold for elliptic curves with com-
plex multiplication [24], and Brunault proved several of Boyd’s conjectures
for elliptic curves with prime conductors [13]. This thesis contains four pa-
pers aimed at establishing results related to Boyd’s conjectures (see [26],
[25], [19], and [27]). In the remainder of this section we will briefly outline
some of the main theorems in those manuscripts.
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Chapter 1. Introductory Chapter

Lattice sums and Mahler measures

While a variety of procedures exist for relating Mahler measures to values
of the Riemann zeta function (see [18] or [12]), the situation is more com-
plicated for L-functions of elliptic curves. Rodriguez-Villegas proved several
of Boyd’s conjectures for CM elliptic curves; however, his proofs depended
upon Deuring’s theorem, which only applies in fortuitous situations. In this
paper, we have used the modularity theorem to obtain a variety of formu-
las relating L-functions to lattice sums. This enabled us to translate many
of Boyd’s conjectures into equivalent, although still unproven, relations be-
tween lattice sums and hypergeometric functions. For example, equation
(1.1.2) is equivalent to the following formula:

∞∑
n=0

(
2n

n

)2 (1/16)2n+1

2n + 1

?=
540
π2

∞∑
ni=−∞

i∈{1,2,3,4}

(−1)n1+n2+n3+n4

((6n1 − 1)2 + 3(6n2 − 1)2 + 5(6n3 − 1)2 + 15(6n4 − 1)2)2
.

(1.3.4)

Despite the fact that we were unable to prove (1.3.4), we successfully used
our ideas to recover Rodriguez-Villegas’s results, and several corollaries. For
instance, if φ equals the golden ratio, then

3456√
15

∞∑
ni=−∞

i∈{1,2,3,4}

(−1)n1+n2+n3+n4[
(6n1 + 1)2 + (6n2 + 1)2 + (6n3 + 1)2 + 1

5(6n4 + 1)2
]2

=
C1
3
√

φ
3F2

(
1
3
, 1
3
, 1
3

2
3
, 4
3

;
1
φ

)
+

C2

3
√

φ2
3F2

(
2
3
, 2
3
, 2
3

4
3
, 5
3

;
1
φ

)
,

(1.3.5)

where C1 = 2 3
√

2Γ
(

1
2

)
Γ
(

1
3

)
Γ
(

1
6

)
, and C2 = 3

√
3Γ3
(

2
3

)
. The paper con-

cludes with a brief discussion of elliptic dilogarithms and higher dimensional
lattice sums.

Functional equations for Mahler measures

Matilde Laĺın and I proved functional equations for Mahler measures of
elliptic curves in [19]. For example, we proved that the following identity

4
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holds for |α| < 1:

m
(

4
α2

+ x +
1
x

+ y +
1
y

)
=m

(
2α +

2
α

+ x +
1
x

+ y +
1
y

)
+ m

(
2iα +

2
iα

+ x +
1
x

+ y +
1
y

)
.

Our theorems enabled us to express m
(
2 + x + x−1 + y + y−1

)
and

m
(
8 + x + x−1 + y + y−1

)
in terms of L(E, 2), where E has conductor 24

(subject to a claim of Rodriguez-Villegas). Our proofs depended upon Ra-
manujan’s theory of modular equations to alternative bases [6], as well as
formulas for the Rogers-Ramanujan continued fraction [3], and q-series re-
sults of Stienstra [28] and Verrill [29]. As a final corollary, we obtained new
2F1 transformations which Maier also studied [20].

New 5F4 transformations and Mahler measures

Often it is quite difficult to identify Mahler measures as hypergeomet-
ric functions. This is true for both two-variable and three-variable Mahler
measures. In [27] I used modular equations to equate several three variable
Mahler measures to linear combinations of 5F4 functions. For example, for
|α| sufficiently large:

m
(

3α +
3
α

+ x +
1
x

+ y +
1
y

+ z +
1
z

)
= − 1

20

∞∑
n=1

1
n

(4n)!
n!4

(
α3

3 (3 + α2)2

)2n

− 3
20

∞∑
n=1

1
n

(4n)!
n!4

(
α−3

3 (3 + α−2)2

)2n

+
1
5

log
(
9α3
(
3 + α2

) (
3 + α−2

)3)
.

This particular identity allowed me to translate several of Bertin’s formulas
for L-series K3 hypersurfaces into explicit hypergeometric formulas [8]. As
a corollary to my hypergeometric transformations, I deduced several new
formulas for 1/π involving Domb numbers, including:

2
π

=
∞∑

n=0

(−1)n (3n + 1)
32n

n∑
k=0

(
2k

k

)(
2n − 2k

n − k

)(
n

k

)2

.

Similar identities for 1/π and 1/π2 have been studied in [14], [30], and [31].
Zudilin summarized a variety of related results in [32].
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Trigonometric integrals and Mahler measures

While it is difficult to speculate on the nature of corollaries that might
emerge from a proof of (1.1.2), I will point to the fourth paper in this thesis
for an example. Several years ago Boyd conjectured an identity expressing
a Mahler measure in terms of ζ(3)/π2. In particular, he calculated that

14
5π2

ζ(3) = m ((1 + x) + (1 − x)(y + z)) . (1.3.6)

Condon first established this formula using contour integration [16]. After
considering Condon’s proof, I realized that (1.3.6) followed from an identity
for the 4F3 hypergeometric function, and I proceeded to discover a proof
based upon a new series transformation [25]:

∞∑
n=0

(−1)n

(2n + 1)3
(
2n
n

) ( 4r

1 − r2

)2n+1

=
1
2
Li3
(
r2
)

+ 4Li3(1 − r) + 4Li3

(
r

1 + r

)
− 4ζ(3)

− log
(

1 + r

1 − r

)
Li2
(
r2
)− 2π2

3
log(1 − r) − 2

3
log3(1 + r)

+ 2 log(r) log2(1 − r),

which holds for appropriate values of r. As usual, the polylogarithm is
defined by

Lik(x) =
∞∑

n=1

xn

nk
.

Transformations for sums involving binomial coefficients have attracted in-
terest since Apéry proved the irrationality of ζ(2) and ζ(3) using such identi-
ties (see [1], [4], or [5]). As a corollary to my hypergeometric transformation
I also proved eight new Mahler measure formulas. Thus, the solutions of
numerically conjectured problems often lead to unexpected and interesting
corollaries.
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Chapter 2

Lattice sums and Mahler
measures

Mathew D. Rogers1

2.1 Introduction

In this paper we will prove a number of formulas relating the special values
of L-series of elliptic curves to hypergeometric functions. This paper was
partially inspired by the work of Boyd and Rodriguez-Villegas. Recall that
Boyd used numerical methods to conjecture a large number of formulas
relating the L-series of elliptic curves to special values of Mahler’s measure.
The first example of such an identity was due to Deninger, who hypothesized
that

m
(
1 + y + y−1 + z + z−1

) ?=
15
4π2

L(E, 2), (2.1.1)

where E is a conductor 15 elliptic curve. Although we will not offer a
proof of Deninger’s formula in this paper, we will provide a new method for
establishing results due to Rodriguez-Villegas, and we are hopeful that our
method will eventually apply to formulas such as (2.1.1). The essential result
that we will require is the modularity theorem, which supplants Deuring’s
theorem in Rodriguez-Villegas’s work.

Let us briefly recall that to any elliptic curve E with conductor N , we
can associate an L-series

L(E, s) :=
∏
p�N

1(
1 − ap

ps + p
p2s

) ∏
p|N

1(
1 − ap

ps

)
=

∞∑
n=1

an

ns
,

(2.1.2)

1A version of this paper has been submitted for publication. Rogers, M. D. Hypergeo-
metric formulas for lattice sums and Mahler measures.

10



Chapter 2. Lattice sums and Mahler measures

which converges for Re (s) > 3
2 . If E has good reduction at p, then p + 1 −

ap equals the number of integral points on E modulo p. The modularity
theorem shows that L(E, s) has a meromorphic continuation to the entire
complex plane, and that the sum

g(e2πiτ ) =
∞∑

n=1

ane2πinτ ,

is a weight two modular form on Γ0(N) with respect to τ . In general, if
g(q) =

∑∞
n=1 anqn is an arbitrary power series, then we will commit a slight

abuse of notation and write

L(g, s) :=
∞∑

n=1

an

ns
.

Since an is not necessarily multiplicative with respect to n, it follows that
L(g, s) may or may not have an Euler product. However, if g(q) corresponds
to an elliptic curve E, then we will always have L(g, s) = L(E, s) by the
modularity theorem.

In this paper we will illustrate that the Mahler measure identities of Boyd
and Deninger belong to a larger class of formulas for the Mellin transforms
of weight-two modular forms. In particular, we can often derive identities
between such modular forms and Mahler measures, irrespective of whether
or not the modular form is associated to an elliptic curve. For instance, we
can prove identities such as

m
(
4i
(
8 + 3

√
7
)

+ y + y−1 + z + z−1
)

=
16

√
7

π2

∞∑
n=1

an

n2
, (2.1.3)

where

g(q) :=
∞∑

n=1

anqn = q

∞∏
n=1

(1 − q8n)3(1 − q28n)2

(1 − q56n)
,

is a weight-two cusp form on Γ0(56). A cursory computation reveals the
coefficients of g(q) are not multiplicative, since a77 = 14, but a7 = a11 = 0.
Therefore, while g(q) can not arise from an elliptic curve, we will also look at
many eta products which do possess arithmetic interpretations. Martin and
Ono established an exhaustive list of eta quotients associated with elliptic
curves in [49].
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Chapter 2. Lattice sums and Mahler measures

Many of the Mahler measure identities in this paper can be related to
generalized hypergeometric functions. Recall that the generalized hyperge-
ometric function is defined by

pFq

(a1,...,ap

b1,...,bq
; x
)

:= 1 +
∞∑

n=1

(a1)n . . . (ap)n

(b1)n . . . (bq)n

xn

n!
,

where (z)n = z(z +1) . . . (z +n−1). One consequence of this fact is that we
can obtain series acceleration formulas for values of certain L-series. Notice
that equation (2.1.3) can be transformed into

16
√

7
π2

∞∑
n=1

an

n2
= log

(
32 + 12

√
7
)

+
1
2

∞∑
n=1

(−1)n+1

n

(
2n

n

)2 1(
32 + 12

√
7
)2n .

(2.1.4)
Given the appearance of hypergeometric functions, it should not be surpris-
ing that Ramanujan’s work will enter into our proofs.

2.1.1 Boyd’s conjectures and four-dimensional lattice sums

In this section we will summarize a variety of explicit formulas relating four-
dimensional lattice sums to Mahler measures of polynomials. Most of these
results are only conjectures, although numerical calculations can be used
to verify them to any degree of accuracy. Our first step will be to invoke
the modularity theorem to find explicit formulas for L-functions of elliptic
curves with conductors N ∈ {11, 14, 15, 20, 24, 27, 32, 36}.
Definition 2.1.1. Let us define F (b, c) by

F (b, c) := (1+b)2(1+c)2
∞∑

ni=−∞
i∈{1,2,3,4}

(−1)n1+n2+n3+n4

[(6n1 + 1)2 + b(6n2 + 1)2 + c(6n3 + 1)2 + bc(6n4 + 1)2]2
.

It turns out that F (b, c) can be used to numerically calculate a variety of
L-values. The following theorem is an easy consequence of the modularity
theorem:

Theorem 2.1.2. Suppose that EN is an elliptic curve of conductor N in
an appropriate isogeny class, then

L(EN , 2) = F (b, c) (2.1.5)
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Chapter 2. Lattice sums and Mahler measures

for the following values of N and (b, c):

N (b, c)
11 (1, 11)
14 (2, 7)
15 (3, 5)
20 (1, 5)
24 (2, 3)
27 (1, 3)
32 (1, 2)
36 (1, 1)

Proof. We are interested in cases where cusp forms of elliptic curves equal
the product of four eta functions. An exhaustive list of all such cusp forms
is provided in [49]. By inspection of that list, the eta product associated
with EN will have the form

g(q) := q

∞∏
n=1

(
1 − qAn

) (
1 − qAbn

) (
1 − qAcn

) (
1 − qAbcn

)
,

where (1+ b)(1+ c)A = 24. If we recall Euler’s pentagonal number theorem

∞∏
n=1

(1 − qn) =
∞∑

n=−∞
(−1)nqn(3n+1)/2,

this becomes

g(q) =
∞∑

ni=−∞
i∈{1,2,3,4}

(−1)n1+n2+n3+n4q
A(6n1+1)2+Ab(6n2+1)2+Ac(6n3+1)2+Abc(6n4+1)2

24 ,

and it follows immediately that

L(EN , 2) =
242

A2

∞∑
ni=−∞
i∈1,2,3,4

(−1)n1+n2+n3+n4

[(6n1 + 1)2 + b(6n2 + 1)2 + c(6n3 + 1)2 + bc(6n4 + 1)2]2
.

Since (1 + b)(1 + c) = 24/A, the theorem follows.

Since we now have expressed several different L-values in terms of F (b, c),
it seems logical to list all of the known Mahler measures which reduce to
values of that function.
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Chapter 2. Lattice sums and Mahler measures

Definition 2.1.3. Let us fix the following notation:

m(k) :=m
(
k + y + y−1 + z + z−1

)
, (2.1.6)

n(k) :=m
(
y3 + z3 + 1 − kyz

)
, (2.1.7)

g(k) :=m ((1 + y)(1 + z)(y + z) − kyz) , (2.1.8)
r(k) :=m ((1 + y)(1 + z)(1 + y + z) − kyz) . (2.1.9)

For convenience we have slightly altered the definitions of n(k), g(k)
and r(k) that appeared in [48]. All of the following examples were either
extracted from Boyd’s paper [41], or were deduced by combining Boyd’s
conjectures with functional equations in [48]. While Boyd’s minimal Weier-
strass models often do not coincide with the minimal Weierstrauss models in
[49], the elliptic curves are presumably isogenous, and the following results
are all numerically true:

n(3 3
√

2) =
27
2π2

F (1, 1) (2.1.10)

g(2) =
9

2π2
F (1, 1) (2.1.11)

g(−4) =
18
π2

F (1, 1) (2.1.12)

m(4i) =
16
π2

F (1, 2) (2.1.13)

m(2
√

2) =
8
π2

F (1, 2) (2.1.14)

n(−6) =
81
4π2

F (1, 3) (2.1.15)

n( 3
√

2) ?=
25
6π2

F (1, 5) (2.1.16)

n( 3
√

32) ?=
40
3π2

F (1, 5) (2.1.17)

g(−2) ?=
15
π2

F (1, 5) (2.1.18)

g(4) ?=
10
π2

F (1, 5) (2.1.19)

r(−1) =
77
4π2

F (1, 11) (2.1.20)

m(2) ?=
6
π2

F (2, 3) (2.1.21)

m(8) ?=
24
π2

F (2, 3) (2.1.22)
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m(3
√

2) ?=
15
π2

F (2, 3) (2.1.23)

m(i
√

2) ?=
9
π2

F (2, 3) (2.1.24)

n(−1) ?=
7
π2

F (2, 7) (2.1.25)

n(5) ?=
49
2π2

F (2, 7) (2.1.26)

g(1) ?=
7

2π2
F (2, 7) (2.1.27)

g(7) ?=
21
π2

F (2, 7) (2.1.28)

g(−8) ?=
35
π2

F (2, 7) (2.1.29)

m(1) ?=
15
4π2

F (3, 5) (2.1.30)

m(3i) ?=
75
4π2

F (3, 5) (2.1.31)

m(5) ?=
45
2π2

F (3, 5) (2.1.32)

m(16) ?=
165
4π2

F (3, 5) (2.1.33)

All of the results involving F (1, 1), F (1, 2), and F (1, 3) can be deduced from
Rodriguez-Villegas’s paper [51]. In particular, those Mahler measures can be
written in terms of two-dimensional Eisenstein-Kronecker series, and then
the results follow from Deuring’s theorem.

2.1.2 Summary of hypergeometric formulas for F (b, c)

In general, we believe that F (b, c) can always be written in terms of integrals
of hypergeometric functions, regardless of the values of b and c. In this
subsection we will translate almost all of the known Mahler measures for
F (b, c) into hypergeometric functions. In Corollary 2.2.8 we will also prove
that similar expressions exist for both F (2, 2) and F (1, 4), even though those
sums are apparently unrelated to the theory of elliptic curves.

Theorem 2.1.4. We can express m(k), n(k), and g(k) in terms of gener-
alized hypergeometric functions for most values of k:

m(k) =Re
(

log(k) − 2
k2 4F3

(
3
2
, 3
2
,1,1

2,2,2
;
16
k2

))
, (2.1.34)
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n(k) =Re
(

log(k) − 2
k3 4F3

(
4
3
, 5
3
,1,1

2,2,2
;
27
k3

))
, (2.1.35)

g(k) =Re
(

log
(

(4 + k)(k − 2)4

k2

)
− 2k2

(4 + k)3 4F3

(
4
3
, 5
3
,1,1

2,2,2
;

27k2

(4 + k)3

)
(2.1.36)

− 8k

(k − 2)3 4F3

(
4
3
, 5
3
,1,1

2,2,2
;

27k

(k − 2)3

))
.

Equation (2.1.34) is valid in C \ {0}, while (2.1.36) holds in C \ [−4, 2], and
(2.1.35) is true for |k| is sufficiently small.

In certain cases we can reduce these hypergeometric functions further.
Suppose that k ∈ R \ {0}, then

Re
(

log(k) − 2
k2 4F3

(
3
2
, 3
2
,1,1

2,2,2
;
16
k2

))
= Re

( |k|
4 3F2

(
1
2
, 1
2
, 1
2

1, 3
2

;
k2

16

))
, (2.1.37)

and

Re

(
log(k) − 2

k3 4F3

(
4
3
, 5
3
,1,1

2,2,2
;
27
k3

))
=s(k)Re

(
Ak3F2

(
1
3
, 1
3
, 1
3

2
3
, 4
3

;
k3

27

)
+Bk2

3F2

(
2
3
, 2
3
, 2
3

4
3
, 5
3

;
k3

27

))
,

(2.1.38)

where A =
3√2Γ( 1

6)Γ( 1
3)Γ( 1

2)
8
√

3π2 , B =
Γ3( 2

3)
16π2 , and s(k) = 1+3sgn(k)

4 .

Equations (2.1.37) and (2.1.38) will often allow us to obtain convergent
series expansions from divergent hypergeometric formulas. For example,
applying the results of the last theorem to conjecture (2.1.30), we obtain

F (3, 5) ?=
16π2

15

∞∑
n=0

(
2n

n

)2 (1/16)2n+1

2n + 1
. (2.1.39)

It is hardly coincidental that (2.1.39) bears a striking resemblance to a fa-
mous formula that Ramanujan obtained for Catalan’s constant [33]:

L (χ−4, 2) = π
∞∑

n=0

(
2n

n

)2 (1/4)2n+1

2n + 1
.

Ramanujan’s formula follows easily from Boyd’s evaluation of the degenerate
Mahler measure m(4).
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The following list summarizes all of the known values of hypergeomet-
ric functions which reduce to special cases of F (b, c). When possible, we
have used equations (2.1.37) and (2.1.38) to obtain hypergeometric func-
tions with convergent arguments. Since no hypergeometric expression is
known for r(−1), we have simply retained that Mahler measure in our list.
Finally, because Mahler measures such as g(2) and n

(
3 3
√

2
)

lead to identical
hypergeometric expressions, this list contains fewer entries than we might
otherwise expect. As in Theorem 2.1.4, define

A :=
3
√

2Γ
(

1
6

)
Γ
(

1
3

)
Γ
(

1
2

)
8
√

3π2
, B :=

Γ3
(

2
3

)
16π2

,

then the following results are numerically true:

9
2π2

F (1, 1) =
1
9

log(54) − 1
814F3

(
4
3
, 5
3
,1,1

2,2,2
;
1
2

)
, (2.1.40)

16
π2

F (1, 2) =2 log(2) +
1
84F3

(
3
2
, 3
2
,1,1

2,2,2
;−1

4

)
, (2.1.41)

8
π2

F (1, 2) =
1√
2

3F2

(
1
2
, 1
2
, 1
2

1, 3
2

;
1
2

)
, (2.1.42)

81
4π2

F (1, 3) = log(6) +
1

1084F3

(
4
3
, 5
3
,1,1

2,2,2
;−1

8

)
, (2.1.43)

25
6π2

F (1, 5) ?= 3
√

2A3F2

(
1
3
, 1
3
, 1
3

2
3
, 4
3

;
2
27

)
+ 3

√
4B3F2

(
2
3
, 2
3
, 2
3

4
3
, 5
3

;
2
27

)
, (2.1.44)

40
3π2

F (1, 5) ?=
5
3

log(2) − 1
164F3

(
4
3
, 5
3
,1,1

2,2,2
;
27
32

)
, (2.1.45)

77
4π2

F (1, 11) =r(−1), (2.1.46)

6
π2

F (2, 3) ?=
1
23F2

(
1
2
, 1
2
, 1
2

1, 3
2

;
1
4

)
, (2.1.47)

24
π2

F (2, 3) ?=3 log(2) − 1
324F3

(
3
2
, 3
2
,1,1

2,2,2
;
1
4

)
, (2.1.48)

15
π2

F (2, 3) ?=
1
2

log(18) − 1
94F3

(
3
2
, 3
2
,1,1

2,2,2
;
8
9

)
, (2.1.49)

9
π2

F (2, 3) ?=
1
2

log(2) + 4F3

(
3
2
, 3
2
,1,1

2,2,2
,−8
)

, (2.1.50)

7
π2

F (2, 7) ?=
A

2 3F2

(
1
3
, 1
3
, 1
3

2
3
, 4
3

;− 1
27

)
− B

2 3F2

(
2
3
, 2
3
, 2
3

4
3
, 5
3

;− 1
27

)
, (2.1.51)

49
2π2

F (2, 7) ?= log(5) − 2
1254F3

(
4
3
, 5
3
,1,1

2,2,2
;

27
125

)
, (2.1.52)
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21
π2

F (2, 7) ?=g(7), (2.1.53)

15
4π2

F (3, 5) ?=
1
43F2

(
1
2
, 1
2
, 1
2

1, 3
2

;
1
16

)
, (2.1.54)

45
2π2

F (3, 5) ?= log(5) − 2
254F3

(
3
2
, 3
2
,1,1

2,2,2
;
16
25

)
, (2.1.55)

165
4π2

F (3, 5) ?=4 log(2) − 1
1284F3

(
3
2
, 3
2
,1,1

2,2,2
;

1
16

)
, (2.1.56)

75
4π2

F (3, 5) ?= log(3) +
2
94F3

(
3
2
, 3
2
,1,1

2,2,2
;−16

9

)
. (2.1.57)

While most of these formulas remain unproven, a variety of partial results
exist. For instance, identities (2.1.47) through (2.1.50) are equivalent to
one another [48], formulas (2.1.40) through (2.1.43) follow from [51], and
Brunault proved (2.1.46) in [42].

2.2 Reductions of F (1, 1), F (1, 2), F (1, 4), and
F (2, 2) to integrals of hypergeometric
functions

In the previous section we translated many of Boyd’s conjectures into explicit
identities between hypergeometric functions and lattice sums. This approach
has two essential consequences. Not only does it eliminate any obvious con-
nection with elliptic curves, but it also allows for the construction of proofs
based upon series manipulation. We have used such an approach to reduce
five cases of F (b, c) to integrals of hypergeometric functions. In this section
we will discuss the cases that occur when (b, c) ∈ {(1, 1), (1, 2), (1, 4), (2, 2)}.
We will rely heavily on the q-series theorems contained in Ramanujan’s
notebooks (see [38] and [40]).

Definition 2.2.1. Recall the following q-series notation:

ϕ(q) :=
∞∑

n=−∞
qn2

, ψ(q) :=
∞∑

n=0

q
n(n+1)

2 ,

f(−q) :=
∞∏

n=1

(1 − qn), (x; q)∞ :=
∞∏

n=0

(1 − xqn) .

Lemma 2.2.3 reduces the aforementioned cases of F (b, c) to two-dimensional
sums. Such identities exist because various eta-quotients can be written in
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terms theta functions. Euler’s pentagonal number formula is probably the
simplest such indentity:

∞∏
n=1

(1 − qn) =
∞∑

n=−∞
q

n(3n+1)
2 .

Unfortunately, similar formulas are not known for f2(−q), f(−q)f
(−q2

)
, or

f(−q)f
(−q3

)
[45]. This fact represents the main obstruction to also proving

Boyd’s conjectures for F (1, 5), F (2, 3), F (2, 7), and F (3, 5).

Definition 2.2.2. We will use the following notation:

F(1,1)(x) :=16
∞∑

n=−∞
k=0

(−1)n+k(2k + 1)
[3(2k + 1)2 + x2(6n + 1)2]2

, (2.2.1)

F(1,2)(x) :=
∞∑

n=−∞
k=0

(−1)n+k(2k + 1)
[(2k + 1)2 + x2(2n)2]2

, (2.2.2)

F(1,4)(x) :=25
∞∑

n,k=−∞

(−1)n(3k + 1)
[4(3k + 1)2 + x2(6n + 1)2]2

, (2.2.3)

F(2,2)(x) :=9
∞∑

n,k=0

(−1)
n(n+1)

2
+k(2k + 1)

[2(2k + 1)2 + x2(2n + 1)2]2
. (2.2.4)

Lemma 2.2.3. Suppose that (b, c) ∈ {(1, 1), (1, 2), (1, 4), (2, 2)}, then

F(b,c)(1) = F (b, c). (2.2.5)

Proof. First notice that F (b, c) has the following integral representation for
all values of b and c:

242F (b, c)
(1 + b)2(1 + c)2

=
∫ 1

0

∫ q1

0
q

(1+b)(1+c)
24 f (−q) f

(
−qb
)

f (−qc) f
(
−qbc

) dq

q

dq1

q1
.

We can apply Euler’s pentagonal number theorem four times (once to each
occurrence of f(−q)), to see the truth of this last formula. Taking note of
the following identities:

q1/6f4(−q) =
(
q1/24f (−q)

)(
q1/8f3 (−q)

)
,

q1/4f2 (−q) f2
(−q2

)
=
(

f2 (−q)
f (−q2)

)(
q1/4f3

(−q2
))

,
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q5/12f2 (−q) f2
(−q4

)
=
(
q1/12f

(−q2
))(

q1/3 f2 (−q) f2
(−q4

)
f (−q2)

)
,

q3/8f (−q) f2
(−q2

)
f
(−q4

)
=

(
q1/8 f (−q) f

(−q4
)

f (−q2)

)(
q1/4f3

(−q2
))

,

and then employing well known series expansions:

f2 (−q)
f (−q2)

= ϕ(−q) =
∞∑

n=−∞
(−1)nqn2

, (2.2.6)

q1/8 f (−q) f
(−q4

)
f (−q2)

= q1/8ψ (−q) =
∞∑

n=0

(−1)
n(n+1)

2 q
(2n+1)2

8 , (2.2.7)

q1/24f (−q) =
∞∑

n=−∞
(−1)nq

(6n+1)2

24 , (2.2.8)

q1/8f3 (−q) =
∞∑

n=0

(−1)n(2n + 1)q
(2n+1)2

8 , (2.2.9)

q1/3 f2 (−q) f2
(−q4

)
f (−q2)

=
∞∑

n=−∞
(3n + 1)q

(3n+1)2

3 , (2.2.10)

we recover equation (2.2.5) in every case.

We will use the next two propositions to reduce each of the two-dimensional
sums to a q-series. Then, in Theorem 2.2.7, we will reduce F(b,c)(x) to in-
tegrals of hypergeometric functions for x ∈ (0,∞). For certain values of x,
those formulas also translate into identities involving generalized hypergeo-
metric functions and Mahler measures.

Proposition 2.2.4. Assume that δ > 0 is sufficiently small, then

F(1,1)(x) = − π2i
9x

∫ iδ+∞

iδ−∞
sinh(t)

1 + 4 sinh2(t)
sec(

√
3xt) tan(

√
3xt)

t
dt, (2.2.11)

F(1,2)(x) =
π3

32
− π2i

32x

∫ iδ+∞

iδ−∞

(
csch(t) − 1

t

)
sec (xt) tan (xt)

t
dt (2.2.12)

F(1,4)(x) = − 25π2i
144

√
3x

∫ iδ+∞

iδ−∞
sinh(t)

1 + 4 sinh2(t)
csc2

(
π
3 − xt

)− csc2
(

π
3 + xt

)
t

dt,

(2.2.13)
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F(2,2)(x) = − 9π2i
128x

∫ iδ+∞

iδ−∞
sinh(t)
cosh(2t)

sec
(√

2xt
)
tan
(√

2xt
)

t
dt (2.2.14)

Proof. The proofs are all substantially the same. The idea is to use contour
integration to pick off the n-index of summation in the corresponding two-
dimensional sum. We will illustrate the proof of (2.2.12) explicitly. First
assume that 0 < δ < 1, and let C denote a closed contour which runs along
the line (iδ − ∞, iδ + ∞) and then encircles the upper half plane. Since
csch(t) has poles at t = πin, by the residue theorem
∞∑

n=1

(−1)n

[(2k + 1)2 + x2(2n)2]2
=

1
2πi

∫
C

(
csch(t) − 1

t

)
1

[(2k + 1)2 − x2(2t/π)2]2
dt.

If t = Reiθ, then the integrand has order O
(
R−5

)
, and therefore the circular

portion of the contour integral vanishes as R tends to ∞. Next observe that
the sum

π3

32
sec(tx) tan(tx)

tx
=

∞∑
k=0

(−1)k(2k + 1)[
(2k + 1)2 − x2 (2t/π)2

]2
converges uniformly when Im (t) > 0, hence
∞∑

k=0
n=1

(−1)n+k(2k + 1)
[(2k + 1)2 + x2(2n)2]2

= − π2i
64x

∫ iδ+∞

iδ−∞

(
csch(t) − 1

t

)
sec(xt) tan(xt)

t
dt.

Equation (2.2.12) follows easily from this last result.

Proposition 2.2.5. Let χ−3(k) and χ−4(k) denote Legendre symbols mod-
ulo three and four, and assume that x > 0.

If q = e−πx/
√

12 and ω = eπi/6, then

F(1,1)(x) =
2π2

9x

∞∑
k=1

kχ−4(k) log
∣∣∣∣1 + wqk

1 − wqk

∣∣∣∣ . (2.2.15)

If q = e−πx, then

F(1,2)(x) =
π3

32
− π2

8x

∞∑
k=1

kχ−4(k) log
(
1 + qk

)
. (2.2.16)

If q = e−πx/3 and ω = eπi/6, then

F(1,4)(x) =
25π2

72x

∞∑
k=1

kχ−3(k) log
∣∣∣∣1 + wqk

1 − wqk

∣∣∣∣ . (2.2.17)
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If q = e−πx/
√

8 and ω = eπi/4, then

F(2,2)(x) =
9π2

32x

∞∑
k=1

kχ−4(k) log
∣∣∣∣1 + wqk

1 − wqk

∣∣∣∣ . (2.2.18)

Proof. All of the proofs are very similar, so we will only prove (2.2.15) in
detail. Since sec(

√
3xt) × tan(

√
3xt) is periodic, we can rearrange (2.2.11)

to obtain

F(1,1)(x) = −π2i
9x

∫ iδ+ 2π√
3x

iδ

⎛⎝ ∞∑
n=−∞

1
t + 2πn√

3x

sinh
(
t + 2πn√

3x

)
1 + 4 sinh2

(
t + 2πn√

3x

)
⎞⎠ sin(

√
3xt)

cos2(
√

3xt)
dt,

where the interchange of summation and integration can be justified by the
fact that the summand has order O

(
e−2π|n|/√3x

)
as n → ±∞. Observe

that if q = e−πx/
√

12, ω = eπi/6, and Im (t) = δ < x, then

2π√
3x

∞∑
n=−∞

1
t + 2πn√

3x

sinh
(
t + 2πn√

3x

)
1 + 4 sinh2

(
t + 2πn√

3x

)
= log

(
2 +

√
3
)

+ 2
∞∑

k=1

log
∣∣∣∣1 + wqk

1 − wqk

∣∣∣∣ cos
(√

3xkt
)

.

(2.2.19)

This new restriction, δ < x, guarantees uniform convergence of the Fourier
series, and is consistent with the prior assumption that 0 < δ 	 1. The
proof of (2.2.19) is a straightforward exercise in contour integration which
we will skip. Substituting (2.2.19) into our integral yields

F(1,1)(x) = −π2i
9x

(
log(2 +

√
3)I0 + 2

∞∑
k=1

log
∣∣∣∣1 + wqk

1 − wqk

∣∣∣∣ Ik

)
,

where

Ik =
√

3x

2π

∫ iδ+ 2π√
3x

iδ

cos
(√

3xkt
)
sin
(√

3xt
)

cos2
(√

3xt
) dt

=
∫ iδ′+1

iδ′

cos (2πkt) sin (2πt)
cos2 (2πt)

dt

=ik sin (πk/2) .

The final step in this calculation follows from considering a closed rectan-
gular contour with vertices at {0, iδ′, 1 + iδ′, 1} which avoids the boundary
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points t = 1/4 and t = 3/4. With this formula for Ik in hand, the proof
of (2.2.15) is complete. The proofs of the other formulas follow in a similar
manner from slightly different Fourier series expansions.

At this point, a hypergeometric formula for F(1,2)(x) can be recovered.
By combining equation (2.2.16) with formulas (2-9) and (2-16) in [48], it is
easy to recognize that if q = e−πx, then

F(1,2)(x) =
π2

16x
m
(

if4(−q)√
qf4 (−q4)

+ y + y−1 + z + z−1

)
. (2.2.20)

In the next section we will use values of class invariants to deduce explicit
examples from (2.2.20). Unfortunately, we will require another theorem in
order to obtain useful results on the other three lattice sums.

Theorem 2.2.6. In this theorem we will always assume that x > 0. If
q = e−πx/

√
12, then

F(1,1)(x) =
2π2

3
√

3x
Im

[∫ iq

0

f9
(−u3

)
f3 (−u)

du

]
. (2.2.21)

If q = e−πx, then

F(1,2)(x) =
π3

32
− π2

16x

∫ q

0

ϕ2(−u)ϕ4(u) − 1
u

du. (2.2.22)

If q = e−πx/3, then

F(1,4)(x) =
25π2

36x
Im

⎡⎣∫ e
2πi
3 q

0
ϕ2(u)ψ4

(
u2
)
du

⎤⎦ . (2.2.23)

If q = e−πx/
√

8, then

F(2,2)(x) =
9π2

32
√

2x

∫ q

0
ϕ(−u2)ϕ(u4)

(
3ψ4(−u2) − ψ4(u2)

)
du. (2.2.24)

Proof. Equations (2.2.22) and (2.2.23) have similar proofs, so we will only
prove the latter identity. Notice that (2.2.17) can be rearranged to obtain

72x

25π2
F(1,4)(x) =Re

(∫ q

0

∞∑
k=1

k2χ−3(k)
2ωuk

1 − ω2u2k

du

u

)
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=
√

3
∫ q

0

∞∑
k=1

k2χ−3(k)
(

uk − u5k

1 + u6k

)
du

u

=Im

(
2
∫ e2πi/3q

0

∞∑
k=1

k2

(
uk − u3k + u5k

1 + u6k

)
du

u

)

=Im

(
2
∫ e2πi/3q

0

∞∑
k=1

k2uk

1 + u2k

du

u

)
.

Combining entries 10.1, 11.3, and 17.2 in Chapter 17 of [38], we deduce that
for |u| < 1:

∞∑
k=1

k2uk

1 + u2k
= uϕ2(u)ψ4

(
u2
)
,

which completes the proof of (2.2.23).
The proofs of equations (2.2.21) and (2.2.24) will require the following

formula:

Im (g (iu, t)) =
1
t

∞∑
k=0

(−1)k (2k + 1)2u2k+1

1 + u2(2k+1)

(
t2k+1 − t−(2k+1)

)
, (2.2.25)

where

g(u, t) =
(u; u)6∞

(
t−2u; u

)
∞
(
t2; u

)
∞

(t−1u; u)4∞ (t; u)4∞
,

and
(x; q)∞ = (1 − x)(1 − xq)(1 − xq2) . . .

Equation (2.2.25) is a direct consequence of identity (14.2.9) in [35], which
follows from product expansions for the Weierstrass ℘-function [43].

Rearranging equation (2.2.15) we have

9x

2π2
F(1,1)(x) =Re

(∫ q

0

∞∑
k=0

(−1)k(2k + 1)2
2ωu2k+1

1 − ω2u2(2k+1)

du

u

)

=
√

3
∫ q

0

∞∑
k=0

(−1)k(2k + 1)2
u2k+1 − u5(2k+1)

1 + u6(2k+1)

du

u
.

Applying (2.2.25) after letting u → u3 and t → u−2, transforms this last
integral into

3
√

3x

2π2
F(1,1)(x) = Im

(∫ iq

0

f5
(−u2

)
f4
(−u3

)
f
(−u6

)
f4(−u)

du

)
.
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By the following eta function identity:

f5
(−u2

)
f4
(−u3

)
f
(−u6

)
f4(−u)

=
f9
(−u3

)
f3 (−u)

+ u
f9
(−u6

)
f3 (−u2)

, (2.2.26)

this becomes

3
√

3x

π2
F(1,1)(x) =Im

(∫ iq

0

f9
(−u3

)
f3 (−u)

du

)
− Im

(∫ q

0
u

f9
(
u6
)

f3 (u2)
du

)

=Im

(∫ iq

0

f9
(−u3

)
f3 (−u)

du

)
− 0,

which completes the proof of (2.2.21). Although we will not elaborate on
the proof of (2.2.26) here, it suffices to say that it follows from algebraic
transformations for the hypergeometric function 2F1 ( 1

3
, 2
3
,1, u). We will also

point out that the eta-quotient f9 (−q) /f3
(−q3

)
curiously appears on page

1734 of [34].
The proof of (2.2.24) follows the same lines, but requires a few extra

steps. Proceeding as before, we find that

32x

9π2
F(2,2)(x) =Re

(∫ q

0

∞∑
k=0

(−1)k(2k + 1)2
2ωu2k+1

1 − ω2u2(2k+1)

du

u

)

=
∫ q

0

∞∑
k=0

(−1)k(2k + 1)2
u2k+1 − u3(2k+1)

1 + u4(2k+1)

du

u
.

If we apply equation (2.2.25) after letting u → u2 and t → u−1, this becomes

32x

9π2
F(2,2)(x) = Re

(
2
∫ ωq

0

f6
(−u2

)
f
(−u8

)
f (−u4)

1
(ωu, u2)4∞ (ω̄u, u2)4∞

du

)
,

where ω = eπi/4. For brevity of notation let us define a new function

g(u) :=
(
ωu, u2

)
∞
(
ω̄u, u2

)
∞

=
∞∏

n=0

(
1 −

√
2u2n+1 + u2(2n+1)

)
. (2.2.27)

Since (2.2.18) is odd with respect to q, our integral can be transformed into

32x

9π2
F(2,2)(x) = Re

(∫ ωq

0

f6
(−u2

)
f
(−u8

)
f (−u4)

g4(u) + g4(−u)
g4(u)g4(−u)

du

)
. (2.2.28)
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Next we will reduce
(
g4(u) + g4(−u)

)
/ (g(u)g(−u))4 to theta functions. Ob-

serve by equation (2.2.27) that

g(u)g(−u) =
∞∏

n=0

(
1 + u4(2n+1)

)
=

ϕ
(−u8

)
f (−u4)

. (2.2.29)

With two applications of the Jacobi triple product [38], we also have

g(u) + g(−u) =
1

f (−u2)

( ∞∑
n=−∞

(−ω)nun2
+

∞∑
n=−∞

ωnun2

)

=
2

f (−u2)

∞∑
n=−∞

(−1)nu16n2

=
2ϕ
(−u16

)
f (−u2)

. (2.2.30)

So finally, combining (2.2.29) and (2.2.30), we find that

g4(u) + g4(−u)
g4(u)g4(−u)

= 2
f4
(−u4

)
f4 (−u2)

[
8
ϕ4
(−u16

)
ϕ4 (−u8)

− 8
ϕ2
(−u16

)
ϕ
(−u2

)
ϕ3 (−u8)

+
ϕ2
(−u2

)
ϕ2 (−u8)

]
.

Recalling that ϕ2
(−q16

)
= ϕ

(−q8
)
ϕ
(
q8
)
, this becomes

g4(u) + g4(−u)
g4(u)g4(−u)

=2
f4
(−u4

)
f4 (−u2)

[
8ϕ2
(
u8
)− 8ϕ

(
u8
)
ϕ
(−u2

)
+ ϕ2

(−u2
)

ϕ2 (−u8)

]
,

=2
f5
(−u4

)
f6 (−u2)

[
8ϕ2
(
u8
)
ϕ
(−u2

)− 8ϕ
(
u8
)
ϕ2
(−u2

)
+ ϕ3

(−u2
)

ϕ2 (−u8)

]
,

and therefore (2.2.28) simplifies to

32x

9π2
F(2,2)(x) =Re

(
2
∫ ωq

0
f4
(−u4

)
f
(−u8

)
×8ϕ2

(
u8
)
ϕ
(−u2

)− 8ϕ
(
u8
)
ϕ2
(−u2

)
+ ϕ3

(−u2
)

ϕ2 (−u8)
du

)
.

Next, make the change of variables sending u → ωu, to obtain

=2
∫ q

0

f4
(
u4
)
f
(−u8

)
ϕ2 (−u8)

× Re
(
ω
(
8ϕ2
(
u8
)
ϕ
(−iu2

)− 8ϕ
(
u8
)
ϕ2
(−iu2

)
+ ϕ3

(−iu2
)))

du.
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If we recall that ϕ
(−iu2

)
= ϕ

(
u8
)− 2iu2ψ

(
u16
)
, then we are left with

32x

9π2
F(2,2)(x) =

√
2
∫ q

0

f4
(
u4
)
f
(−u8

)
ϕ2 (−u8)

((
ϕ
(
u8
)− 2u2ψ

(
u16
))3

−4u2ϕ
(
u8
)
ψ
(
u16
) (

ϕ
(
u8
)− 2u2ψ

(
u16
)))

du.

In order to simplify this last formula, we will freely apply theta function
identities on pages 34 and 40 of [38]. Therefore, we find that

=
√

2
∫ q

0

f4
(
u4
)
f
(−u8

)
ϕ2 (−u8)

(
ϕ3
(−u2

)− 4u2ϕ
(
u8
)
ψ
(
u16
)
ϕ
(−u2

))
du

=
√

2
∫ q

0

f4
(
u4
)
f
(−u8

)
ϕ2 (−u8)

ϕ
(−u2

) (
ϕ2
(−u2

)− 4u2ψ2
(
u8
))

du

=
1√
2

∫ q

0

f4
(
u4
)
f
(−u8

)
ϕ2 (−u8)

ϕ
(−u2

) (
3ϕ2
(−u2

)− ϕ2
(
u2
))

du

=
1√
2

∫ q

0

f4
(
u4
)
f
(−u8

)
ϕ2 (−u8) ψ2 (u4)

ϕ
(−u2

) (
3ψ4

(−u2
)− ψ4

(
u2
))

du

=
1√
2

∫ q

0
ϕ
(
u4
)
ϕ
(−u2

) (
3ψ4

(−u2
)− ψ4

(
u2
))

du,

which completes the proof of (2.2.24).

The next theorem requires the signature-three theta functions. Recall
that if ω = e2πi/3, then the signature-three theta functions are defined by:

a(q) :=
∞∑

n,m=−∞
qm2+mn+n2

,

b(q) :=
∞∑

n,m=−∞
ωm−nqm2+mn+n2

,

c(q) :=
∞∑

n,m=−∞
q(m+1/3)2+(m+1/3)(n+1/3)+(n+1/3)2 .

The signature-three theta functions satisfy many interesting formulas, in-
cluding the following cubic relation:

a3(q) = b3(q) + c3(q).

Various other properties of a(q), b(q), and c(q) have been catalogued (see
[40], page 93).
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Theorem 2.2.7. We can reduce the two-dimensional lattice sums to inte-
grals of hypergeometric functions.

Suppose that q = e−πx/
√

12, then

81x

2π2
F(1,1)(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
3ñ
(
3a(iq)

b(iq)

)
+ 4√

3
n2

(
b3(iq)
a3(iq)

)
if x ∈

(
0, 1√

5

)
,

3ñ
(
3a(iq)

b(iq)

)
+ 1√

3
n2

(
b3(iq)
a3(iq)

)
if x ∈

(
1√
5
,
√

5
)
,

1√
3
n2

(
b3(iq)
a3(iq)

)
if x ∈ (√5,∞),

(2.2.31)

where

ñ(k) = Re
(

log(k) − 2
k3 4F3

(
1,1, 4

3
, 5
3

2,2,2
;
27
k3

))
,

and

n2(k) = Im

⎛⎝∫ 1

k

2F1

(
1
3
, 2
3

1
; 1 − u

)
u

du

⎞⎠ .

Notice that ñ(k) = n(k) whenever |k| is sufficiently small.
Suppose that q = e−πx and x > 0, then

16x

π2
F(1,2)(x) = m

(
if4(−q)√
qf4 (−q4)

)
, (2.2.32)

where m(k) is defined in (2.1.6).
Suppose that q = e−πx/3 and ω = e2πi/3, then

144x

25π2
F(1,4)(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
m
(
4 ϕ2(ωq)

ϕ2(−ωq)

)
− 3

4m2

(
ϕ4(−ωq)
ϕ4(ωq)

)
if x ∈

(
0, 1√

2

)
,

m
(
4 ϕ2(ωq)

ϕ2(−ωq)

)
+ 1

4m2

(
ϕ4(−ωq)
ϕ4(ωq)

)
if x ∈

(
1√
2
,
√

2
)
,

1
4m2

(
ϕ4(−ωq)
ϕ4(ωq)

)
if x ∈ (√2,∞),

(2.2.33)

where m(k) is defined in (2.1.6), and

m2(k) := Im

⎛⎝∫ 1

k

2F1

(
1
2
, 1
2

1
; 1 − u

)
u

du

⎞⎠ .

If q = e−πx/
√

8, then

F(2,2)(x) =
9π2

512x

∫ 1

ϕ4(−q2)
ϕ4(q2)

(3
√

u − 1)

u3/4
√

1 −√
u

2F1

(
1
2
, 1
2

1
; 1 − u

)
du. (2.2.34)
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Proof. The proof of this theorem follows from our ability to invert theta
functions. First recall the classical inversion formula for the theta function:

ϕ2(q) = 2F1

(
1
2
, 1
2

1
; 1 − ϕ4(−q)

ϕ4(q)

)
, (2.2.35)

which holds whenever q ∈ (−1, 1) [38]. If we use the notation α = 1 −
ϕ4(−q)/ϕ4(q) and z = ϕ2(q), then many different theta functions can be
expressed in terms of these two parameters. The following identities are
true whenever |q| < 1 (see pages 122, and 123 in [38]):

ϕ(q) =
√

z,

ϕ(−q) =(1 − α)1/4√z,

ϕ
(
q2
)

=
(
1 +

√
1 − α

)1/2
√

z

2
,

ψ(−q) =q−1/8 {α(1 − α)}1/8

√
z

2
,

ψ(q) =q−1/8α1/8

√
z

2
,

and it is also well known that

dα

dq
=

α(1 − α)z2

q
.

Both (2.2.32) and (2.2.34) follow from applying these parameterizations to
equations (2.2.22) and (2.2.24) respectively.

Since equation (2.2.35) does not hold in the entire open unit disk, we will
need to generalize that result. First notice that z satisfies the hypergeometric
differential equation with respect to α:

α(1 − α)
d2z

dα2
+ (1 − 2α)

dz

dα
− z

4
= 0. (2.2.36)

We can use the relation d
dα = 1

dα
dq

× d
dq , to show that (2.2.36) holds (excluding

possible poles) for |q| < 1. The most general solution of this differential
equation has the form

z = C2F1

(
1
2
, 1
2

1
; α
)

+ D2F1

(
1
2
, 1
2

1
; 1 − α

)
,

where C and D are undetermined constants. When q lies in a neighborhood
of zero, (2.2.35) shows that (C,D) = (1, 0). We can analytically continue
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that solution to a larger connected q-domain, provided that α (and 1 − α
if D �= 0) does not intersect the line [1,∞). In particular, the function

2F1

(
1
2
, 1
2

1
; α
)

has a branch cut running along [1,∞).

If we consider values of q ∈ (0, ω) with ω = e2πi/3, then α crosses [1,∞)
at the point q = ωe−π

√
2/3. Similarly, 1 − α intersects the branch cut at

q = ωe−π/3
√

2. It follows that we will have to solve the hypergeometric
differential equation separately on each of the three line segments. If u =
ωe−πx/3, then

ϕ2(u) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−32F1

(
1
2
, 1
2

1
; 1 − ϕ4(−u)

ϕ4(u)

)
+ 2i2F1

(
1
2
, 1
2

1
; ϕ4(−u)

ϕ4(u)

)
if x ∈

(
0, 1√

2

)
,

2F1

(
1
2
, 1
2

1
; 1 − ϕ4(−u)

ϕ4(u)

)
+ 2i2F1

(
1
2
, 1
2

1
; ϕ4(−u)

ϕ4(u)

)
if x ∈

(
1√
2
,
√

2
)
,

2F1

(
1
2
, 1
2

1
; 1 − ϕ4(−u)

ϕ4(u)

)
if x ∈ (√2,∞).

(2.2.37)

The coefficients in (2.2.37) can be verified from the fact that ϕ2(u) is analytic
when x ∈ (0,∞). For example, we can check the continuity of the right-hand
side of (2.2.37) by letting u → ωe−π

√
2/3. In that case α = 1 − ϕ4(−u)

ϕ4(u)
≈

5.828 . . . , and we have:

0 =ϕ2
(
ωe−π

√
2+0
3

)
− ϕ2

(
ωe−π

√
2−0
3

)
=2F1

(
1
2
, 1
2

1
; α + i0

)
− 2F1

(
1
2
, 1
2

1
; α − i0

)
− 2i2F1

(
1
2
, 1
2

1
; 1 − α

)
.

This vanishing of this last expression follows from basic properties of the
hypergeometric function (see problem 1 on page 276 of [47]), and therefore
the right-hand side of (2.2.37) is indeed continuous at x =

√
2. In practice,

we simply discovered (2.2.37) numerically.
We will use the theory of signature-three theta functions to prove equa-

tion (2.2.31). Recall that c(q) can be expressed as an infinite product ([40],
page 109):

c3(q)
27q

=
f9(−q3)
f3(−q)

,

and that the signature-three theta functions obey a differentiation formula
(which can be derived from formula 4.4 on page 106 of [40]):

c3(q)
q

=
a(q)

1 − c3(q)
a3(q)

d
dq

(
c3(q)
a3(q)

)
.
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It follows immediately that equation (2.2.21) reduces to

F(1,1)(x) =
2π2

81
√

3x
Im

⎡⎣∫ iq

0

a(u)

1 − c3(u)
a3(u)

d
du

(
c3(u)
a3(u)

)
du

⎤⎦ . (2.2.38)

Next recall that for |u| sufficiently small ([40], page 99):

a(u) = 2F1

(
1
3
, 2
3

1
;
c3(u)
a3(u)

)
. (2.2.39)

In order to apply (2.2.39) to our integral, we will need to establish a gen-
eralized inversion formula which holds for u ∈ (0, i). The reasoning closely
follows the proof of (2.2.37), except that c3(u)/a3(u) ∈ [1,∞) when u =
ie−π

√
5/12, and 1 − c3(u)/a3(u) ∈ [1,∞) when u = ie−π/

√
60. Suppose that

u = ie−πx/
√

12, then we obtain

a(u) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
42F1

(
1
3
, 2
3

1
; c3(u)

a3(u)

)
+

√
3i2F1

(
1
2
, 1
2

1
; 1 − c3(u)

a3(u)

)
if x ∈

(
0, 1√

5

)
,

22F1

(
1
3
, 2
3

1
; c3(u)

a3(u)

)
+

√
3i2F1

(
1
2
, 1
2

1
; 1 − c3(u)

a3(u)

)
if x ∈

(
1√
5
,
√

5
)
,

2F1

(
1
3
, 2
3

1
; c3(u)

a3(u)

)
if x ∈ (√5,∞).

(2.2.40)

Finally, (2.2.31) follows from substituting (2.2.40) into (2.2.38) and simpli-
fying.

Finally, we will conclude this section by summarizing the formulas that
follow from setting x = 1 in Theorem 2.2.7.

Corollary 2.2.8. The following identities are true:
27
2π2

F (1, 1) =m
(
y3 + z3 + 1 − 3 3

√
2yz
)

, (2.2.41)

16
π2

F (1, 2) =m
(
4i + y + y−1 + z + z−1

)
, (2.2.42)

144
25π2

F (1, 4) =m
(

4√
θ1

+ y + y−1 + z + z−1

)
(2.2.43)

+
1
4
Im

⎛⎝∫ 1

θ1

2F1

(
1
2
, 1
2

1
; 1 − u

)
u

du

⎞⎠ ,

256
9π2

F (2, 2) =
∫ 1

θ2

3u − 1√
u(1 − u)

2F1

(
1
2
, 1
2

1
; 1 − u2

)
du, (2.2.44)

where θ1 = 1
2 + i

(
2 +

√
3
)

4
√

12, and θ2 =
√

2 − 1.
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2.2.1 More explicit examples

In this section we will use values of class invariants to deduce some explicit
formulas for Mahler measures. Recall that if q = e−π

√
m, then the class

invariants are defined by

gm :=2−1/4q−1/24
(
q; q2

)
∞ , Gm :=2−1/4q−1/24

(−q; q2
)
∞ .

It is a classical fact that Gm and gm are algebraic numbers whenever m ∈ Q,
and that they satisfy the following algebraic relation:

(gmGm)8
(
G8

m − g8
m

)
=

1
4
. (2.2.45)

Since most tables only contain values of gm when m is even, and Gm when m
is odd, our calculations will require (2.2.45). The simplest examples that we
will consider follow from equation (2.2.32), while equations (2.2.31), (2.2.33),
and (2.2.34) lead to slightly more complicated results.

Theorem 2.2.9. Suppose that m ∈ N, then

m
(
8ig8

mG4
m + y + y−1 + z + z−1

)
=

16
√

m

π2

∞∑
n=1

bn

n2
, (2.2.46)

where ∞∑
n=1

bnqn = q
∞∏

n=1

(
1 − q8n

)3 (1 − q4mn
)2

(1 − q8mn)
.

The following table gives evaluations of 8g8
mG4

m, closed forms for
∑∞

n=1 bnqn,
and states whether or not bn is multiplicative:

m 8g8
mG4

m

∞∑
n=1

bnqn Multiplicative?

1 4 qf2
(−q4

)
f2
(−q8

)
Yes

2 4
√

2 + 2
√

2 q
f5(−q8)
f(−q16)

No

3 4
(
2 +

√
3
)

q
f3(−q8)f2(−q12)

f(−q24)
No

7 4
(
8 + 3

√
7
)

q
f3(−q8)f2(−q28)

f(−q56)
No

9 4
(
7 + 4 4

√
12 + 2 4

√
122 + 4

√
123
)

q
f3(−q8)f2(−q36)

f(−q72)
No

15 4
(
28 + 16

√
3 + 12

√
5 + 7

√
15
)

q
f3(−q8)f2(−q60)

f(−q120)
No
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Proof. Setting q = e−π
√

m reduces equation (2.2.20) to

F(1,2)

(√
m
)

=
π2

16
√

m
m
(
8ig8

mG4
m + y + y−1 + z + z−1

)
. (2.2.47)

Therefore, we can obtain Mahler measure formulas by appealing to tables
of class invariants [40]. If m ∈ N, we can also use the definition of F(1,2)(x)
to show that

F(1,2)(
√

m) =
∞∑

n=1

bn

n2
,

where bn has the stated generating function.
The only remaining task is to check the values of 8g8

mG4
m. In particular,

we can solve (2.2.45) to show that

8g8
mG4

m = 4
(
G12

m +
√

G24
m − 1

)
= 4

√
2g6

m

√
g12
m +

√
g24
m + 1.

For example, since G1 = 1, it follows that 8g8
1G

4
1 = 4. While this type of

argument naturally leads to equations involving nested radicals, many of
those formulas simplify with sufficient effort.

If we consider examples involving F(1,1)(x), then we can obtain two dis-
tinct types of formulas. The first class of identities occurs when Im

(
a3(iq)/b3(iq)

)
=

0. In two of those cases the n2 term in (2.2.31) vanishes, yielding formulas
that reduce to generalized hypergeometric functions.

Theorem 2.2.10. Let φ = 1+
√

5
2 denote the golden ratio, then

F(1,1) (1) =
2π2

27
n
(
3 3
√

2
)

, (2.2.48)

F(1,1)

(
1√
5

)
=

2
√

5π2

27
ñ

(
3
3
√

φ

)
. (2.2.49)

Recall that n(k) is defined in equation (2.1.7).

In the case when Im
(
a3(iq)/b3(iq)

) �= 0, we can establish many inter-

esting formulas by setting q = e−π
√

a
b . The next theorem provides two

examples where b = 1 and a is a product of small primes.
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Theorem 2.2.11. Let ω = eπi/3 and recall that n2(k) is defined in Theorem
2.2.7. We have:

L(g, 2) = r1
2π2

81
√

3
n2 (θ) = r2F(1,1)

(√
m
)
, (2.2.50)

for the following values of m, g(q), θ, r1, and r2:

m g(q) θ r1 r2

9 qf3
(−q2

)
f
(−q18

)
9

250

(
7 − 19 3

√
2w − 2 3

√
4w2
)

3 9

25 q7f3
(−q6

)
f
(−q150

)
1

1+z6 , where (z2+3z+1)3

z6+1
= 2 1

5 1

We will conclude this section by pointing out that F(1,1)(x) can be ex-
pressed as a four-dimensional lattice sum for all values of x:

F(1,1)(x) = 16
∞∑

ni=−∞
i∈{1,2,3,4}

(−1)n1+n2+n3+n4

[(6n1 + 1)2 + (6n2 + 1)2 + (6n3 + 1)2 + x2(6n4 + 1)2]2
.

While this formula for F(1,1)(x) resembles the definition of F (b, c), we have
shown that F(1,1)(x) is much easier to understand. By equation (2.2.31)
we can obtain hypergeometric formulas for F(1,1)(x) whenever x ∈ Q. For
instance, applying equation (2.1.38) to formula (2.2.49), yields an interesting
lattice sum identity:

3456√
15

∞∑
ni=−∞

i∈{1,2,3,4}

(−1)n1+n2+n3+n4[
(6n1 + 1)2 + (6n2 + 1)2 + (6n3 + 1)2 + 1

5(6n4 + 1)2
]2

=
C1
3
√

φ
3F2

(
1
3
, 1
3
, 1
3

2
3
, 4
3

;
1
φ

)
+

C2

3
√

φ2
3F2

(
2
3
, 2
3
, 2
3

4
3
, 5
3

;
1
φ

)
,

(2.2.51)

where φ = 1+
√

5
2 is the golden ratio, C1 = 2 3

√
2Γ
(

1
2

)
Γ
(

1
3

)
Γ
(

1
6

)
, and C2 =

3
√

3Γ3
(

2
3

)
. Equation (2.2.51) also resembles formulas that Forrester and

Glasser established for three-dimensional sums associated with NaCl lattices
[46].

2.2.2 Remarks on F (1, 3) and higher values of F (b, c)

Finally, we will speculate on how one might reduce higher values of F (b, c)
to hypergeometric integrals. Our proof of the F (1, 3) formula will be in-
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structive. Recall that Rodriguez-Villegas demonstrated that

4π2

81
n(−6) = Re

⎛⎜⎜⎝1
2

∑
m,n∈Z

(m,n) �=(0,0)

χ−3(n)(
3
(

1+i
√

3
2

)
m + n

)2 (
3
(

1−i
√

3
2

)
m + n

)
⎞⎟⎟⎠ ,

(2.2.52)
and then used Deuring’s theorem to equate this Eisenstein series to the L
series of a CM elliptic curve of conductor 27. A different proof could have
been constructed from numerically observing that

q

∞∏
n=1

(
1 − q3n

)2 (1 − q9n
)2

=
1
4

2∑
j=1

χ−3(j)
∞∑

n,m=−∞
[(6m + j) + 3(6n + j)] q

(6m+j)2+3(6n+j)2

4 .

(2.2.53)

The modularity theorem implies that qf2
(−q3

)
f2
(−q9

)
is associated to

the correct elliptic curve, hence the Mellin transform of the left-hand side of
equation (2.2.53) will equal L(E, s). Since the Mellin transform (at s = 2) of
the right-hand side trivially equals the right-hand side of equation (2.2.52),
it just remains to prove (2.2.53). By applying limiting cases of the triple and
quintuple product identities, we can show that equation (2.2.53) is equivalent
to an identity between eta functions:

4qf2
(−q3

)
f2
(−q9

)
=q

f5
(−q6

)
f
(−q36

)
f2
(−q54

)
f2 (−q12) f (−q18) f (−q108)

+ 3q
f
(−q12

)
f7
(−q18

)
f (−q6) f3 (−q36)

− 2q4 f2
(−q3

)
f2
(−q12

)
f2
(−q18

)
f
(−q27

)
f
(−q108

)
f (−q6) f (−q9) f (−q36) f (−q54)

− 6q4 f2
(−q6

)
f3
(−q9

)
f3
(−q36

)
f (−q3) f (−q12) f2 (−q18)

.

(2.2.54)

Identities between modular forms, such as equation (2.2.54), are usually
established by checking that both sides of the proposed formula have the
same McLauren series expansion for sufficiently many terms. If we use the
inversion formula for the eta function, then (2.2.54) can be viewed as an
example of a mixed modular equation, i.e. an algebraic relation between the
moduli of isogenous elliptic curves. From this perspective, it seems likely
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that the rest of Boyd’s conjectures will follow from discovering appropriate
mixed modular equations.

While it is probably unreasonable to expect to find useful series expan-
sions for qf(−qA)f(−qAb)f(−qAc)f(−qAbc), when (b, c) ∈ {(1, 5), (1, 11), (2, 3),
(2, 7), (3, 5)} and A = 24/ ((1 + b)(1 + c)), this does not seem to rule out the
possibility of finding such results for linear combinations of related eta prod-
ucts. It might be interesting to examine whether or not a series expansion
such as equation (2.2.53) exists for the following function:

N∑
j=1

cjq
jf(−qAj)f(−qAbj)f(−qAcj)f(−qAbcj), (2.2.55)

for appropriate values of cj ∈ Q. Boyd’s conjectures would most likely follow
from such a theorem, as the Mellin transform (at s = 2) of (2.2.55) equals
a rational multiple of L(E, 2).

2.3 Connections with the elliptic dilogarithm

In this section we will point out that the method from Section 2.2 can be used
to establish relations between values of F (b, c) and the elliptic dilogarithm.

Definition 2.3.1. Recall that the elliptic dilogarithm is defined by

L (x, q) =
∞∑

n=−∞
D (xqn) ,

where D(z) = Im (Li2(z) + log |z| log(1 − z)) is the Bloch-Wigner diloga-
rithm.

In the previous section we integrated cusp forms to obtain identities
between L-values and hypergeometric functions. For example, we used the
following two-dimensional series:

qf2
(−q4

)
f2
(−q8

)
=

∞∑
n=−∞

k=0

(−1)n+k(2k + 1)q(2n)2+(2k+1)2 ,

to recover formula (2.1.13) for F (1, 2). In general, comparing different series
expansions for the same cusp form will often lead to relations between hy-
pergeometric functions and the elliptic dilogarithm. For instance, applying
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our method to the following identity

qf2
(−q4

)
f2
(−q8

)
=

∞∑
n,k=0

(−1)k(2k + 1)q
(2k+1)2+(2n+1)2

2 ,

yields
F (1, 2) =

π

2
L (i,−eπ) , (2.3.1)

which is comparable in difficulty to equation (2.1.13).

Theorem 2.3.2. Suppose that x ∈ R is sufficiently large and ω = e2πi/3,
then the following identities are true:

4
∞∑

n,k=0

(−1)k(2k + 1)
[(2n + 1)2 + x2(2k + 1)2]2

=
π

2x3
L (i,−eπx) , (2.3.2)

∞∑
n,k=−∞

(3k + 1)
[(2n + 1)2 + x2(3k + 1)2]2

=
π

2
√

3x3
L (ω,−eπx) . (2.3.3)

We will conclude this section by briefly pointing out a pair of identities
involving the L-functions of modular forms. If we define f1(q) and f2(q) by

f1(q) :=q
∞∏

n=1

(
1 − q8n

)5
(1 − q16n)

, f2(q) := q3
∞∏

n=1

(
1 − q16n

)5
(1 − q8n)

,

then we have shown that

L (f1, 2) =
π2

16
√

2
m
(

4i
√

2 + 2
√

2 + y + y−1 + z + z−1

)
,

and
L (f2, 2) =

π

16
√

2
L
(
i,−eπ

√
2
)

.

Despite the fact that f1(q) and f2(q) are closely related, their L-values re-
duce to special cases of different functions. We will hypothesize that only
L-functions of modular forms with nice arithmetic properties should be ex-
pressible in terms of both elliptic dilogarithms and Mahler measures.

2.4 Higher lattice sums and conclusion

Perhaps the moral of this paper is that lattice sums are difficult to deal with.
While many hypergeometric formulas have been experimentally discovered

37



Chapter 2. Lattice sums and Mahler measures

for F (b, c), only the simplest cases have been rigorously proved. Notice
that our formula for F (1, 4), equation (2.2.44), involves Meijer’s G-function
disguised as a hypergeometric integral:

Im

⎛⎝∫ 1

k

2F1

(
1
2
, 1
2

1
; 1 − u

)
u

du

⎞⎠ =
1
π2

Im
(
G3,2

3,3

(
k
∣∣ 12 , 1

2
,1

0,0,0

))
.

This identity almost certainly rules out the possibility of expressing F (1, 4)
as a Mahler measure, and it also indicates that any explicit formula for
F (b, c) should reduce to Meijer G functions in certain instances.

It seems difficult to conjecture what types of formulas should exist for
higher dimensional lattice sums. Let us consider the k-dimensional lattice
sum

F
(j)
k (x1, . . . , xk) :=

∞∑
ni=−∞

(−1)n1+···+nk

(x1(6n1 + 1)2 + · · · + xk(6nk + 1)2)j
,

which arises from integrating eta products. Many non-trivial linear depen-
dencies exist between different values of F

(j)
k (x1, . . . , xk) when k � 4. For

example, clearing denominators and then integrating formula (2.2.26) leads
to a linear dependence between 13-dimensional lattice sums:

F
(j)
13

⎛⎝2, . . . , 2︸ ︷︷ ︸
8

, 3, . . . , 3︸ ︷︷ ︸
4

, 6

⎞⎠ =F
(j)
13

⎛⎝1, 2, . . . , 2︸ ︷︷ ︸
4

, 3, . . . , 3︸ ︷︷ ︸
8

⎞⎠
+ F

(j)
13

⎛⎝1, . . . , 1︸ ︷︷ ︸
4

, 6, . . . , 6︸ ︷︷ ︸
9

⎞⎠ .

Although we have only proved hypergeometric formulas for F
(j)
k when k ≤ 6,

and j ∈ {2, 3}, it might be interesting to search for higher dimensional exam-
ples numerically. Lattice sums with Euler products are the best candidates
(F (b, c) belongs to this class of functions when (1+b)(1+c) divides 24), since
they seem to be the only lattice sums which ever reduce to hypergeometric
functions with rational arguments. To illustrate this principle, we can apply
the methods of Section 2.2 to show that

F
(2)
6 (1, 1, 1,m,m,m) =

π2

64
√

mG12
m

3F2

(
1
2
, 1
2
, 1
2

1,1
,

1
G24

m

)
, (2.4.1)
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where Gm is the usual class invariant. For m ∈ {1, 3, 7}, we have the follow-
ing table:

m g(q) L(g, 2)

1 q
∏∞

n=1

(
1 − q4n

)6 π2

16 3F2

(
1
2
, 1
2
, 1
2

1,1
, 1
)

3 q
∏∞

n=1

(
1 − q2n

)3 (1 − q6n
)3 π2

8
√

33F2

(
1
2
, 1
2
, 1
2

1,1
, 1

4

)
7 q

∏∞
n=1 (1 − qn)3

(
1 − q7n

)3 π2

8
√

73F2

(
1
2
, 1
2
, 1
2

1,1
, 1

64

)
In each of these three examples, g(q) is a multiplicative weight 3 cusp form.
On the other hand, if we consider a similar looking, but non-multiplicative
eta product:

g1(q) = q

∞∏
n=1

(
1 − q3n

)3 (1 − q5n
)3

,

then equation (2.4.1) gives a formula for L(g1, 2) involving G24
5/3. Since G5/3

is a root of the following polynomial equation:

0 = x12 − 8 4
√

8

(
1 +

√
5

2

)3

x9 + 4 4
√

2

(
1 +

√
5

2

)
x3 + 8

(
1 +

√
5

2

)4

,

it is not hard to see that G24
5/3 is an irrational algebraic number.
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Chapter 3

Functional equations for
Mahler measures

Matilde N. Laĺın and Mathew D. Rogers2

3.1 History and introduction

The goal of this paper is to establish identities between the logarithmic
Mahler measures of polynomials with zero varieties corresponding to genus-
one curves. Recall that the logarithmic Mahler measure (which we shall
henceforth simply refer to as the Mahler measure) of an n-variable Laurent
polynomial P (x1, x2, . . . , xn) is defined by

m (P (x1, . . . , xn)) =
∫ 1

0
. . .

∫ 1

0
log
∣∣P (e2πiθ1 , . . . , e2πiθn

) ∣∣dθ1 . . .dθn.

Many difficult questions surround the special functions defined by Mahler
measures of elliptic curves.

The first example of the Mahler measure of a genus-one curve was studied
by Boyd [63] and Deninger [65]. Boyd found that

m
(

1 + x +
1
x

+ y +
1
y

)
?= L′(E, 0), (3.1.1)

where E denotes the elliptic curve of conductor 15 that is the projective
closure of 1+x+ 1

x + y + 1
y = 0. As usual, L(E, s) is its L-function, and the

question mark above the equals sign indicates numerical equality verified up
to 60 decimal places.

Deninger [65] gave an interesting interpretation of this formula. He ob-
tained the Mahler measure by evaluating the Bloch regulator of an element
{x, y} from a certain K-group. In other words, the Mahler measure is given

2A version of this chapter has been published. Laĺın, M. N. and Rogers, M. D. (2007)
Functional equations for Mahler measures of genus-one curves. Algebra and Number
Theory 1:87-117.
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by a value of an Eisenstein-Kronecker series. Therefore Bloch’s and Beilin-
son’s conjectures predict that

m
(

1 + x +
1
x

+ y +
1
y

)
= cL′(E, 0),

where c is some rational number. Let us add that, even if Beilinson’s conjec-
tures were known to be true, this would not suffice to prove equality (3.1.1),
since we still would not know the height of the rational number c.

This picture applies to other situations as well. Boyd [63] performed
extensive numerical computations within the family of polynomials k + x +
1
x +y+ 1

y , as well as within some other genus-one families. Boyd’s numerical
searches led him to conjecture identities such as

m
(

5 + x +
1
x

+ y +
1
y

)
?= 6m

(
1 + x +

1
x

+ y +
1
y

)
,

m
(

8 + x +
1
x

+ y +
1
y

)
?= 4m

(
2 + x +

1
x

+ y +
1
y

)
.

Boyd conjectured conditions predicting when formulas like Eq. (3.1.1) should
exist for the Mahler measures of polynomials with integral coefficients. This
was further studied by Rodriguez-Villegas [71] who interpreted these con-
ditions in the context of Bloch’s and Beilinson’s conjectures. Furthermore,
Rodriguez-Villegas used modular forms to express the Mahler measures as
Kronecker-Eisenstein series in more general cases. In turn, this allowed him
to prove some equalities such as

m
(

4
√

2 + x +
1
x

+ y +
1
y

)
= L′

(
E4

√
2, 0
)

, (3.1.2)

m
(

3
√

2 + x +
1
x

+ y +
1
y

)
=

5
2
L′
(
E3

√
2, 0
)

, (3.1.3)

where Ek denotes the projective closure of k + x + 1
x + y + 1

y = 0. The first
equality can be proved using the fact that the corresponding elliptic curve
has complex multiplication, and therefore the conjectures are known for this
case due to Bloch [62]. The second equality depends on the fact that one
has the modular curve X0(24), and the conjectures then follow from a result
of Beilinson.

Rodriguez-Villegas [72] subsequently used the relationship between Mahler
measures and regulators to prove a conjecture of Boyd [63]:

m(y2 + 2xy + y − x3 − 2x2 − x) =
5
7
m(y2 + 4xy + y − x3 + x2).
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Chapter 3. Functional equations for Mahler measures

It is important to point out that he proved this identity without actually
expressing the Mahler measures in terms of L-series. Bertin [61] has also
proved similar identities using these ideas.

Although the conjecture in Eq. (3.1.1) remains open, we will in fact
prove two of Boyd’s other conjectures in this paper.

Theorem 3.1.1. The following identities are true:

m

(
2 + x +

1
x

+ y +
1
y

)
=L′

(
E3

√
2, 0
)

, (3.1.4)

m

(
8 + x +

1
x

+ y +
1
y

)
=4L′

(
E3

√
2, 0
)

. (3.1.5)

Our proof of Theorem 3.1.1 follows from combining two interesting “func-
tional equations” for the function

m(k) := m
(

k + x +
1
x

+ y +
1
y

)
.

Kurokawa and Ochiai [67] recently proved the first functional equation. They
showed that if k ∈ R\{0}:

m
(
4k2
)

+ m

(
4
k2

)
= 2m

(
2
(

k +
1
k

))
. (3.1.6)

In Section 3.3 we use regulators to give a new proof of Eq. (3.1.6). We will
also prove a second functional equation in Section 3.2.1 using q-series. In
particular, if k is nonzero and |k| < 1:

m

(
2
(

k +
1
k

))
+ m

(
2
(

ik +
1
ik

))
= m

(
4
k2

)
. (3.1.7)

Theorem 3.1.1 follows from setting k = 1/
√

2 in both identities, and then
showing that 5m

(
i
√

2
)

= 3m
(
3
√

2
)
. We have proved this final equality in

Section 3.3.6.
This paper is divided into two sections of roughly equal length. In Sec-

tion 3.2 we will prove more identities like Eq. (3.1.7), which arise from
expanding Mahler measures in q-series. In particular, we will look at identi-
ties for four special functions defined by the Mahler measures of genus-one
curves (see equations (3.2.1) through (3.2.4) for notation). Equation (3.2.14)
undoubtedly constitutes the most important result in this part of the pa-
per, since it implies that infinitely many identities like Eq. (3.1.7) exist.
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Chapter 3. Functional equations for Mahler measures

Subsections 3.2.1 and 3.2.2 are mostly devoted to transforming special cases
of Eq. (3.2.14) into interesting identities between the Mahler measures of
rational polynomials. While the theorems in those subsections rely heav-
ily on Ramanujan’s theory of modular equations to alternative bases, we
have attempted to maximize readability by eliminating q-series manipula-
tion wherever possible. Finally, we have devoted Subsection 3.2.3 to proving
some useful computational formulas. As a corollary we establish several new
transformations for hypergeometric functions, including:

∞∑
n=0

(
k(1 − k)2

(1 + k)2

)n n∑
j=0

(
n

j

)2(n + j

j

)

=
(1 + k)2√

(1 + k2)
(
(1 − k − k2)2 − 5k2

)

× 2F1

⎛⎜⎝1
4
,
3
4
; 1;

64k5
(
1 + k − k2

)
(1 + k2)2

(
(1 − k − k2)2 − 5k2

)2

⎞⎟⎠ .

(3.1.8)

We have devoted Section 3.3 to further studying the relationship be-
tween Mahler measures and regulators. We show how to recover the Mahler
measure q-series expansions and the Kronecker-Einsenstein series directly
from Bloch’s formula for the regulator. This in turn shows that the Mahler
measure identities can be viewed as consequences of functional identities for
the elliptic dilogarithm.

Many of the identities in this paper can be interpreted from both a
regulator perspective, and from a q-series perspective. The advantage of the
q-series approach is that it simplifies the process of finding new identities.
The fundamental result in Section 3.2, Eq. (3.2.14), follows easily from the
Mahler measure q-series expansions. Unfortunately the q-series approach
does not provide an easy way to explain identities like Eq. (3.1.6). Unlike
most of the other formulas in Section 3.2, Kurokawa’s and Ochiai’s result
does not follow from Eq. (3.2.14). An advantage of the regulator approach,
is that it enables us to construct proofs of both Eq. (3.1.6) and Eq. (3.1.7)
from a unified perspective. Additionally, the regulator approach seems to
provide the only way to prove the final step in Theorem 3.1.1, namely to
show that 5m

(
i
√

2
)

= 3m
(
3
√

2
)
. Thus, a complete view of this subject

matter should incorporate both regulator and q-series perspectives.
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Chapter 3. Functional equations for Mahler measures

3.2 Mahler measures and q-series

In this paper we will consider four important functions defined by Mahler
measures:

μ(t) =m
(

4√
t

+ x +
1
x

+ y +
1
y

)
, (3.2.1)

n(t) =m
(

x3 + y3 + 1 − 3
t1/3

xy

)
, (3.2.2)

g(t) =m
(

(x + y)(x + 1)(y + 1) − 1
t
xy

)
, (3.2.3)

r(t) =m
(

(x + y + 1)(x + 1)(y + 1) − 1
t
xy

)
. (3.2.4)

Throughout Section 3.2 will use the notation μ(t) = m
(

4√
t

)
for conve-

nience. Recall from [71] and [76], that each of these functions has a simple
q-series expansion when t is parameterized correctly. To summarize, if we
let (x; q)∞ = (1 − x)(1 − xq)

(
1 − xq2

)
. . . , and

M(q) = 16q
(q; q)8∞

(
q4; q4

)16

∞
(q2; q2)24

∞
, (3.2.5)

N(q) =
27q
(
q3; q3

)12

∞
(q; q)12∞ + 27q (q3; q3)12

∞
, (3.2.6)

G(q) = q1/3

(
q; q2

)
∞

(q3; q6)3∞
, (3.2.7)

R(q) = q1/5

(
q; q5

)
∞
(
q4; q5

)
∞

(q2; q5)∞ (q3; q5)∞
, (3.2.8)

then for |q| sufficiently small

μ (M(q)) = − Re

⎡⎣1
2

log(q) + 2
∞∑

j=1

jχ−4(j) log
(
1 − qj

)⎤⎦ , (3.2.9)

n (N(q)) = − Re

⎡⎣1
3

log(q) + 3
∞∑

j=1

jχ−3(j) log(1 − qj)

⎤⎦ , (3.2.10)

g
(
G3(q)

)
= − Re

⎡⎣log(q) +
∞∑

j=1

(−1)j−1jχ−3(j) log(1 − qj)

⎤⎦ , (3.2.11)
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r
(
R5(q)

)
= − Re

⎡⎣log(q) +
∞∑

j=1

jRe [(2 − i)χr(j)] log
(
1 − qj

)⎤⎦ . (3.2.12)

In particular, χ−3(j) and χ−4(j) are the usual Dirichlet characters, and
χr(j) is the character of conductor five with χr(2) = i. We have used the
notation G(q) and R(q), as opposed to something like G̃(q) = G3(q), in
order to preserve Ramanujan’s notation. As usual, G(q) corresponds to
Ramanujan’s cubic continued fraction, and R(q) corresponds to the Rogers-
Ramanujan continued fraction [53].

The first important application of the q-series expansions is that they can
be used to calculate the Mahler measures numerically. For example, we can
calculate μ (1/10) with Eq. (3.2.9), provided that we can first determine
a value of q for which M(q) = 1/10. Fortunately, the theory of elliptic
functions shows that if α = M(q), then

q = exp

⎛⎝−π
2F1

(
1
2
, 1
2

1
; 1 − α

)
2F1

(
1
2
, 1
2

1
; α
)
⎞⎠ . (3.2.13)

Using Eq. (3.2.13) we easily compute q = .01975 . . . , and it follows that
μ(1/10) = 2.524718 . . . The function defined in Eq. (3.2.13) is called the
elliptic nome, and is sometimes denoted by q2(α). Theorem 3.2.6 provides
similarly explicit inversion formulas for Eqs. (3.2.5) through (3.2.8).

The second, and perhaps more significant fact that follows from these
q-series, is that linear dependencies exist between the Mahler measures. In
particular, if

f(q) ∈ {μ (M(q)) , n (N(q)) , g
(
G3(q)

)
, r
(
R5(q)

)}
,

then for an appropriate prime p

p−1∑
j=0

f
(
e2πij/pq

)
= (1 + p2χ(p))f (qp) − pχ(p)f

(
qp2
)

, (3.2.14)

where χ(j) is the character from the relevant q-series. The prime p satisfies
the restriction that p �= 2 when f(q) = g

(
G3(q)

)
, and p �≡ 2, 3 (mod 5) when

f(q) = r
(
R5(q)

)
. The astute reader will immediately recognize that Eq.

(3.2.14) is essentially a Hecke eigenvalue equation. A careful analysis of the
exceptional case that occurs when p = 2 and f(q) = g

(
G3(q)

)
leads to the

important and surprising inverse relation:

3n (N(q)) = g
(
G3 (q)

)− 8g
(
G3 (−q)

)
+ 4g

(
G3
(
q2
))

,

3g
(
G3(q)

)
= n (N(q)) + 4n

(
N
(
q2
))

.
(3.2.15)
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In the next two subsections we will discuss methods for transforming Eq.
(3.2.14) and Eq. (3.2.15) into so-called functional equations.

3.2.1 Functional equations from modular equations

Since the primary goal of this paper is to find relations between the Mahler
measures of rational (or at least algebraic) polynomials, we will require mod-
ular equations to simplify our results. For example, consider Eq. (3.2.14)
when f(q) = μ (M(q)) and p = 2:

μ (M(q)) + μ (M(−q)) = μ
(
M
(
q2
))

. (3.2.16)

For our purposes, Eq. (3.2.16) is only interesting if M(q), M(−q), and
M
(
q2
)

are all simultaneously algebraic. Fortunately, it turns out that M(q)
and M

(
q2
)

(hence also M(−q) and M
(
q2
)
) satisfy a well known polynomial

relation.

Definition 3.2.1. Suppose that F (q) ∈ {M(q), N(q), G(q), R(q)}. An n’th
degree modular equation is an algebraic relation between F (q) and F (qn).

We will not need to derive any new modular equations in this paper.
Berndt proved virtually all of the necessary modular equations while editing
Ramanujan’s notebooks, see [53], [56], [57], and [58]. Ramanujan seems to
have arrived at most of his modular equations through complicated q-series
manipulations (of course this is speculation since he did not write down any
proofs!). Modular equations involving M(q) correspond to the classical mod-
ular equations [57], relations for N(q) correspond to Ramanujan’s signature
three modular equations [58], and most of the known modular equations for
G(q) and R(q) appear in [53].

Now we can finish simplifying Eq. (3.2.16). Since the classical second-
degree modular equation shows that whenever |q| < 1

4M
(
q2
)

(1 + M (q2))2
=
(

M(q)
M(q) − 2

)2

,

we easily obtain the parameterizations: M(q) = 4k2

(1+k2)2
, M(−q) = −4k2

(1−k2)2
,

and M
(
q2
)

= k4. Substituting these parametric formulas into Eq. (3.2.16)
yields:
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Theorem 3.2.2. The following identity holds whenever |k| < 1:

m
(

4
k2

+ x +
1
x

+ y +
1
y

)
=m

(
2
(

k +
1
k

)
+ x +

1
x

+ y +
1
y

)
+ m

(
2i
(

k − 1
k

)
+ x +

1
x

+ y +
1
y

)
.

(3.2.17)

We need to make a few remarks about working with modular equations
before proving the main theorem in this section. Suppose that for some
algebraic function P (X, Y ):

P (F (q), F (qp)) = 0,

where F (q) ∈ {M(q), N(q), G(q), R(q)}. Using the elementary change of
variables, q → e2πij/pq, it follows that P

(
F
(
e2πij/pq

)
, F (qp)

)
= 0 for every

j ∈ {0, 1, . . . , p − 1}. If P (X, Y ) is symmetric in X and Y , it also follows
that P

(
F
(
qp2
)

, F (qp)
)

= 0. Therefore, if P (X, Y ) is sufficiently simple
(for example a symmetric genus-zero polynomial), we can find simultaneous
parameterizations for F (qp), F

(
qp2
)
, and F

(
e2πij/pq

)
for all j. In such

an instance, Eq. (3.2.14) reduces to an interesting functional equation for
one of the four Mahler measures {μ(t), n(t), g(t), r(t)}. Five basic functional
equations follow from applying these ideas to Eq. (3.2.14).

Theorem 3.2.3. For |k| < 1 and k �= 0, we have

μ

(
4k2

(1 + k2)2

)
+ μ

( −4k2

(1 − k2)2

)
= μ

(
k4
)
. (3.2.18)

The following identities hold for |u| sufficiently small but non-zero:

n

(
27u(1 + u)4

2 (1 + 4u + u2)3

)
+n

(
− 27u(1 + u)

2 (1 − 2u − 2u2)3

)
= 2n

(
27u4(1 + u)

2 (2 + 2u − u2)3

)
− 3n

(
27u2(1 + u)2

4 (1 + u + u2)3

)
.

(3.2.19)

If ζ3 = e2πi/3, and Y (t) = 1 −
(

1−t
1+2t

)3
, then

n
(
u3
)

=
2∑

j=0

n
(
Y
(
ζj
3u
))

. (3.2.20)
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If ζ3 = e2πi/3, and Y (t) = t
(

1−t+t2

1+2t+4t2

)
, then

g(u3) =
2∑

j=0

g
(
Y
(
ζj
3u
))

. (3.2.21)

If ζ5 = e2πi/5, and Y (t) = t
(

1−2t+4t2−3t3+t4

1+3t+4t2+2t3+t4

)
, then

r
(
u5
)

=
4∑

j=0

r
(
Y
(
ζj
5u
))

. (3.2.22)

Proof. We have already sketched a proof of Eq. (3.2.18) in the discussion
preceding Theorem 3.2.2.

The proof of Eq. (3.2.19) requires the second-degree modular equa-
tion from Ramanujan’s theory of signature three. If β = N

(
q2
)
, and

α ∈ {N(q), N(−q), N
(
q4
)}

, then

27αβ(1 − α)(1 − β) − (α + β − 2αβ)3 = 0. (3.2.23)

If we choose u so that N
(
q2
)

= 27u2(1+u)2

4(1+u+u2)3
, then we can use Eq. (3.2.23)

to easily verify that N(q) = 27u(1+u)4

2(1+4u+u2)3
, N(−q) = − 27u(1+u)

2(1−2u−2u2)3
, and

N
(
q4
)

= 27u4(1+u)

2(2+2u−u2)3
. The proof of Eq. (3.2.19) follows from applying

these parameterizations to Eq. (3.2.14) when f(q) = n (N(q)), and p = 2.
The proof of Eq. (3.2.20) requires Ramanujan’s third-degree, signature

three modular equation. In particular, if α = N(q) and β = N(q3), then

α = 1 −
(

1 − β1/3

1 + 2β1/3

)3

= Y
(
β1/3

)
. (3.2.24)

Since N1/3(q3) = q × {power series in q3}, a short computation shows that
N(ζj

3q) = Y
(
ζj
3N

1/3
(
q3
))

for all j ∈ {0, 1, 2}. Choosing u such that

N(q3) = u3, we must have N
(
ζj
3q
)

= Y
(
ζj
3u
)
. Eq. (3.2.20) follows from

applying these parametric formulas to Eq. (3.2.14) when f(q) = n (N(q)),
and p = 3.

Since the proofs of equations (3.2.21) and (3.2.22) rely on similar argu-
ments to the proof of Eq. (3.2.20), we will simply state the prerequisite
modular equations. In particular, Eq. (3.2.21) follows from Ramanujan’s
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third-degree modular equation for the cubic continued fraction. If α = G(q)
and β = G

(
q3
)
, then

α3 = β

(
1 − β + β2

1 + 2β + 4β2

)
. (3.2.25)

Similarly, Eq. (3.2.22) follows from the fifth-degree modular equation for
the Rogers-Ramanujan continued fraction. In particular, if α = R(q) and
β = R

(
q5
)

α5 = β

(
1 − 2β + 4β2 − 3β3 + β4

1 + 3β + 4β2 + 2β3 + β4

)
. (3.2.26)

The functional equations in Theorem 3.2.3 only hold in restricted subsets
of C. To explain this phenomenon we will go back to Eq. (3.2.14). As a
general rule, we have to restrict q to values for which none of the Mahler
measure integrals in Eq. (3.2.14) vanish on the unit torus. In other words,
we can only consider the set of q’s for which each term in Eq. (3.2.14)
can be calculated from the appropriate q-series. Next, we may need to
further restrict the domain of q depending on where the relevant parametric
formulas hold. For example, parameterizations such as N(q) = 27u(1+u)4

2(1+4u+u2)3

and N(q2) = 27u2(1+u)2

4(1+u+u2)3
hold for |q| sufficiently small, but fail when q is

close to 1. After determining the domain of q, we can calculate the domain
of u by solving a parametric equation to express u in terms of a q-series.

Theorem 3.2.4. Recall that G(q) is defined in equation (4.2.1). For |p|
sufficiently small but non-zero

3g(p) = n

(
27p

(1 + 4p)3

)
+ 4n

(
27p2

(1 − 2p)3

)
. (3.2.27)

Furthermore, for |u| sufficiently small but non-zero

3n

(
27u(1 + u)4

2(1 + 4u + u2)3

)
=g

(
u

2(1 + u)2

)
− 8g

(
−u(1 + u)

2

)
+ 4g

(
u2

4(1 + u)

)
.

(3.2.28)

Proof. We will prove Eq. (3.2.28) first. Recall that Eq. (3.2.15) shows that

3n (N(q)) = g
(
G3(q)

)− 8g
(
G3(−q)

)
+ 4g

(
G3
(
q2
))

.
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Let us suppose that q = q2

(
u(2+u)3

(1+2u)3

)
, where q2(α) is the elliptic nome. Clas-

sical eta function inversion formulas (which we shall omit here) show that for
|u| sufficiently small: G3(q) = u

2(1+u)2
, G3(−q) = −u(1+u)

2 , G3
(
q2
)

= u2

4(1+u) ,

N(q) = 27u(1+u)4

2(1+4u+u2)3
, and N

(
q2
)

= 27u2(1+u)2

4(1+u+u2)3
.

To prove Eq. (3.2.27) first recall recall that

3g
(
G3(q)

)
= n (N(q)) + 4n

(
N
(
q2
))

.

If we let p = u
2(1+u)2

, then it follows that G3(q) = p, N(q) = 27p
(1+4p)3

, and

N
(
q2
)

= 27p2

(1+2p)3
.

Theorem 3.2.4 shows that g(t) and n(t) are essentially interchangeable.
In Section 3.2.3 we will use Eq. (3.2.27) to derive an extremely useful formula
for calculating g(t) numerically.

3.2.2 Identities arising from higher modular equations

The seven functional equations presented in Section 3.2.1 are certainly not
the only interesting formulas that follow from Eq. (3.2.14). Rather those
results represent the subset of functional equations in which every Mahler
measure depends on a rational argument (possibly in a cyclotomic field). If
we consider the higher modular equations, then we can establish formulas
involving the Mahler measures of the modular polynomials themselves. Eq.
(3.2.32) is the simplest formula in this class of results.

Consider Eq. (3.2.14) when p = 3 and f(q) = μ (M(q)):

2∑
j=0

μ
(
M
(
ζj
3q
))

= −8μ
(
M
(
q3
))

+ 3μ
(
M
(
q9
))

. (3.2.29)

The third-degree modular equation shows that if
α ∈ {M (q) ,M (ζ3q) ,M

(
ζ2
3q
)
,M
(
q9
)}

, and β = M
(
q3
)
, then

G3(α, β) := (α2 +β2 +6αβ)2−16αβ (4(1 + αβ) − 3(α + β))2 = 0. (3.2.30)

Since G3(α, β) = 0 defines a curve with genus greater than zero, it is im-
possible to find simultaneous rational parameterizations for all four zeros in
α. For example, if we let β = M(q3) = p(2 + p)3/(1 + 2p)3, then we can
obtain the rational expression M

(
q9
)

= p3(2+p)/(1+2p), and three messy
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formulas involving radicals for the other zeros. Despite this difficulty, Eq.
(3.2.29) still reduces to an interesting formula if we recall the factorization

G3

(
α, M

(
q3
))

=
(
α − M

(
q9
)) 2∏

j=0

(
α − M

(
ζj
3q
))

, (3.2.31)

and then use the fact that Mahler measure satisfies m(P )+m(Q) = m (PQ).

Theorem 3.2.5. If G3(α, β) is defined in Eq. (3.2.30), then for |p| suffi-
ciently small but non-zero

m

(
G3

((
x + x−1

)2 (
y + y−1

)2
16

,
1
p

(
1 + 2p

2 + p

)3
))

= −16 log(2) − 16μ

(
p

(
2 + p

1 + 2p

)3
)

+ 8μ

(
p3

(
2 + p

1 + 2p

))
.

(3.2.32)

Proof. First notice that from the elementary properties of Mahler’s measure

μ(t) =
1
2
m
(

16
(x + x−1)2 (y + y−1)2

− t

)
− 1

2
log |t|.

Applying this identity to Eq. (3.2.29), and then appealing to Eq. (3.2.31)
yields

m
(

G3

(
16

(x + x−1)2 (y + y−1)2
,M
(
q3
)))

= log
∣∣M (q) M (ζ3q) M

(
ζ2
3q
)
M
(
q9
)∣∣− 16μ

(
M
(
q3
))

+ 8μ
(
M
(
q9
))

.

Elementary q-product manipulations show that
M4
(
q3
)

= M (q) M (ζ3q) M
(
ζ2
3q
)
M
(
q9
)
, and since α4β4G3

(
1
α , 1

β

)
= G3(α, β),

we obtain

m

(
G3

((
x + x−1

)2 (
y + y−1

)2
16

,
1

M (q3)

))
= −16 log(2) − 16μ

(
M
(
q3
))

+ 8μ
(
M
(
q9
))

.

Finally, if we choose p so that M
(
q3
)

= p
(

2+p
1+2p

)3
, then M

(
q9
)

= p3
(

2+p
1+2p

)
,

and the theorem follows.
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Although we completely eliminated the q-series expressions from Eq.
(3.2.32), this is not necessarily desirable (or even possible) in more com-
plicated examples. Consider the identity involving resultants which fol-
lows from Eq. (3.2.14) (and some manipulation) when p = 11 and f(q) =
r
(
R5(q)

)
:

m
(

Res
z

[
z5 − xy

(x + 1)(y + 1)(x + y + 1)
, P
(
z,R5 (q)

)])
= −12m (1 + x + y) + 12 log

∣∣R5 (q)
∣∣+ 122r

(
R5 (q)

)− 11r
(
R5
(
q11
))

.

(3.2.33)

In this formula P (u, v) is the polynomial

P (u, v) = uv(1 − 11v5 − v10)(1 − 11u5 − u10) − (u − v)12,

which also satisfies P
(
R(q), R

(
q11
))

= 0 [73]. Even if rational parameter-
izations existed for R(q) and R

(
q11
)
, substituting such formulas into Eq.

(3.2.33) would probably just make the identity prohibitively complicated.

3.2.3 Computationally useful formulas, and a few related
hypergeometric transformations

While many methods exist for numerically calculating each of the four
Mahler measures {μ(t), n(t), g(t), r(t)}, two simple and efficient methods
are directly related to the material discussed so far.

The first computational method relies on the q-series expansions. For
example, we can calculate μ(α) with Eq. (3.2.9), provided that a value of q
exists for which M(q) = α. Amazingly, the elliptic nome function, defined
in Eq. (3.2.13), furnishes a value of q whenever |α| < 1. Similar inversion
formulas exist for all of the q-products in equations (3.2.5) through (3.2.8).
Suppose that for j ∈ {2, 3, 4, 6}

qj(α) = exp

⎛⎝− π

sin
(

π
j

) 2F1

(
1
j , 1 − 1

j ; 1; 1 − α
)

2F1

(
1
j , 1 − 1

j ; 1; α
)
⎞⎠ , (3.2.34)

then we have the following theorem:

Theorem 3.2.6. With α and q appropriately restricted, the following table
gives inversion formulas for equations (3.2.5) through (3.2.8):
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α q

M(q) q2(α)
N(q) q3(α)
G(q) q2

(
u(2+u)3

(1+2u)3

)
, where α3 = u

2(1+u)2

R(q) q4

(
64k(1+k−k2)5

(1+k2)2((1+11k−k2)2−125k2)2

)
, where α5 = k(1−k)2

(1+k)2

For example: If |q| < 1 and α = M(q), then q = q2(α).

Proof. The inversion formulas for M(q) and G(q) follow from classical eta
function identities, and the inversion formula for N(q) follows from eta func-
tion identities in Ramanujan’s theory of signature three.

The inversion formula for R(q) seems to be new, so we will prove it. Let
us suppose that α = R(q) and k = R(q)R2

(
q2
)
, where q is fixed. A formula

of Ramanujan [53] shows that α5 = k(1−k)2

(1+k)2
, which establishes the second

part of the formula. Now suppose that q = q2(α2), where α2 = M(q). A
classical identity shows that

q (−q; q)24
∞ =

α2

16(1 − α2)2
,

and comparing this to Ramanujan’s identity

q (−q; q)24
∞ =

(
k

1 − k2

)(
1 + k − k2

1 − 4k − k2

)5

,

we deduce that

α2

(1 − α2)2
= 16

(
k

1 − k2

)(
1 + k − k2

1 − 4k − k2

)5

. (3.2.35)

Now recall that the theory of the signature 4 elliptic nome shows that

q = q2(α2) = q4

(
4α2

(1 + α2)
2

)
= q4

(
4α2/(1 − α2)2

1 + 4α2/(1 − α2)2

)
.

Substituting Eq. (3.2.35) into this final result yields

q = q4

⎛⎜⎝ 64k
(
1 + k − k2

)5
(1 + k2)2

(
(1 + 11k − k2)2 − 125k2

)2

⎞⎟⎠ ,

which completes the proof.
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The second method for calculating the four Mahler measures,
{μ(t), n(t), g(t), r(t)}, depends on reformulating them in terms of hypergeo-
metric functions. For example, Rodriguez-Villegas proved [71] the formula

μ(t) = −1
2
Re

[
log(t/16) +

∫ t

0

2F1

(
1
2 , 1

2 ; 1; u
)− 1

u
du

]
.

Translated into the language of generalized hypergeometric functions, this
becomes

μ(t) = −Re
[

t

84F3

(
3
2
, 3
2
,1,1

2,2,2
; t
)

+
1
2

log(t/16)
]

. (3.2.36)

He also proved a formula for n(t) which is equivalent to

n(t) = −Re
[

2t

274F3

(
4
3
, 5
3
,1,1

2,2,2
; t
)

+
1
3

log(t/27)
]

. (3.2.37)

Formulas like Eq. (3.2.36) and Eq. (3.2.37) hold some obvious appeal.
From a computational perspective they are useful because most mathematics
programs have routines for calculating generalized hypergeometric functions.
For example, when |t| < 1 the Taylor series for the 4F3 function easily gives
better numerical accuracy than the Mahler measure integrals. Combining
Eq. (3.2.37) with Eq. (3.2.27) also yields a useful formula for calculating
g(t) whenever |t| is sufficiently small:

g(t) = − Re
[

2t

(1 + 4t)3 4F3

(
4
3
, 5
3
,1,1

2,2,2
;

27t

(1 + 4t)3

)
+

8t2

(1 − 2t)3 4F3

(
4
3
, 5
3
,1,1

2,2,2
;

27t2

(1 − 2t)3

)
+ log

(
t3

(1 + 4t)(1 − 2t)4

)]
.

(3.2.38)

So far we have been unable to to find a similar expression for r(t).

Open Problem 2: Express r(t) in terms of generalized hypergeometric
functions.

Besides their computational importance, identities like Eq. (3.2.36) allow
for a reformulation of Boyd’s conjectures in the language of hypergeometric
functions. For example, the conjecture

m
(

1 + x +
1
x

+ y +
1
y

)
?= L′ (E, 0) ,
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where E is an elliptic curve with conductor 15, becomes

L′(E, 0) ?= −2Re
[
4F3

(
3
2
, 3
2
,1,1

2,2,2
; 16
)]

.

A proof of this identity would certainly represent an important addition to
the vast literature concerning transformations and evaluations of generalized
hypergeometric functions.

In the remainder of this section we will apply our results to deduce a
few interesting hypergeometric transformations. For example, differentiat-
ing Eq. (3.2.38) leads to an interesting corollary:

Corollary 3.2.7. For |t| sufficiently small

ω(t) :=
∞∑

n=0

tn
n∑

k=0

(
n

k

)3

=
1

1 − 2t
2F1

(
1
3
,
2
3
; 1;

27t2

(1 − 2t)3

)
, (3.2.39)

furthermore

ω

(
p

2(1 + p)2

)
= (1 + p)ω

(
p2

4(1 + p)

)
, (3.2.40)

whenever |p| is sufficiently small.

Proof. We can prove Eq. (3.2.39) by differentiating each side of Eq. (3.2.38),
and then by appealing to Stienstra’s formulas [76]. A second possible proof
follows from showing that both sides of Eq. (3.2.39) satisfy the same differ-
ential equation.

The shortest proof of Eq. (3.2.40) follows from a formula due to Zagier
[76]:

ω
(
G3(q)

)
=

∞∏
n=0

(
1 − q2n

) (
1 − q3n

)6
(1 − qn)2 (1 − q6n)3

.

First use Zagier’s identity to verify that G2(q)ω
(
G3(q)

)
= G

(
q2
)
ω
(
G3
(
q2
))

,
and then apply the parameterizations for G3(q) and G3

(
q2
)

from Theorem
3.2.4.

We will also make a few remarks about the derivative of r(t). Stienstra
has shown that

r(t) = −Re
[
log(t) +

∫ t

0

φ(u) − 1
u

du

]
, (3.2.41)

where φ(t) is defined by

φ(t) =
∞∑

n=0

tn
n∑

k=0

(
n

k

)2(n + k

k

)
. (3.2.42)
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Even though we have not discovered a formula for r(t) involving hyperge-
ometric functions, we can still express φ(t) in terms of the hypergeometric
function.

Theorem 3.2.8. Let φ(t) be defined by Eq. (3.2.42), then for |k| sufficiently
small:

φ

(
k

(
1 − k

1 + k

)2
)

=
(1 + k)2√

(1 + k2)
(
(1 − k − k2)2 − 5k2

)

× 2F1

⎛⎜⎝1
4
,
3
4
; 1;

64k5
(
1 + k − k2

)
(1 + k2)2

(
(1 − k − k2)2 − 5k2

)2

⎞⎟⎠ ,

(3.2.43)

φ

(
k2

(
1 + k

1 − k

))
=

(1 − k)√
(1 + k2)

(
(1 + 11k − k2)2 − 125k2

)

× 2F1

⎛⎜⎝1
4
,
3
4
; 1;

64k
(
1 + k − k2

)5
(1 + k2)2

(
(1 + 11k − k2)2 − 125k2

)2

⎞⎟⎠ .

(3.2.44)

Furthermore, φ(t) satisfies the functional equation:

φ

(
k2

(
1 + k

1 − k

))
=

1 − k

(1 + k)2
φ

(
k

(
1 − k

1 + k

)2
)

. (3.2.45)

Proof. We will prove Eq. (3.2.45) first. A result of Verrill [77] shows that

φ2
(
R5(q)

)
=

q

R5(q)

(
q5; q5

)5
∞

(q; q)∞
. (3.2.46)

Combining Eq. (3.2.46) with the trivial formula (q2, q2)∞ = (q; q)∞(−q; q)∞,
we have

φ2
(
R5(q)

)
φ2 (R5(q2))

=
R5
(
q2
)

R5(q)

{
q1/24 (−q; q)∞

}{
q5/24 (−q5; q5)∞

}5 . (3.2.47)

We will apply four of Ramanujan’s formulas to finish the proof. If k =
R(q)R2(q2), then for |q| sufficiently small [53]:

R5(q) =k

(
1 − k

1 + k

)2

, (3.2.48)

58



Chapter 3. Functional equations for Mahler measures

R5(q2) =k2

(
1 + k

1 − k

)
, (3.2.49)

q1/24 (−q; q)∞ =
(

k

1 − k2

)1/24( 1 + k − k2

1 − 4k − k2

)5/24

, (3.2.50)

q5/24
(−q5; q5

)
∞ =

(
k

1 − k2

)5/24( 1 + k − k2

1 − 4k − k2

)1/24

. (3.2.51)

Eq. (3.2.45) follows immediately from substituting these parametric formu-
las into Eq. (3.2.47).

Next we will prove Eq. (3.2.43). Combining Eq. (3.2.48) with Entry
3.2.15 in [53], we easily obtain

q5/24
(
q5; q5

)
∞ =

{
k(1 − k2)2

(1 + k − k2) (1 − 4k − k2)2

}1/6

q1/24 (q; q)∞ . (3.2.52)

Now we will evaluate the eta product q1/24 (q; q)∞. First recall that if q =
q4(z), then (see [58], page 148)

q1/24(q; q)∞ = 2−1/4z1/24(1 − z)1/12

√
2F1

(
1
4
,
3
4
; 1; z

)
.

In Theorem 3.2.6 we showed that if k = R(q)R2
(
q2
)

then

q = q4

(
64k(1+k−k2)5

(1+k2)2((1+11k−k2)2−125k2)2

)
, hence it follows that

q1/24 (q; q)∞ =

⎛⎜⎝k
(
1 − k2

)2 (1 + k − k2
)5 (1 − 4k − k2

)10

(1 + k2)6
(
(1 + 11k − k2)2 − 125k2

)6

⎞⎟⎠
1/24

×

√√√√√√2F1

⎛⎜⎝1
4
,
3
4
; 1;

64k (1 + k − k2)5

(1 + k2)2
(
(1 + 11k − k2)2 − 125k2

)2

⎞⎟⎠
(3.2.53)

Substituting Eq. (3.2.53), Eq. (3.2.52), and Eq. (3.2.48) into Eq. (3.2.46)
completes the proof of Eq. (3.2.43). The proof of Eq. (3.2.44) also follows
from an extremely similar argument.
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We will conclude this section by recording a few formulas which do not
appear in [53], but which were probably known to Ramanujan. We will point
out that Maier obtained several results along these lines in [69]. Notice that
the functional equation for φ(t) (after substituting z = k/(1 − k2)) implies
a new hypergeometric transformation:√

(1 + 11z)2 − 125z2

(1 − z)2 − 5z2 2F1

⎛⎜⎝1
4
,
3
4
; 1,

64z5 (1 + z)

(1 + 4z2)
(
(1 − z)2 − 5z2

)2

⎞⎟⎠
= 2F1

⎛⎜⎝1
4
,
3
4
; 1;

64z (1 + z)5

(1 + 4z2)
(
(1 + 11z)2 − 125z2

)2

⎞⎟⎠
(3.2.54)

Perhaps not surprisingly, we can also use the arguments in this section to
deduce that

q5
4

⎛⎜⎝ 64z (1 + z)5

(1 + 4z2)
(
(1 + 11z)2 − 125z2

)2

⎞⎟⎠ = q4

⎛⎜⎝ 64z5 (1 + z)

(1 + 4z2)
(
(1 − z)2 − 5z2

)2

⎞⎟⎠ ,

(3.2.55)

which implies a rational parametrization for the fifth-degree modular equa-
tion in Ramanujan’s theory of signature 4.

3.3 A regulator explanation

Now we will reinterpret our identities in terms of the regulators of elliptic
curves. The elliptic curves in question are defined by the zero varieties of
the polynomials whose Mahler measure we studied. First we will explain the
relationship between Mahler measures and regulators. Then we will use reg-
ulators to deduce formulas involving Kronecker-Eisenstein series, including
equations (3.2.9), (3.2.10), (3.2.11), and (3.2.12).

We will follow some of the ideas of Rodriguez-Villegas [72].

3.3.1 The elliptic regulator

Let F be a field. By Matsumoto’s Theorem, K2(F ) is generated by the
symbols {a, b} for a, b ∈ F , which satisfy the bilinearity relations {a1a2, b} =
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{a1, b}{a2, b} and {a, b1b2} = {a, b1}{a, b2}, and the Steinberg relation {a, 1−
a} = 1 for all a �= 0.

Recall that for a field F , with discrete valuation v, and maximal ideal
M, the tame symbol is given by

(x, y)v ≡ (−1)v(x)v(y) x
v(y)

yv(x)
mod M

(see [71]). Note that this symbol is trivial if v(x) = v(y) = 0. In the case
when F = Q(E) (from now on E denotes an elliptic curve), a valuation is
determined by the order of the rational functions at each point S ∈ E(Q̄).
We will denote the valuation determined by a point S ∈ E(Q̄) by vS .

The tame symbol is then a map K2(Q(E)) → Q(S)∗.
We have

0 → K2(E) ⊗ Q → K2(Q(E)) ⊗ Q →
∐

S∈E(Q̄)

QQ(S)∗ × Q,

where the last arrow corresponds to the coproduct of tame symbols.
Hence an element {x, y} ∈ K2(Q(E)) ⊗ Q can be seen as an element

in K2(E) ⊗ Q whenever (x, y)vS = 1 for all S ∈ E(Q̄). All of the families
considered in this paper are tempered according to [71], and therefore they
satisfy the triviality of tame symbols.

The regulator map (defined by Beilinson after the work of Bloch) may
be defined by

r : K2(E) → H1(E, R)

{x, y} →
{

γ →
∫

γ
η(x, y)

}
for γ ∈ H1(E, Z), and

η(x, y) := log |x|d arg y − log |y|d arg x.

Here we think of H1(E, R) as the dual of H1(E, Z). The regulator is well
defined because η(x, 1 − x) = dD(x), where

D(z) = Im (Li2(z)) + arg(1 − z) log |z|

is the Bloch-Wigner dilogarithm.
In terms of the general formulation of Beilinson’s conjectures this defini-

tion is not completely correct. One needs to go a step further and consider
K2(E), where E is a Néron model of E over Z. In particular, K2(E) is
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a subgroup of K2(E). It seems [71] that a power of {x, y} always lies in
K2(E).

Assume that E is defined over R. Because of the way that complex conju-
gation acts on η, the regulator map is trivial for the classes in H1(E, Z)+. In
particular, these cycles remain invariant under complex conjugation. There-
fore it suffices to consider the regulator as a function on H1(E, Z)−.

We write E(C) ∼= C/Z + τZ, where τ is in the upper half-plane. Then
C/Z + τZ ∼= C∗/qZ, where z mod Λ = Z + τZ is identified with e2iπz. Bloch
[62] defines the regulator function in terms of a Kronecker-Eisenstein series

Rτ

(
e2πi(a+bτ)

)
=

y2
τ

π

′∑
m,n∈Z

e2πi(bn−am)

(mτ + n)2(mτ̄ + n)
, (3.3.56)

where yτ is the imaginary part of τ .
Let J(z) = log |z| log |1 − z|, and let

D(x) = Im (Li2(x)) + arg(1 − x) log |x|
be the Bloch-Wigner dilogarithm.

Consider the following function on E(C) ∼= C∗/qZ:

Jτ (z) =
∞∑

n=0

J(zqn) −
∞∑

n=1

J(z−1qn) +
1
3

log2 |q|B3

(
log |z|
log |q|

)
, (3.3.57)

where B3(x) = x3 − 3
2x2 + 1

2x is the third Bernoulli polynomial. If we recall
that the elliptic dilogarithm is defined by

Dτ (z) :=
∑
n∈Z

D(zqn), (3.3.58)

then the regulator function (see [62]) is given by

Rτ = Dτ − iJτ . (3.3.59)

By linearity, Rτ extends to divisors with support in E(C). Let x and y
be non-constant functions on E with divisors

(x) =
∑

mi(ai), (y) =
∑

nj(bj).

Following [62], and the notation in [71], we recall the diamond operation
C(E)∗ ⊗ C(E)∗ → Z[E(C)]−

(x) � (y) =
∑

minj(ai − bj).
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Here Z[E(C)]− means that [−P ] ∼ −[P ].
Because Rτ is an odd function, we obtain a map

Z[E(C)]− → R.

Theorem 3.3.1. (Beilinson [55]) If E/R is an elliptic curve, x, y are non-
constant functions in C(E), and ω ∈ Ω1, then∫

E(C)
ω̄ ∧ η(x, y) = Ω0Rτ ((x) � (y)),

where Ω0 is the real period.

Although a more general version of Beilinson’s Theorem exists for elliptic
curves defined over the complex numbers, the above version has a simpler
formulation.

Corollary 3.3.2. (after an idea of Deninger) If x and y are non-constant
functions in C(E) with trivial tame symbols, then

−
∫

γ
η(x, y) = Im

(
Ω

yτΩ0
Rτ ((x) � (y))

)
where Ω =

∫
γ ω.

Proof. Notice that iη(x, y) is an element of the two-dimensional vector space
H2

D(E(C), R(2)) generated by ω and ω̄. Then we may write

iη(x, y) = α[ω] + β[ω̄],

from which we obtain ∫
γ
iη(x, y) = αΩ + βΩ.

On the other hand, we have∫
E(C)

iη(x, y) ∧ ω̄ = α

∫
E(C)

ω ∧ ω̄ = αi2Ω2
0yτ ,

and ∫
E(C)

iη(x, y) ∧ ω = −βi2Ω2
0yτ .

By Beilinson’s Theorem∫
γ
iη(x, y) = −Rτ ((x) � (y))Ω

2Ω0yτ
+

Rτ ((x) � (y))Ω
2Ω0yτ

,

and the statement follows.
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3.3.2 Regulators and Mahler measure

From now on, we will set k = 4√
t

in the first family (3.2.1).

Rodriguez-Villegas [71] proved that if Pk(x, y) = k + x + 1
x + y + 1

y does
not intersect the torus T2, then

m(k) ∼Z
1
2π

r({x, y})(γ). (3.3.60)

Here the ∼Z stands for ”up to an integer number”, and γ is a closed path
that avoids the poles and zeros of x and y. In particular, γ generates the
subgroup H1(E, Z)− of H1(E, Z) where conjugation acts by −1.

We would like to use this property, however we need to exercise caution.
In particular, Pk(x, y) intersects the torus whenever |k| ≤ 4 and k ∈ R. Let
us recall the idea behind the proof of Eq. (3.3.60) for the special case of
Pk(x, y). Writing

yPk(x, y) = (y − y(1)(x))(y − y(2)(x)),

we have

m(k) = m(yPk(x, y)) =
1

2πi

∫
T1

(log+ |y(1)(x)| + log+ |y(2)(x)|)dx

x
.

This last equality follows from applying Jensen’s formula with respect to the
variable y. When the polynomial does not intersect the torus, we may omit
the “+” sign on the logarithm since each y(i)(x) is always inside or outside
the unit circle. Indeed, there is always a branch inside the unit circle and a
branch outside. It follows that

m(k) =
1

2πi

∫
T1

log |y|dx

x
= − 1

2π

∫
T1

η(x, y), (3.3.61)

where T1 is interpreted as a cycle in the homology of the elliptic curve
defined by Pk(x, y) = 0, namely H1(E, Z).

If k ∈ [−4, 4], then we may also assume that k > 0 since this particular
Mahler measure does not depend on the sign of k. The equation

k + x +
1
x

+ y +
1
y

= 0

certainly has solutions when (x, y) ∈ T2. However, for |x| = 1 and k real,
the number k + x + 1

x is real, and therefore y + 1
y must be real. This forces
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two possibilities: either y is real or |y| = 1. Let x = eiθ, then for −π ≤ θ ≤ π
we have

−k − 2 cos θ = y +
1
y
. (3.3.62)

The limiting case occurs when |k + 2 cos θ| = 2. Since we have assumed
that k is positive, this condition becomes k + 2 cos θ = 2, which implies
that y = −1. When k + 2 cos θ > 2 one solution for y, say, y(1), becomes a
negative number less than -1, thus

∣∣y(1)

∣∣ > 1 (the other solution y(2) is such
that

∣∣y(2)

∣∣ < 1). When k+2 cos θ < 2, yi lies inside the unit circle and never
reaches 1. What is important is that

∣∣y(1)

∣∣ ≥ 1 and
∣∣y(2)

∣∣ ≤ 1, so we can still
write Eq. (3.3.61) even if there is a nontrivial intersection with the torus.

3.3.3 Functional identities for the regulator

First recall a result by Bloch [62] which studies the modularity of Rτ :

Proposition 3.3.3. Let
(

α β
γ δ

)
∈ SL2(Z), and let τ ′ = ατ+β

γτ+δ . If we let

(
b′

a′

)
=
(

δ −γ
−β α

)(
b
a

)
,

then:
Rτ ′
(
e2πi(a′+b′τ ′)

)
=

1
γτ̄ + δ

Rτ

(
e2πi(a+bτ)

)
.

We will need to use some functional equations for Jτ . First recall the
following trivial property for J(z):

J(z) = p
∑
xp=z

J(x). (3.3.63)

Proposition 3.3.4. Let p be an odd prime, let q = e2πiτ , and let qj =

e
2πi(τ+j)

p for j ∈ {0, 1, . . . , p − 1}. Suppose that (N, k) = 1, and p ≡ ±1 or
0 (mod N). Then

(1 + χ−N (p)p2)JNτ (qk) =
p−1∑
j=0

pJN(τ+j)
p

(qk
j ) + χ−N (p)JNpτ (qpk), (3.3.64)

and for any z we have

(χ−N (p) + p2)JNτ (z) =
p−1∑
j=0

pJN(τ+j)
p

(z) + χ−N (p)JNpτ (z). (3.3.65)
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Proof. First notice that
p−1∑
j=0

JN(τ+j)
p

(qk
j ) =

∞∑
n=0

p−1∑
j=0

J
(
qNn+k
j

)

−
∞∑

n=1

p−1∑
j=0

J
(
qNn−k
j

)
+

4π2y2
τN

2

3p
B3

(
k

N

)
.

By Eq. (3.3.63) this becomes

=
∞∑

n=0
p�Nn+k

1
p
J
(
qNn+k

)
−

∞∑
n=1

p�Nn−k

1
p
J
(
qNn−k

)

+
∞∑

n=0
p|Nn+k

pJ
(
q

Nn+k
p

)
−

∞∑
n=1

p|Nn−k

pJ
(
q

Nn−k
p

)
+

4π2y2
τN

2

3p
B3

(
k

N

)

=
∞∑

n=0

1
p
J
(
qNn+k

)
−

∞∑
n=1

1
p
J
(
qNn−k

)
−

∞∑
n=0

p|Nn+k

1
p
J
(
qNn+k

)
+

∞∑
n=1

p|Nn−k

1
p
J
(
qNn−k

)

+
∞∑

n=0
p|Nn+k

pJ
(
q

Nn+k
p

)
−

∞∑
n=1

p|Nn−k

pJ
(
q

Nn−k
p

)
+

4π2y2
τN

2

3p
B3

(
k

N

)
.

Rearranging, we find that

=
1
p
JNτ

(
qk
)
− 4π2y2

τN
2

3p
B3

(
k

N

)
−

∞∑
n=0

p|Nn+k

1
p
J
(
(qp)

Nn+k
p

)
+

∞∑
n=1

p|Nn−k

1
p
J
(
(qp)

Nn−k
p

)

+
∞∑

n=0
p|Nn+k

pJ
(
q

Nn+k
p

)
−

∞∑
n=1

p|Nn−k

pJ
(
q

Nn−k
p

)
+

4π2y2
τN

2

3p
B3

(
k

N

)

=
1
p
JNτ

(
qk
)
− χ−N (p)

p
JNpτ (qpk) + χ−N (p)pJNτ (qk),

which proves the assertion.
The second equality follows in a similar fashion.
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It is possible to prove analogous identities for Dτ and Rτ .

Proposition 3.3.5.

J 2μ+1
2

(
eπiμ
)

= J2μ

(
eπiμ
)− J2μ

(−eπiμ
)

(3.3.66)

Proof. Let z = eπiμ, then

J2μ (z) − J2μ (−z) =J(z) − J(−z)

+
∞∑

n=1

(
J(zqn) − J(−zqn) − J(z−1qn) + J(−z−1qn)

)
=

∞∑
n=0

(
J
(
eπiμ(4n+1)

)
− J

(
−eπiμ(4n+1)

)
−J
(
eπiμ(4n+3)

)
+ J

(
−eπiμ(4n+3)

))
.

On the other hand,

J 2μ+1
2

(z) =
∞∑

n=0

(
J
(
(−1)neπiμ(2n+1)

)
− J

(
(−1)n+1eπiμ(2n+1)

))
,

which proves the equality.

3.3.4 The first family

First we will write the equation

x +
1
x

+ y +
1
y

+ k = 0

in Weierstrass form. Consider the rational transformation

X =
k + x + y

x + y
= − 1

xy
, Y =

k(y − x)(k + x + y)
2(x + y)2

=
(y − x)

(
1 + 1

xy

)
2xy

,

which leads to

Y 2 = X

(
X2 +

(
k2

4
− 2
)

X + 1
)

.

It is useful to state the inverse transformation:

x =
kX − 2Y

2X(X − 1)
, y =

kX + 2Y

2X(X − 1)
.
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Notice that Ek contains a torsion point of order 4 over Q(k), namely
P =

(
1, k

2

)
. Indeed, this family is the modular elliptic surface associated to

Γ0(4).
We can show that 2P = (0, 0), and 3P =

(
1,−k

2

)
.

Now
(X) = 2(2P ) − 2O,

and

(x) =(2(P ) + (2P ) − 3O) − (2(2P ) − 2O) − ((P ) + (3P ) − 2O)
=(P ) − (2P ) − (3P ) + O,

(y) =(2(3P ) + (2P ) − 3O) − (2(2P ) − 2O) − ((P ) + (3P ) − 2O)
= − (P ) − (2P ) + (3P ) + O.

Computing the diamond operation between the divisors of x and y yields

(x) � (y) = 4(P ) − 4(−P ) = 8(P ).

Now assume that k ∈ R and k > 4. We will choose an orientation for
the curve and compute the real period. Because P is a point of order 4 and∫ 1
0 ω is real, we may assume that P corresponds to 3Ω0

4 .
The next step is to understand the cycle |x| = 1 as an element of

H1(E, Z). We would like to compute the value of Ω =
∫
γ ω. First recall

that
ω =

dX

2Y
=

dx

x(y − y−1)
.

In the case when k > 4, consider conjugation of ω. This sends x → x−1, and
dx
x → −dx

x . There is no intersection with the torus, so y remains invariant.
Therefore we conclude that Ω is the complex period, and Ω

Ω0
= τ , where τ

is purely imaginary.
Therefore for k real and |k| > 4

m(k) =
4
π

Im
(

τ

yτ
Rτ (−i)

)
.

Now take
(

0 −1
1 0

)
∈ SL2(Z). By Proposition 3.3.3

Rτ (−i) = Rτ

(
e−

2πi
4

)
= τ̄R− 1

τ

(
e−

2πi
4τ

)
,

therefore

m(k) = −4|τ |2
πyτ

J− 1
τ

(
e−

2πi
4τ

)
.
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If we let μ = − 1
4τ , then for k ∈ R we obtain

m(k) = − 1
πyμ

J4μ

(
e2πiμ

)
= Im

(
1

πyμ
R4μ

(
e2πiμ

))
=Re

(
16yμ

π2

′∑
m,n

χ−4 (m)
(m + 4μn)2(m + 4μ̄n)

)
,

thus recovering a result of Rodriguez-Villegas. We can extend this result to
all k ∈ C, by arguing that both m(k) and − 1

πyμ
J4μ

(
e2πiμ

)
are the real parts

of holomorphic functions that coincide at infinitely many points (see [70]).
Now we will show how to deduce equations (3.1.7) and (3.1.6). Applying

Eq. (3.3.64) with N = 4, k = 1, and p = 2, we have

J4μ(q) = 2J2μ(q0) + 2J2(μ+1)(q1),

which translates into
1

y4μ
J4μ

(
e2πiμ

)
=

1
y2μ

J2μ

(
eπiμ
)

+
1

y2μ
J2μ

(−eπiμ
)
.

This is the content of Eq. (3.1.7). Setting τ = − 1
2μ , we may also write

D τ
2
(−i) = Dτ (−i) + Dτ (−ieπiτ ). (3.3.67)

Next we will use Eq. (3.3.66):

J 2μ+1
2

(
eπiμ
)

= J2μ

(
eπiμ
)− J2μ

(−eπiμ
)
,

which translates into
1

y 2μ+1
2

J 2μ+1
2

(
eπiμ
)

=
2

y2μ
J2μ

(
eπiμ
)− 2

y2μ
J2μ

(−eπiμ
)
.

Setting τ = − 1
2μ , and using

(
1 0
−2 1

)
∈ SL2(Z) on the left-hand side, we

have
D τ−1

2
(−i) = Dτ (−i) − Dτ

(−ieπiτ
)
. (3.3.68)

Combining equations (3.3.67) and (3.3.68), we see that

2Dτ (−i) = D τ
2
(−i) + D τ−1

2
(−i).

This is the content of Eq. (3.1.6).
Similarly, we may deduce Eq. (3.2.14) from Eq. (3.3.64) when k = 1,

N = 4, and p is an odd prime.
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3.3.5 A direct approach

It is also possible to prove equations (3.1.6) and (3.1.7) directly, without
considering the μ-parametrization or the explicit form of the regulator.

For those formulas, it is easy to explicitly write the isogenies at the level
of the Weierstrass models. By using the well-known isogeny of degree 2 (see
for example [64]):

φ : {E : y2 = x(x2 + ax + b)} → {Ê : ŷ2 = x̂(x̂2 − 2ax̂ + (a2 − 4b))}

given by

(x, y) →
(

y2

x2
,
y(b − x2)

x2

)
(we require that a2 − 4b �= 0), we find

φ1 : E2(n+ 1
n) → E4n2 , φ2 : E2(n+ 1

n) → E 4
n2

,

φ1 : (X, Y ) →
(

X(n2X + 1)
X + n2

,−n3Y
(
X2 + 2n2X + 1

)
(X + n2)2

)
,

φ2 : (X, Y ) →
(

X(X + n2)
n2X + 1

,−Y
(
n2X2 + 2X + n2

)
n (n2X + 1)2

)
.

Let us write x1, y1, X1, Y1 for the rational functions and r1 for the
regulator in E4n2 , and x2, y2, X2, Y2, r2 for the corresponding objects in
E 4

n2
.
It follows that

±m
(
4n2
)

= r1 ({x1, y1}) =
1
2π

∫
|X1|=1

η(x1, y1)

=
1
4π

∫
|X|=1

η(x1 ◦ φ1, y1 ◦ φ1)

=
1
2
r ({x1 ◦ φ1, y1 ◦ φ1}) ,

where the factor of 2 follows from the degree of the isogeny. Similarly, we
find that

±m

(
4
n2

)
= r2 ({x2, y2}) =

1
2
r ({x2 ◦ φ2, y2 ◦ φ2}) .
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Now we need to compare the values of

r ({x1 ◦ φ1, y1 ◦ φ1}) , r ({x2 ◦ φ2, y2 ◦ φ2}) , and r ({x, y}) .

Recall that (x) � (y) = 8(P ), where P = (1, k
2 ). When k = 2

(
n + 1

n

)
,

we will also consider the point Q =
(− 1

n2 , 0
)
, which has order 2 (then

P + Q =
(−1, n − 1

n

)
, 2P + Q =

(−n2, 0
)
, etc).

Let P now denote the point in E2(n+ 1
n), and let P1 denote the corre-

sponding point in E4n2 . We have the following table:

φ1 :

3P, P + Q → P1

2P, Q → 2P1

P, 3P + Q → 3P1

O0, 2P + Q → O1

.

Using this table, and the divisors (x1) and (y1) in E4n2 , we can compute
(x1 ◦ φ1) � (y1 ◦ φ1). We find that

(x1 ◦ φ1) � (y1 ◦ φ1) = −16(P ) + 16(P + Q),

and similarly

(x2 ◦ φ2) � (y2 ◦ φ2) = −16(P ) − 16(P + Q).

These computations show that

1
2
r0 ({x1 ◦ φ1, y1 ◦ φ1}) +

1
2
r0 ({x2 ◦ φ2, y2 ◦ φ2}) = 2 r0 ({x0, y0}) ,

(3.3.69)
and therefore

r1 ({x1, y1}) + r2 ({x2, y2}) = 2 r0 ({x0, y0}) . (3.3.70)

We can conclude the proof of Eq. (3.1.6) by inspecting signs.
To prove Eq. (3.1.7), it is necessary to use the isomorphism φ from Eq.

(3.3.71).

3.3.6 Relations among m(2), m(8), m
(
3
√

2
)
, and m

(
i
√

2
)

Setting n = 1√
2

in Eq. (3.1.7), we obtain

m
(
3
√

2
)

+ m
(
i
√

2
)

= m(8).
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Doing the same in Eq. (3.1.6), we find that

m(2) + m(8) = 2m
(
3
√

2
)

.

In this section we will establish the identity

3m(3
√

2) = 5m(i
√

2),

from which we can deduce expressions for m(2) and m(8).
Consider the functions f and 1−f , where f =

√
2Y −X

2 ∈ C(E3
√

2). Their
divisors are (√

2Y − X

2

)
=(2P ) + 2(P + Q) − 3O,(

1 −
√

2Y − X

2

)
=(P ) + (Q) + (3P + Q) − 3O.

The diamond operation yields

(f) � (1 − f) = 6(P ) − 10(P + Q).

But (f) � (1 − f) is trivial in K-theory, hence

6(P ) ∼ 10(P + Q).

Now consider the isomorphism φ:

φ : E2(n+ 1
n) → E2(in+ 1

in), (X, Y ) → (−X, iY ) (3.3.71)

This isomorphism implies that

ri
√

2 ({x, y}) = r3
√

2 ({x ◦ φ, y ◦ φ}) .

But we know that
(x ◦ φ) � (y ◦ φ) = 8(P + Q).

This implies
6 r3

√
2 ({x, y}) = 10 ri

√
2({x, y}),

and
3m(3

√
2) = 5m(i

√
2).

Consequently, we may conclude that

m(8) =
8
5
m(3

√
2), m(2) =

2
5
m(3

√
2),

and finally
m(8) = 4m(2).
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3.3.7 The Hesse family

We will now sketch the case of the Hesse family:

x3 + y3 + 1 − 3

t
1
3

xy.

This family corresponds to Γ0(3). The diamond operation yields

(x) � (y) = 9(P ) + 9(A) + 9(B), (3.3.72)

where P is a point of order 3, defined over Q(t1/3), and A,B are points of
order 3 such that A + B + P = O.

For 0 < t < 1, we have

n(t) =
9
2π

Im
(

τ

yτ

(
Rτ

(
e

4πi
3

)
+ Rτ

(
e

4πi(1+τ)
3

)
+ Rτ

(
e

2πi(2+τ)
3

)))
.

If we let μ = − 1
τ , we obtain, after several steps,

n(t) = Re

⎛⎝27
√

3yμ

4π2

′∑
k,n

χ−3(n)
(3μk + n)2(3μ̄k + n)

⎞⎠ .

Following the previous example, this result may be extended to C \κ by
comparing holomorphic functions.

3.3.8 The Γ0
0(6) example

We will now sketch a treatment of Stienstra’s example [76]:

(x + 1)(y + 1)(x + y) − 1
t
xy.

Applying the diamond operation, we have

(x) � (y) = −6(P ) − 6(2P ),

where P is a point of order 6.
For t small, one can write

g(t) =
3
π

Im
(

τ

yτ
Rτ (ξ−1

6 ) + Rτ (ξ−1
3 )
)

.
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Eventually, one arrives to

g(t) =Re

(
36yμ

π2

′∑
m,n

χ−3(m)
(m + 6μn)2(m + 6μ̄n)

)

+ Re

(
9yμ

2π2

′∑
m,n

χ−3(m)
(m + 3μn)2(m + 3μ̄n)

)
,

thus recovering a result of [76].

3.3.9 The Γ0
0(5) example

Now we will consider our final example:

(x + y + 1)(x + 1)(y + 1) − 1
t
xy.

Applying the diamond operation, we find that

(x) � (y) = 10(P ) + 5(2P ),

where P is a torsion point of order 5.
For t > 0

r(t) =
5
2π

Im
(

τ

yτ

(
2Rτ

(
e

8πi
5

)
+ Rτ

(
e

6πi
5

)))
.

Finally,

r(t) = −Re

(
25iyμ

4π2

′∑
m,n

2
(
ζm
5 − ζ−m

5

)
+ ζ2m

5 − ζ−2m
5

(m + 5μn)2(m + 5μ̄n)

)
.

In conclusion, we see that the modular structure comes from the form
of the regulator function, and the functional identities are consequences of
the functional identities of the elliptic dilogarithm.

3.4 Conclusion

We have used both regulator and q-series methods to prove a variety of
identities between the Mahler measures of genus-one polynomials. We will
conclude this paper with a final open problem.
Open Problem 3: How do you characterize all the functional equations
of μ(t)?
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We have seen that there are identities like Eq. (3.1.6), stating that

2m
(

2
(

k +
1
k

)
+ x +

1
x

+ y +
1
y

)
=m

(
4k2 + x +

1
x

+ y +
1
y

)
+ m

(
4
k2

+ x +
1
x

+ y +
1
y

)
.

While this formula does not follow from Eq. (3.2.14), it can be proved with
regulators.

Indeed, the last section showed us that we can obtain functional identities
for the Mahler measures by looking at functional equations for the elliptic
dilogarithm. To have an idea of the dimensions of this problem, let us
note that equation (3.3.64) corresponds to the integration of an identity for
the Hecke operator Tp. This suggests that more identities will follow from
looking at the general operator Tn. And this is just the beginning of the
story. . .
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Chapter 4

New 5F4 transformations and
Mahler measures

Mathew D. Rogers3

4.1 Introduction

In this paper we will study the consequences of some recent results of Bertin.
Recall that Bertin proved q-series expansions for a pair of three-variable
Mahler measures in [86]. As usual the Mahler measure of an n-variable
polynomial, P (z1, . . . , zn), is defined by

m (P (z1, . . . , zn)) =
∫ 1

0
. . .

∫ 1

0
log
∣∣∣P (e2πiθ1 , . . . , e2πiθn

)∣∣∣ dθ1 . . .dθn.

We will define g1(u) and g2(u) in terms of the following three-variable Mahler
measures

g1(u) := m
(

u + x +
1
x

+ y +
1
y

+ z +
1
z

)
, (4.1.1)

g2(u) := m
(−u + 4 +

(
x + x−1

) (
y + y−1

)
+
(
x + x−1

) (
z + z−1

)
+
(
y + y−1

) (
z + z−1

))
.

(4.1.2)

We can recover Bertin’s original notation by observing that g1(u) = m (Pu),
and after substituting (xz, y/z, z/x) → (x, y, z) in Eq. (4.1.2) we see that
g2(u + 4) = m (Qu) [86].

In Section 4.2 we will show how to establish a large number of inter-
esting relations between g1(u), g2(u), and three more three-variable Mahler
measures. For example, for |u| sufficiently large Eq. (4.2.21) is equivalent

3A version of this chapter has been accepted for publication. Rogers, M. D. (2007)
New 5F4 hypergeometric transformations, three-variable Mahler measures, and formulas
for 1/π. Ramanujan Journal.
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to

g1

(
3
(
u2 + u−2

))
=

1
5
m

(
x4 + y4 + z4 + 1 +

√
3

(
3 + u4

)
u3

xyz

)

+
3
5
m

(
x4 + y4 + z4 + 1 +

√
3

(
3 + u−4

)
u−3

xyz

)
.

(4.1.3)

Rodriguez-Villegas briefly mentioned the Mahler measure m
(
x4 + y4 + z4 + 1 + uxyz

)
on the last page of [95].

We will also show that identities like Eq. (4.1.3) are equivalent to trans-
formations for the 5F4 hypergeometric function. Recall that the generalized
hypergeometric function is defined by

pFq

(a1,a2,...ap

b1,b2,...bq
; x
)

=
∞∑

n=0

(a1)n . . . (ap)n

(b1)n . . . (bq)n

xn

n!
,

where (y)n = Γ(y + n)/Γ(y). We have restated Eq. (4.1.3) as a hypergeo-
metric transformation in Eq. (4.2.24). As a special case of Eq. (4.1.3) we
can also deduce that

5F4

(
5
4
, 3
2
, 7
4
,1,1

2,2,2,2
; 1
)

=
256
3

log(2) − 5120
√

2
3π3

L(f, 3),

where f(q) = q
∏∞

n=1 (1 − qn)2
(
1 − q2n

) (
1 − q4n

) (
1 − q8n

)2, and L(f, s) is
the usual L-series of f(q). We will conclude Section 4.2 with a brief dis-
cussion of some related, but still unproven, evaluations of the 4F3 and 3F2

hypergeometric functions.
It turns out that g1(u) and g2(u) are also closely related to Watson’s

triple integrals. For appropriate values of u, Watson showed that g′1(u) and
g′2(u) reduce to products of elliptical integrals (for relevant results see [96],
[91], [92], and [90]). In Section 4.3 we will use some related transformations
to prove new formulas for 1/π. For example, we will show that

2
π

=
∞∑

n=0

(−1)n (3n + 1)
32n

n∑
k=0

(
2n − 2k

n − k

)(
2k

k

)(
n

k

)2

.

Notice that this formula for 1/π involves the Domb numbers. Chan, Chan
and Liu obtained a similar formula for 1/π involving Domb numbers in [88],
we have recovered their result in (4.3.10). Zudilin and Yang also discovered
some related formulas for 1/π in [98]. All of the 3F2 transformations that
we will utilize in Section 4.3 follow from differentiating the 5F4 identities
established in Section 4.2.
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4.2 Identities between Mahler measures and
transformations for the 5F4 function

Bertin proved that both g1(u) and g2(u) have convenient q-series expansions
when u is parameterized correctly. Before stating her theorem, we will define
some notation. As usual let

(x, q)∞ = (1 − x)(1 − xq)
(
1 − xq2

)
. . . ,

and define G(q) by

G(q) = Re

[
− log(q) + 240

∞∑
n=1

n2 log (1 − qn)

]
. (4.2.1)

Notice that if q ∈ (0, 1) then G′(q) = −M(q)/q, where M(q) is the Eisenstein
series of weight 4 on the full modular group Γ(1) [81].

Theorem 4.2.1. (Bertin) For |q| sufficiently small

g1 (t1(q)) = − 1
60

G(q) +
1
30

G(q2) − 1
20

G(q3) +
1
10

G(q6), (4.2.2)

g2 (t2(q)) =
1

120
G(q) − 1

15
G
(
q2
)− 1

40
G
(
q3
)

+
1
5
G
(
q6
)
, (4.2.3)

where

t1(q) =v1 +
1
v1

, and v1 = q1/2

(
q; q2

)6
∞

(q3; q6)6∞
,

t2(q) = −
(

v2 − 1
v2

)2

, and v2 = q1/2

(
q2; q2

)6
∞
(
q3; q3

)2
∞
(
q12; q12

)4
∞

(q; q)2∞ (q4; q4)4∞ (q6; q6)6∞
.

In this section we will show that both g1(u) and g2(u) reduce to linear
combinations of 5F4 hypergeometric functions. We will accomplish this goal
by first expressing each of the functions

f2(u) :=2m
(
u1/2 +

(
x + x−1

) (
y + y−1

) (
z + z−1

))
, (4.2.4)

f3(u) :=m
(
u − (x + x−1

)2 (
y + y−1

)2 (1 + z)3 z−2
)

, (4.2.5)

f4(u) :=4m
(
x4 + y4 + z4 + 1 + u1/4xyz

)
, (4.2.6)

in terms of G(q). We will then exploit those identities to establish linear
relations between functions in the set {f2(u), f3(u), f4(u), g1(u), g2(u)}. This
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is significant since f2(u), f3(u), and f4(u) all reduce to 5F4 hypergeometric
functions. In particular this implies the non-trivial fact that both g1(u) and
g2(u) also reduce to linear combinations of 5F4 functions.

Proposition 4.2.2. The following identities hold for |u| sufficiently large:

f2(u) =Re
[
log(u) − 8

u
5F4

(
3
2
, 3
2
, 3
2
,1,1

2,2,2,2
;
64
u

)]
, (4.2.7)

f3(u) =Re
[
log(u) − 12

u
5F4

(
4
3
, 3
2
, 5
3
,1,1

2,2,2,2
;
108
u

)]
, (4.2.8)

f4(u) =Re
[
log(u) − 24

u
5F4

(
5
4
, 3
2
, 7
4
,1,1

2,2,2,2
;
256
u

)]
. (4.2.9)

For |u| > 6

g1(u) =Re

[
log(u) −

∞∑
n=1

(1/u)2n

2n

(
2n

n

) n∑
k=0

(
2k

k

)(
n

k

)2
]

, (4.2.10)

and if |u| > 16

g2(u) =Re

[
log(u) −

∞∑
n=1

(1/u)n

n

n∑
k=0

(
2n − 2k

n − k

)(
2k

k

)(
n

k

)2
]

. (4.2.11)

Proof. We can prove each of these identities using a method due to Rodriguez-
Villegas [95]. We will illustrate the proof of Eq. (4.2.7) explicitly. Rear-
ranging the Mahler measure shows that

f2(u) =Re [log(u)

+
∫ 1

0

∫ 1

0

∫ 1

0
log
(

1 − 64
u

cos2(2πt1) cos2(2πt2) cos2(2πt3)
)

dt1dt2dt3

]
.

If |u| > 64, then
∣∣64

u cos2(2πt1) cos2(2πt2) cos2(2πt3)
∣∣ < 1, hence by the

Taylor series for the logarithm

f2(u) =Re

[
log(u) −

∞∑
n=1

(64/u)n

n

(∫ 1

0
cos2n(2πt)dt

)3
]

=Re

[
log(u) −

∞∑
n=1

(
2n

n

)3 (1/u)n

n

]

=Re
[
log(u) − 8

u
5F4

(
3
2
, 3
2
, 3
2
,1,1

2,2,2,2
;
64
u

)]
.

Notice that Eq. (4.2.7) holds whenever u �∈ [−64, 64], since f2(u) is harmonic
in C\[−64, 64].
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While Proposition 4.2.2 shows that the results in this paper easily trans-
late into the language of hypergeometric functions, the relationship to Mahler
measure is more important than simple pedagogy. Bertin proved that for
certain values of u the zero varieties of the (projectivized) polynomials from
equations (4.1.1) and (4.1.2) define K3 hypersurfaces. She also proved for-
mulas relating the L-functions of these K3 surfaces at s = 3 to rational
multiples of the Mahler measures. Proposition 4.2.2 shows that these re-
sults imply explicit 5F4 evaluations (see Corollary 4.2.6 for explicit exam-
ples). While it might also be interesting to interpret the polynomials from
equations (4.2.4) through (4.2.6) in terms of K3 hypersurfaces, we will not
pursue that direction here.

Theorem 4.2.3. For |q| sufficiently small

f2(s2(q)) = − 2
15

G(q) − 1
15

G (−q) +
3
5
G
(
q2
)
, (4.2.12)

f3(s3(q)) = − 1
8
G(q) +

3
8
G
(
q3
)
, (4.2.13)

f4(s4(q)) = − 1
3
G(q) +

2
3
G
(
q2
)
, (4.2.14)

where

s2(q) =q−1
(−q; q2

)24

∞ ,

s3(q) =
1
q

(
27q

(
q3; q3

)6
∞

(q; q)6∞
+

(q; q)6∞
(q3; q3)6∞

)2

,

s4(q) =
1
q

(
q2; q2

)24

∞
(q; q)24

∞

(
16q

(q; q)4∞
(
q4; q4

)8
∞

(q2; q2)12
∞

+

(
q2; q2

)12

∞
(q; q)4∞ (q4; q4)8∞

)4

.

The following inverse relations hold for |q| sufficiently small:

G(q) = − 19f2 (s2(q)) − 4f2 (s2(−q)) + 24f2

(
s2

(
q2
))

− 12f2

(
s2

(−q2
))

, (4.2.15)

G(q) = − 19
2

f3 (s3(q)) − 3
2
f3

(
s3

(
e2πi/3q

))
− 3

2
f3

(
s3

(
e4πi/3q

))
+

9
2
f3

(
s3

(
q3
))

,

(4.2.16)

G(q) = − 5f4 (s4(q)) − 2f4 (s4(−q)) + 4f4

(
s4

(
q2
))

. (4.2.17)
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Proof. We can use Ramanujan’s theory of elliptic functions to verify the
first half of this theorem. Recall that the elliptic nome is defined by

qj(α) = exp

⎛⎝− π

sin (π/j)

2F1

(
1
j , 1 − 1

j ; 1; 1 − α
)

2F1

(
1
j , 1 − 1

j ; 1; α
)
⎞⎠ .

It is a well established fact that sj (qj (α)) is a rational function of α when-
ever j ∈ {2, 3, 4}. For example if q = q2(α), then s2 (q) = 16

α(1−α) . Therefore
we can verify Eq. (4.2.12) by differentiating with respect to α, and by
showing that the identity holds when q → 0.

Observe that when q → 0 both sides of Eq. (4.2.12) approach − log |q|+
O(q). Differentiating with respect to α yields

− (1 − 2α)
2α(1 − α)3F2

(
1
2
, 1
2
, 1
2

1,1
; 4α(1 − α)

)
= − 1

2q

(
1 − 16

∞∑
n=1

n3 qn

1 − qn
+ 256

∞∑
n=1

n3 q4n

1 − q4n

)
dq

dα
.

This final identity follows from applying three well known formulas:

dq

dα
=

q

α(1 − α)2F1
2
(

1
2 , 1

2 ; 1; α
) ,

3F2

(
1
2
, 1
2
, 1
2

1,1
; 4α(1 − α)

)
= 2F1

2

(
1
2
,
1
2
; 1; α

)
,

1 − 16
∞∑

n=1

n3 qn

1 − qn
+ 256

∞∑
n=1

n3 q4n

1 − q4n
= (1 − 2α)2F1

4

(
1
2
,
1
2
; 1; α

)
.

We can verify equations (4.2.13) and (4.2.14) in a similar manner by using
the fact that s3 (q3(α)) = 27

α(1−α) , and s4 (q4(α)) = 64
α(1−α) .

The crucial observation for proving equations (4.2.15) through (4.2.17)
is the fact that G(q) satisfies the following functional equation for any prime
p:

p−1∑
j=0

G
(
e2πij/pq

)
=
(
1 + p3

)
G (qp) − p2G

(
qp2
)

. (4.2.18)

We will only need the p = 2 case to prove Eq. (4.2.15):

G(q) + G(−q) = 9G
(
q2
)− 4G

(
q4
)
.
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Notice that this last formula always allows us to eliminate G
(
q4
)

from an
equation. Applying the substitutions q → −q, q → q2, and q → −q2 to Eq.
(4.2.12) yields⎛⎝ −2/15 −1/15 3/5

−1/15 −2/15 3/5
−3/20 −3/20 23/20

⎞⎠⎛⎝ G (q)
G (−q)
G
(
q2
)
⎞⎠ =

⎛⎝ f2 (s2(q))
f2 (s2(−q))

2f2

(
s2

(
q2
))− f2

(
s2

(−q2
))
⎞⎠ .

Since this system of equations is non-singular, we can invert the matrix to
recover Eq. (4.2.15). We can prove equations (4.2.16) and (4.2.17) in a
similar fashion.

If we compare Theorem 4.2.3 with Bertin’s results we can deduce some
obvious relationships between the Mahler measures. For example, combining
Eq. (4.2.14) with Eq. (4.2.3), and combining Eq. (4.2.13) with Eq. (4.2.2),
we find that

g1(t1(q)) =
1
20

f4 (s4(q)) +
3
20

f4

(
s4

(
q3
))

, (4.2.19)

g2 (t2(q)) = − 1
15

f3 (s3(q)) +
8
15

f3

(
s3

(
q2
))

. (4.2.20)

Notice that many more identities follow from substituting equations (4.2.15)
through (4.2.17) into formulas (4.2.2), (4.2.3), (4.2.12), (4.2.13) and (4.2.14).
However, for the remainder of this section we will restrict our attention to
equations (4.2.19) and (4.2.20). In particular, we will appeal to the theory
of elliptic functions to transform those results into identities which depend
on rational arguments.

If we let q = q2(α), then it is well known that
qj/24(qj ;qj)∞
q1/24(q;q)∞

is an algebraic
function of α for j ∈ {1, 2, 3, . . . } (for example see [82] or [83]). It follows
immediately that s2(q), s3(q), s4(q), t1(q), and t2(q) are also algebraic func-
tions of α. The following lemma lists several instances where those functions
have rational parameterizations.

Lemma 4.2.4. Suppose that q = q2(α), where α = p(2+p)3/(1+2p)3. The
following identities hold for |p| sufficiently small:

s2(q) =
16(1 + 2p)6

p(1 − p)3(1 + p)(2 + p)3
, s2

(
q3
)

=
16(1 + 2p)2

p3(1 − p)(1 + p)3(2 + p)
,

s2(−q) = − 16(1 − p)6(1 + p)2

p(2 + p)3(1 + 2p)3
, s2

(−q3
)

= − 16(1 − p)2(1 + p)6

p3(2 + p)(1 + 2p)
,
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s2

(−q2
)

=
162(1 − p)3(1 + p)(1 + 2p)3

p2(2 + p)6
, s2

(−q6
)

=
162(1 − p)(1 + p)3(1 + 2p)

p6(2 + p)2
,

s3(q) =
4
(
1 + 4p + p2

)6
p (1 − p2)4 (2 + p)(1 + 2p)

, s3

(
q2
)

=
16
(
1 + p + p2

)6
p2 (1 − p2)2 (2 + p)2(1 + 2p)2

,

s3(−q) = − 4
(
1 − 2p − 2p2

)6
p(1 − p2)(2 + p)(1 + 2p)4

, s3

(
q4
)

=
4
(
2 + 2p − p2

)6
p4 (1 − p2) (2 + p)4(1 + 2p)

,

s4(q) =
16
(
1 + 14p + 24p2 + 14p3 + p4

)4
p(1 − p)6(1 + p)2(2 + p)3(1 + 2p)3

,

s4

(
q3
)

=
16
(
1 + 2p + 2p3 + p4

)4
p3(1 − p)2(1 + p)6(2 + p)(1 + 2p)

,

s4(−q) = − 16
(
1 − 10p − 12p2 − 4p3 − 2p4

)4
p(1 − p)3(1 + p)(1 + 2p)6(2 + p)3

,

s4

(−q3
)

= − 16
(
1 + 2p − 4p3 − 2p4

)4
p3(1 − p)(1 + p)3(1 + 2p)2(2 + p)

.

Rational formulas also exist for certain values of t21(q) and t2(q):

t21(q) =
4
(
1 + p + p2

)2 (1 + 4p + p2
)2

p(1 − p2)2(2 + p)(1 + 2p)
,

t21(−q) = − 4
(
1 + p + p2

)2 (1 − 2p − 2p2
)2

p(1 − p2)(2 + p)(1 + 2p)2
,

t2(q) = − 4
(
1 − p2

)2
p(2 + p)(1 + 2p)

,

t2(−q) = − 4(1 + p + p2)2

p(1 − p2)(2 + p)
.

The main difficulty with Lemma 4.2.4 is the fact that very few values of
sj(±qn) reduce to rational functions of p. Consider the set{
s2(q), s2(−q), s2

(−q2
)
, s2

(
q2
)}

as an example. While Lemma 4.2.4 shows
that s2(q), s2(−q), and s2

(−q2
)

are all rational with respect to p, the for-
mula for s2

(
q2
)

involves radicals. Recall that if α = p(2 + p)3/(1 + 2p)3,
then

s2

(
q2
)

=
4
(
1 +

√
1 − α

)6
α2

√
1 − α

,
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where
√

1 − α = 1−p
(1+2p)2

√
(1 − p2)(1 + 2p). Since the curve X2 = (1−p2)(1+

2p) is elliptic with conductor 24, it follows immediately that rational sub-
stitutions for p will never reduce s2

(
q2
)

to a rational function. For the sake
of legibility, we will therefore avoid all identities which involve those four
functions simultaneously. By avoiding pitfalls of this nature, we can derive
several interesting results from Lemma 4.2.4.

Theorem 4.2.5. For |z| sufficiently large

g1

(
3
(
z + z−1

))
=

1
20

f4

(
9
(
3 + z2

)4
z6

)
+

3
20

f4

(
9
(
3 + z−2

)4
z−6

)
, (4.2.21)

g2(z) = − 1
15

f3

(
(16 − z)3

z2

)
+

8
15

f3

(
−(4 − z)3

z

)
. (4.2.22)

Proof. These identities follow from applying Lemma 4.2.4 to equations (4.2.19)
and (4.2.20). If we consider Eq. (4.2.19), then Lemma 4.2.4 shows that t21(q),
s4(q), and s4

(
q3
)

are all rational functions of p. Forming a resultant with
respect to p, we obtain

0 = Res
p

[
4
(
1 + p + p2

)2 (1 + 4p + p2
)2

p (1 − p2)2 (2 + p)(1 + 2p)
− t21(q),

16
(
1 + 14p + 24p2 + 14p3 + p4

)4
p(1 − p)6(1 + p)2(2 + p)3(1 + 2p)3

− s4(q)

]
.

Simplifying with the aid of a computer, this becomes

0 = s2
4(q) +

(
12 + t21(q)

)4 − s4(q)
(−288 + 352t21(q) − 42t41(q) + t61(q)

)
.

If we choose z so that t1(q) = 3
(
z + z−1

)
, then s4(q) = 9

(
3 + z2

)4
z−6, and

a formula for s4

(
q3
)

follows in a similar fashion.

If we let u = 1/z with z ∈ R and sufficiently large, then Eq. (4.2.22)
reduces to the following infinite series identity:

∞∑
n=1

un

n

n∑
k=0

(
2k

k

)(
2n − 2k

n − k

)(
n

k

)2

=
1
5

log
(

(1 − 16u)
(1 − 4u)8

)
+

4u

5(1 − 16u)3 5F4

(
4
3
, 3
2
, 5
3
,1,1

2,2,2,2
;− 108u

(1 − 16u)3

)
+

32u2

5(1 − 4u)3 5F4

(
4
3
, 3
2
, 5
3
,1,1

2,2,2,2
;

108u2

(1 − 4u)3

)
.

(4.2.23)
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Similarly, if we let u = 1/z2 then Eq. (4.2.21) is equivalent to:

∞∑
n=1

1
n

(
u

9(1 + u)2

)n(2n

n

) n∑
k=0

(
2k

k

)(
n

k

)2

=
2
5

log
(

27(1 + u)5

(3 + u)3(1 + 3u)

)
+

4u3

5(3 + u)4 5F4

(
5
4
, 3
2
, 7
4
,1,1

2,2,2,2
;

256u3

9(3 + u)4

)
+

4u

15(1 + 3u)4 5F4

(
5
4
, 3
2
, 7
4
,1,1

2,2,2,2
;

256u

9(1 + 3u)4

)
.

(4.2.24)

In Section 4.3 we will differentiate equations (4.2.23) and (4.2.24) to obtain
several new formulas for 1/π. But first we will conclude this section by
deducing some explicit 5F4 evaluations.

Recall that for certain values of u, Bertin evaluated g1(u) and g2(u) in
terms of the L-series of K3 surfaces. She also proved equivalent formulas
involving twisted cusp forms. Amazingly, her formulas correspond to cases
where the right-hand sides of equations (4.2.21) and (4.2.22) collapse to one
hypergeometric term. We can combine her results with equations (4.2.23)
and (4.2.24) to deduce several new 5F4 evaluations.

Corollary 4.2.6. If g(q) = q
(
q2; q2

)3
∞
(
q6; q6

)3
∞, then

5F4

(
4
3
, 3
2
, 5
3
,1,1

2,2,2,2
; 1
)

= 18 log(2) + 27 log(3) − 810
√

3
π3

L(g, 3). (4.2.25)

If f(q) = q (q; q)2∞
(
q2; q2

)
∞
(
q4; q4

)
∞
(
q8; q8

)2
∞, then

5F4

(
5
4
, 3
2
, 7
4
,1,1

2,2,2,2
; 1
)

=
256
3

log(2) − 5120
√

2
3π3

L(f, 3). (4.2.26)

While many famous 5F4 identities, such as Dougall’s formula [81], reduce
special values of the 5F4 function to gamma functions, equations (4.2.25) and
(4.2.26) do not fit into this category. Rather these new formulas are higher
dimensional analogues of Boyd’s conjectures. In particular, Boyd has con-
jectured large numbers of identities relating two-variable Mahler measures
(that mostly reduce to 4F3 functions) to the L-series of elliptic curves [87].
The most famous outstanding conjecture of this type asserts that

m
(

1 + x +
1
x

+ y +
1
y

)
= −2Re

[
4F3

(
3
2
, 3
2
,1,1

2,2,2
; 16
)]

?=
15
4π2

L(f, 2),
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where

f(q) = q

∞∏
n=1

(1 − qn)
(
1 − q3n

) (
1 − q5n

) (
1 − q15n

)
,

and “ ?=” indicates numerical equality to at least 50 decimal places. Re-
cently, Kurokawa and Ochiai proved a formula [93] which simplifies this last
conjecture to

3F2

(
1
2
, 1
2
, 1
2

3
2
,1

;
1
16

)
?=

15
π2

L(f, 2).

Of course it would be highly desirable to rigorously prove Boyd’s conjectures.
Failing that, it might be interesting to search for more hypergeometric iden-
tities like equations (4.2.25) and (4.2.26). This line of thought suggests the
following fundamental problem with which we shall conclude this section:
Open Problem: Determine every L-series that can be expressed in terms
of generalized hypergeometric functions with algebraic parameters.

4.3 New formulas for 1/π

In the previous section we produced several new transformations for the 5F4

hypergeometric function. Now we will differentiate those formulas to obtain
some new 3F2 transformations, and several accompanying formulas for 1/π.
The following formula is a typical example of the identities in this section:

2
π

=
∞∑

n=0

(−1)n (3n + 1)
32n

n∑
k=0

(
2n − 2k

n − k

)(
2k

k

)(
n

k

)2

. (4.3.1)

Ramanujan first proved identities like Eq. (4.3.1) in his famous paper “Mod-
ular equations and approximations to π” [94]. He showed that the following
infinite series holds for certain constants A, B, and X:

1
π

=
∞∑

n=0

(An + B)
(1/2)3n

n!3
Xn (4.3.2)

Ramanujan determined many sets of algebraic values for A, B, and X by
expressing them in terms of the classical singular moduli Gn and gn. He
also stated (but did not prove) several formulas for 1/π where (1/2)3n is
replaced by (1/a)n (1/2)n (1 − 1/a)n for a ∈ {3, 4, 6} (for more details see
[84] or [89]).
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Ramanujan’s formulas for 1/π have attracted a great deal of attention be-
cause of their intrinsic beauty, and because they converge extremely quickly.
For example, Mathematica calculates π using a variant of a Ramanujan-type
formula due to the Chudnovsky brothers [97]:

1
π

= 12
∞∑

n=0

(−1)n(6n)!(13591409 + 54513013n)

n!3(3n)! (6403203)n+1/2
. (4.3.3)

More recent mathematicians including Yang and Zudilin have derived for-
mulas for 1/π which are not hypergeometric, but still similar to Eq. (4.3.3).
For example, Yang showed that

18
π
√

15
=

∞∑
n=0

(4n + 1)
36n

n∑
k=0

(
n

k

)4

,

and Zudilin gave many infinite series for 1/π containing nested sums of
binomial coefficients [98]. All of the formulas that we will prove, including
Eq. (4.3.1), are essentially of this type.

Theorem 4.3.1. For |u| sufficiently small

3F2

(
1
3
, 1
2
, 2
3

1,1
;

108u2

(1 − 4u)3

)
= (1 − 4u)

∞∑
n=0

un
n∑

k=0

(
2n − 2k

n − k

)(
2k

k

)(
n

k

)2

.

(4.3.4)
If |u| is sufficiently small

3F2

(
1
4
, 1
2
, 3
4

1,1
;

256u

9(1 + 3u)4

)
=

(1 + 3u)
(1 + u)

∞∑
n=0

(
u

9(1 + u)2

)n(2n

n

) n∑
k=0

(
2k

k

)(
n

k

)2

.

(4.3.5)

Proof. Applying the operator u d
du to Eq. (4.2.23), and then simplifying

yields

∞∑
n=0

un
n∑

k=0

(
2k

k

)(
2n − 2k

n − k

)(
n

k

)2

= − (1 + 32u)
15(1 − 16u)3F2

(
1
3
, 1
2
, 2
3

1,1
;− 108u

(1 − 16u)3

)
+

16(1 + 2u)
15(1 − 4u)3F2

(
1
3
, 1
2
, 2
3

1,1
;

108u2

(1 − 4u)3

)
.

Eq. (4.3.4) then follows from applying a standard 3F2 transformation:

3F2

(
1
3
, 1
2
, 2
3

1,1
;− 108u

(1 − 16u)3

)
=

(1 − 16u)
(1 − 4u) 3F2

(
1
3
, 1
2
, 2
3

1,1
;

108u2

(1 − 4u)3

)
. (4.3.6)
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We can prove Eq. (4.3.5) in a similar manner by differentiating Eq. (4.2.24)
and then using

3F2

(
1
4
, 1
2
, 3
4

1,1
;

256u3

9(3 + u)4

)
=

(3 + u)
3(1 + 3u)3F2

(
1
4
, 1
2
, 3
4

1,1
;

256u

9(1 + 3u)4

)
. (4.3.7)

While the infinite series in Theorem 4.3.1 are not hypergeometric since
they involve nested binomial sums, they are still interesting. In particular,
those formulas easily translate into unexpected integrals involving powers of
modified Bessel functions. For |x| sufficiently small, Eq. (4.3.4) is equivalent
to∫ ∞

0
e−3(x+x−1)uI3

0 (2u) du =
x

3 (1 + 3x2)3F2

(
1
4
, 1
2
, 3
4

1,1

256x2

9(1 + 3x2)4

)
, (4.3.8)

where I0(u) is the modified Bessel function of the first kind. Recall the series
expansions for I0(2u) and I2

0 (2u):

I0(2u) =
∞∑

n=0

u2n

n!2
, I2

0 (2u) =
∞∑

n=0

(
2n

n

)
u2n

n!2
.

While it is not obvious that the Laplace transform of I3
0 (2u) should equal

a hypergeometric function, M. Lawrence Glasser has kindly pointed out
that equation (4.3.8) is essentially a well known result. A variety of similar
integrals have also been studied by Joyce [92], Glasser and Montaldi [90],
and others.

Finally, we will list a few formulas for 1/π. Notice that equation (4.3.10)
first appeared in the work of Chan, Chan and Liu [88].

Corollary 4.3.2. Let an =
∑n

k=0

(
2n−2k
n−k

)(
2k
k

)(
n
k

)2, then the following for-
mulas are true:

2
π

=
∞∑

n=0

(−1)n (3n + 1)
32n

an, (4.3.9)

8
√

3
3π

=
∞∑

n=0

(5n + 1)
64n

an, (4.3.10)

9 + 5
√

3
π

=
∞∑

n=0

(6n + 3 −
√

3)

(
3
√

3 − 5
4

)n

an. (4.3.11)
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Let bn =
(
2n
n

)∑n
k=0

(
2k
k

)(
n
k

)2, then the following identity holds:

2
(
64 + 29

√
3
)

π
=

∞∑
n=0

(
520n + 159 − 48

√
3
)(80

√
3 − 139
484

)n

bn. (4.3.12)

Proof. We can use Eq. (4.3.4) to easily deduce that if
∞∑

n=0

(an + b)
(1/3)n(1/2)n(2/3)n

n!3

(
108u2

(1 − 4u)3

)n

=
∞∑

n=0

(An + B)unan,

then A = a(1− 4u)/(2 + 4u), and B = a(−4u)(1− 4u)/(2 + 4u) + b(1− 4u).
Since the left-hand side of this last formula equals 1/π when

(
a, b, 108u2

(1−4u)3

)
∈

{(60
27 , 8

27 , 2
27

)
,
(

2√
3
, 1

3
√

3
, 1

2

)
, (45

11 − 5
33

√
3, 6

11 − 13
99

√
3,− 194

1331 + 225
2662

√
3)}, it is

easy to verify equations (4.3.9) through (4.3.11) [89].
We can verify Eq. (4.3.12) in a similar manner by combining Eq. (4.3.5)

with Ramanujan’s formula

8
π

=
∞∑

n=0

(20n + 3)
(1/4)n(1/2)n(3/4)n

n!3

(−1
4

)n

.

4.4 Conclusion

We will conclude the paper by suggesting two future projects. Firstly, it
would be desirable to determine whether or not a rational series involving
bn exists for 1/π. Secondly, it might be interesting to consider the Mahler
measure

f6(u) = m
(
u − (z + z−1

)6 (
y + y−1

)2 (1 + x)3x−2
)

,

since f6(u) arises from Ramanujan’s theory of signature 6.
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and Marie José Bertin for the useful discussions. The author thanks Wadim
Zudilin for the useful communications and for the reference [98]. The au-
thor also thanks Zhiguo Liu for the reference [88]. The author extends his
gratitude to M. Lawrence Glasser for the references [90] and [92]. Finally,
thanks to Jianyun Shan from Peking University for pointing out [91].

92



Bibliography

[79] G. E. Andrews and B.C. Berndt, Ramanujan’s Lost Notebook, Part I,
Springer-Verlag, New York, 2005.

[80] C. M. Bender, D. C. Brody and B. K. Meister, On powers of Bessel
functions, J. Math. Phys. 44(2003), no. 1, 309–314.

[81] B.C. Berndt, Ramanujan’s Notebooks, Part II, Springer-Verlag, New
York, 1989.

[82] B.C. Berndt, Ramanujan’s Notebooks, Part III, Springer-Verlag, New
York, 1991.

[83] B.C. Berndt, Ramanujan’s Notebooks, Part V, Springer-Verlag, New
York, 1998.

[84] B.C. Berndt, S. Bhargava and F.G. Garvan, Ramanujan’s theories of
elliptic functions to alternative bases, Trans. Amer. Math. Soc. 347
(1995), 4163-4244.

[85] M. J. Bertin, Mahler’s measure and L-series of K3 hypersurfaces,
(Preprint).

[86] M. J. Bertin, Mesure de Mahler D’Hypersurfaces K3, (Preprint 2005).
See http://arxiv.org/abs/math/0501153

[87] D. W. Boyd, Mahler’s measure and special values of L-functions, Ex-
periment. Math. 7 (1998), 37-82. demic Press, 1994.

[88] H. H. Chan, S. H. Chan and Z. Liu, Domb’s numbers and Ramanujan
Sato type series for 1/π. Adv. Math. 186 (2004), no. 2, 396–410.

[89] H. H. Chan and W. Liaw, Cubic modular equations and new
Ramanujan-type series for 1/π. Pacific J. Math. 192 (2000), no.2, 219–
238.

[90] M. L. Glasser and E. Montaldi, Staircase polygons and recurrent lattice
walks, Phys. Rev. E, 48, (1993), no. 4.

93



Bibliography

[91] G. S. Joyce and I. J. Zucker, On the evaluation of generalized Watson
integrals. Proc. Amer. Math. Soc. 133 (2005), no. 1, 71-81 (electronic).

[92] G. S. Joyce, On the simple cubic lattice Green function. Philos. Trans.
Roy. Soc. London Ser. A 273 (1973), no. 1236, 583–610.

[93] N. Kurokawa and H. Ochiai, Mahler measures via crystalization, Com-
mentarii Mathematici Universitatis Sancti Pauli, 54 (2005), 121-137.

[94] S. Ramanujan, Modular equations and approximations to π, [Quart. J.
Math. 45 (1914), 350-372]. Collected papers of Srinivasa Ramanujan,
23-29, AMS Chelsea Publ., Providence, RI, 2000.

[95] F. Rodriguez-Villegas, Modular Mahler measures I, Topics in number
theory (University Park, PA, 1997), 17–48, Math. Appl., 467, Kluwer
Acad. Publ., Dordrecht, 1999.

[96] G. N. Watson, Three triple integrals. Quart. J. Math., Oxford Ser. 10,
(1939). 266-276.

[97] E. W. Weisstein. ”Pi Formulas.” From MathWorld–A Wolfram Web
Resource. http://mathworld.wolfram.com/PiFormulas.html

[98] W. Zudilin, Quadratic transformations and Guillera’s formulae for
1/π2, (preprint 2005). See http://wain.mi.ras.ru/publications.html

Department of Mathematics, University of British Columbia,
Vancouver, B.C. V6T 1Z2, Canada
matrogers@math.ubc.ca

94



Chapter 5

Trigonometric integrals and
Mahler measures

Mathew D. Rogers4

5.1 Introduction

In this paper we will undertake a systematic study of each of the inverse
trigonometric integrals

T(v, w) =
∫ 1

0

tan−1(vx) tan−1(wx)
x

dx,

S(v, w) =
∫ 1

0

sin−1(vx) sin−1(wx)
x

dx,

TS(v, w) =
∫ 1

0

tan−1(vx) sin−1(wx)
x

dx.

This class of integrals arises when trying to find closed form expressions for
the Mahler measures of certain three-variable polynomials.

Recall that the Mahler measure of an n-dimensional polynomial, P (x1, . . . , xn),
can be defined by

m (P (x1, . . . , xn)) =
∫ 1

0
. . .

∫ 1

0
log
∣∣P (e2πiθ1 , . . . , e2πiθn

) ∣∣dθ1 . . .dθn.

In the last few years, numerous papers have established explicit formulas
relating multi-variable Mahler measures to special constants. Smyth proved
the first result [102] with

m (1 + x + y + z) =
7

2π2
ζ(3),

4A version of this chapter has been published. Rogers, M. D. (2006) A study of inverse
trigonometric integrals associated with three-variable Mahler measures, and some related
identities. J. Number Theory 121:265-304.
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where the Riemann zeta function is defined by ζ(s) =
∑∞

n=1
1
ns .

In this paper, we will prove a number of new formulas relating three-
variable Mahler measures to the aforementioned trigonometric integrals.
Many of our identities generalize previously known results. We will list
a few of our main results in this introductory section.

For our first example, we can use various properties of T(v, w) to show
that

m

(
1 − v4

(
1 − x

1 + x

)2

+
(

y + v2

(
1 − x

1 + x

))2

z

)

=
4
π

∫ v

0

tan−1(u)
u

du − 8
π2

T
(

v,
1
v

)
+

1
2
m

(
1 − v4

(
1 − x

1 + x

)2
)

.

(5.1.1)

This reduces to one of Lalin’s formulas [107] when v = 1:

m ((1 + y)(1 + z) + (1 − z)(x − y)) =
7

2π2
ζ(3) +

log(2)
2

. (5.1.2)

We can use the double arcsine integral, S(v, w), to prove that if v ∈ [0, 1]:

m (v(1 + x) + y + z) =
2
π

∫ v

0

sin−1(u)
u

du − 4
π2

S(v, 1)

=
4
π2

(
Li3(v) − Li3(−v)

2

)
.

(5.1.3)

The second equality has been proved by Vandervelde [115]. Slightly more
complicated arguments lead to expressions that include

m
(
1 − x1/6 + y + z

)
=

2
π

∫ 1
2

0

sin−1(u)
u

du − 12
π2

S
(

1
2
,
1
2

)
(5.1.4)

This fractional Mahler measure is defined by

m
(
1 − x1/6 + y + z

)
=
∫ 1

0
m
(
1 − e2πiu/6 + y + z

)
du,

notice that m
(
1 − x1/6 + y + z

) �= m(1 − x + y + z). We can simplify the
right-hand side of Eq. (5.1.4) by either expressing S

(
1
2 , 1

2

)
as a linear com-

bination of L-functions, or in terms of a famous binomial sum:

S
(

1
2
,
1
2

)
=

1
4

∞∑
n=1

1
n3
(
2n
n

) .
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Condon [105] proved an identity that Boyd and Rodriguez Villegas con-
jectured:

m (1 + x + (1 − x)(y + z)) =
28
5π2

ζ(3). (5.1.5)

His proof also showed (in a slightly disguised form) that

TS(2, 1) =
π

2

∫ 2

0

tan−1(u)
u

du − 7
5
ζ(3). (5.1.6)

We have generalized Condon’s identity to show that

m
(
1 + x +

v

2
(1 − x)(y + z)

)
=

2
π

∫ v

0

tan−1(u)
u

du − 4
π2

TS(v, 1), (5.1.7)

where Eq. (5.4.18) expresses TS(v, 1) in terms of polylogarithms. We can
use this result to prove a number of new formulas, including:

m
(

x +
v2

4
(1 + x)2 +

(
y +

v

2
(1 + x)

)2
z

)
=

2
π

∫ v

0

tan−1(u)
u

du − 4
π2

TS(v, 1) +
1
2
m
(

x +
v2

4
(1 + x)2

)
.

(5.1.8)

When v = 2 this reduces to an interesting identity for ζ(3) and the golden
ratio:

m
(
x + (1 + x)2 + (1 + x + y)2z

)
=

28
5π2

ζ(3) + log

(
1 +

√
5

2

)
. (5.1.9)

We will show that all of the integrals TS(v, w), T(v, w), and S(v, w)
have closed form expressions in terms of polylogarithms. The special case of
TS(v, 1) will warrant extra attention, as it is related to an interesting family
of binomial sums. Our closed forms are all derived through elementary
methods.

5.2 Preliminaries: A description of the method,
and some two dimensional Mahler measures

Although there are many conjectured formulas for multi-variable Mahler
measures, most are extremely difficult, if not impossible, to prove. Rather
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than attempting to prove any of these conjectures, we will take an easier ap-
proach. By investigating promising functions, and rewriting them as Mahler
measures, we can recover a number of useful formulas.

Our first step was to determine a class of functions that we could relate
to Mahler’s measure. We chose the three integrals TS(v, w), S(v, w), and
T(v, w), based on Condon’s evaluation of TS(2, 1), Eq. (5.1.6). Condon’s
formula naturally suggested the existence of a generalized Mahler measure
formula involving TS(v, 1). From there, it was a small step to consider the
similar functions TS(v, w), T(v, w), and S(v, w).

We will use the following method to express TS(v, 1), S(v, 1), and T(v, 1/v)
as three-variable Mahler measures. First, a simple integration by parts
changes each function into a two-dimensional integral, containing either a
nested arcsine or arctangent integral. Recall that the following integrals
define the arctangent and arcsine integrals respectively:∫ w

0

tan−1(u)
u

du,

∫ v

0

sin−1(u)
u

du.

A typical formula for TS(v, 1), Eq. (5.3.8), can be proved with little trouble:

TS(v, 1) =
π

2

∫ v

0

tan−1(u)
u

du −
∫ π/2

0

∫ v sin(θ)

0

tan−1(z)
z

dzdθ.

Next, substituting a two-dimensional Mahler measure for the nested arctan-
gent or arcsine integral will allow us to obtain a three-dimensional Mahler
measure evaluation. Theorem 5.3.2, Proposition 5.5.2, and Theorem 5.7.3
contain our main results from using this method.

Expressing the arcsine and arctangent integrals in terms of Mahler’s
measure represents the main difficulty in this approach. In the remainder
of this section we will establish four two-variable Mahler measures for the
arctangent integral, and one two-variable Mahler measure for the arcsine
integral.

Since many of our results involve polylogarithms, this will be a good
place to define the polylogarithm.

Definition 5.2.1. If |z| < 1, then the polylogarithm of order k is defined by

Lik(z) =
∞∑

n=1

zn

nk
.

We call Li2(z) the dilogarithm, and we call Li3(z) the trilogarithm.
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Theorem 5.2.2 requires a formula of Cassaigne and Maillot [111]. In
particular, Cassaigne and Mallot showed that

πm(a+bx+cy) =

{
D
( |a|

|b| e
iγ
)

+ α log |a| + β log |b| + γ log |c|, if “�”
π log (max {|a|, |b|, |c|}) , otherwise.

The “�” condition states that |a|, |b|, and |c| form the sides of a triangle.
If “�” is true, then α, β, and γ denote the radian measures of the angles
opposite to the sides of length |a|, |b|, and |c| respectively. In this formula,
D(z) denotes the Bloch-Wigner dilogarithm. As usual,

D(z) = Im (Li2(z)) + log |z| arg(1 − z).

Now that we have stated Cassaigne and Maillot’s formula, we will prove
Theorem 5.2.2.

Theorem 5.2.2. If 0 ≤ v ≤ 1 and w ≥ 0, then∫ v

0

sin−1(u)
u

du =
π

2
m(2v + y + z) (5.2.1)∫ w

0

tan−1(u)
u

du =
π

2
m
(
1 + w2 + (y + w)2z

)− π

4
log
(
1 + w2

)
(5.2.2)

Proof. To prove Eq. (5.2.1) first recall the usual formula for this arcsine
integral,∫ v

0

sin−1(u)
u

du =
1
2
Im
(
Li2
(
e2i sin−1(v)

))
+ sin−1(v) log(2v), (5.2.3)

which is valid whenever 0 ≤ v ≤ 1.
Now apply Cassaigne and Maillot’s formula to m(2v + y + z); we are in

the “�” case since 0 ≤ v ≤ 1. It follows from a little trigonometry that

πm(2v + y + z) = D
(
e2i sin−1(v)

)
+ 2 sin−1(v) log(2v),

Since
∣∣∣e2i sin−1(v)

∣∣∣ = 1, D
(
e2i sin−1(v)

)
= Im

(
Li2
(
e2i sin−1(v)

))
, hence we

obtain

πm(2v + y + z) = Im
(
Li2
(
e2i sin−1(v)

))
+ 2 sin−1(v) log(2v).

Comparing this last formula to Eq. (5.2.3), we have

π

2
m(2v + y + z) =

∫ v

0

sin−1(u)
u

du.
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To prove Eq. (5.2.2) first recall that if 0 ≤ w ≤ 1, then∫ w

0

tan−1(u)
u

du = Im (Li2(iw)) .

Next observe that by Cassaigne and Maillot’s formula

πm
(√

1 + w2 + wy + z
)

= D
(
eπi/2w

)
+ tan−1(w) log(w) +

π

2
log
(√

1 + w2
)

= Im (Li2(iw)) +
π

4
log
(
1 + w2

)
.

After a change of variables in the Mahler measure, it is clear that

m
(√

1 + w2 + wy + z
)

=
1
2

{
m
(√

1 + w2 + (1 + wy)iz
)

+ m
(√

1 + w2 − (1 + wy)iz
)}

=
1
2
m
(
1 + w2 + (1 + wy)2z2

)
=

1
2
m
(
1 + w2 + (y + w)2z

)
.

It follows that for 0 ≤ w ≤ 1 we have∫ w

0

tan−1(u)
u

du =
π

2
m
(
1 + w2 + (y + w)2z

)− π

4
log
(
1 + w2

)
.

We can extend this formula to the entire positive real line. Suppose that
w = 1/w′ where w′ ≥ 1, then∫ 1/w′

0

tan−1(u)
u

du =
π

2
m

(
1 +

1
w′2 +

(
y +

1
w′

)2

z

)
− π

4
log
(

1 +
1

w′2

)
=

π

2
m
(
1 + w′2 +

(
y + w′)2 z

)
− π

4
log
(
1 + w′2)− π

2
log(w′).

Since the arctangent integral obeys the functional equation [112]∫ w′

0

tan−1(u)
u

du =
π

2
log(w′) +

∫ 1/w′

0

tan−1(u)
u

du, (5.2.4)

it follows that∫ w′

0

tan−1(u)
u

du =
π

2
m
(
1 + w′2 +

(
y + w′)2 z

)
− π

4
log
(
1 + w′2) .

Therefore Eq. (5.2.2) holds for all w ≥ 0.
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The next theorem proves that Eq. (5.2.2) is not unique. Using results
from Theorem 5.6.5, we can derive three more Mahler measures for the
arctangent integral.

Theorem 5.2.3. Suppose that w ≥ 0, then∫ w

0

tan−1(u)
u

du =
π

4
m
(
(1 + w2)(1 + y) + w(1 − y)(z + z−1)

)
, (5.2.5)∫ w

0

tan−1(u)
u

du =
π

2
m
(
(y − y−1) + w(z + z−1)

)
, (5.2.6)

∫ w

0

tan−1(u)
u

du =
π

4
m

⎛⎝(4(1 + y)2 − (z + z−1
)2) (1 + w2)2

+
(
z − z−1

)2 (1 + y)2(1 − w2)2

⎞⎠
− π

4
log(2) − π

2
log(1 + w).

(5.2.7)

Proof. Since all three of these formulas have similar proofs, we will only
prove Eq. (5.2.5) and Eq. (5.2.7). It is necessary to remark, that while Eq.
(5.2.5) follows from Eq. (5.6.25), and Eq. (5.2.7) follows from Eq. (5.6.19),
we must start from Eq. (5.6.16) to prove Eq. (5.2.6).

Now we will proceed with the proof of Eq. (5.2.5). From Eq. (5.6.25)
we have

π

4k
log
(

1 + k

1 − k

)
− 2

k
Im (Li2(ir)) =

∫ 1

0

sin−1(u)
1 − k2u2

du,

where k = 2r
1+r2 , and 0 < k < 1. After an integration by parts this becomes

π

4k
log
(

1 + k

1 − k

)
−2

k
Im (Li2(ir))

=
π

4k
log
(

1 + k

1 − k

)
− 1

2k

∫ 1

0
log
(

1 + ku

1 − ku

)
du√

1 − u2
.

It follows immediately that

Im (Li2(ir)) =
1
4

∫ π/2

0
log
(

1 + k sin(t)
1 − k sin(t)

)
dt

=
1
8

∫ 2π

0
log+

∣∣∣∣1 + k sin(t)
1 − k sin(t)

∣∣∣∣dt.
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Changing the “log+ | · |” term into a Mahler measure, which we can do by
Jensen’s formula, yields

Im (Li2(ir)) =
π

4
m

(
y +

1 + k z+z−1

2

1 − k z+z−1

2

)
.

Since k = 2
r+r−1 , we have

Im (Li2(ir)) =
π

4
m
(

y +
r + r−1 + (z + z−1)
r + r−1 − (z + z−1)

)
=

π

4
m
(
(1 + y)(r + r−1) + (1 − y)(z + z−1)

)
− π

4
m
(
r + r−1 − (z + z−1)

)
=

π

4
m
(
(1 + y)(r + r−1) + (1 − y)(z + z−1)

)
− π

4

(
log+(r) + log+

(
1
r

))
In order to substitute the arctangent integral for Im (Li2(ir)), we will assume
that 0 < r < 1. With this restriction, the formula becomes∫ r

0

tan−1(u)
u

du =
π

4
m
(
(1 + y)(r + r−1) + (1 − y)(z + z−1)

)
− π

4
log
(

1
r

)
=

π

4
m
(
(1 + y)(1 + r2) + r(1 − y)(z + z−1)

)
(5.2.8)

We can manually verify that Eq. (5.2.8) holds when r = 0 and r = 1, and
using Eq. (5.2.4) we can extend Eq. (5.2.8) to all r > 1. Therefore, Eq.
(5.2.5) follows immediately.

Next we will prove Eq. (5.2.7). Using Eq. (5.6.16), we can show that

2Im (Li2(ip)) =
π

2
log(p) +

∫ 1

0

sin−1(u)
u
√

(1 − u2)(1 − k2u2)
du,

where k = 1−p2

1+p2 , and 0 < k < 1. To satisfy this restriction on k, we will
assume that 0 < p < 1. After several elementary simplifications, the right-
hand side becomes

=
π

2
log(p) +

π

2
log
(

1 +
1√

1 − k2

)
+
∫ 1

0
log

(
1 +

√
1 − u2

1 − k2u2

)
du√

(1 − u2)
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=
π

2
log(p) +

π

2
log
(

(1 + p)2

2p

)
+
∫ π/2

0
log

(
1 +

cos(θ)√
1 − k2 sin2(θ)

)
dθ

=
π

2
log
(

(1 + p)2

2

)
+

1
2

∫ 2π

0
log+

∣∣∣∣∣1 +
cos(θ)√

1 − k2 sin2(θ)

∣∣∣∣∣ dθ

Since cos(π − θ) = − cos(θ), we have

2Im (Li2(ip)) =
π

2
log
(

(1 + p)2

2

)
+

1
4

∫ 2π

0
log+

∣∣∣∣∣1 +
cos(θ)√

1 − k2 sin2(θ)

∣∣∣∣∣ dθ

+
1
4

∫ 2π

0
log+

∣∣∣∣∣1 − cos(θ)√
1 − k2 sin2(θ)

∣∣∣∣∣ dθ.

Applying Jensen’s formula yields

2Im (Li2(ip)) =
π

2
log
(

(1 + p)2

2

)
+

1
4

∫ 2π

0
m
(

(1 + y)2 − cos2(θ)
1 − k2 sin2(θ)

)
dθ

=
π

2
log
(

(1 + p)2

2

)
+

π

2
m

(
(1 + y)2 −

(
z + z−1

)2
4 + k2 (z − z−1)2

)

=
π

2
log
(

(1 + p)2

2

)
− π

2
m
(
4 + k2

(
z − z−1

)2)
+

π

2
m
((

4(1 + y)2 − (z + z−1
)2)+ k2(1 + y)2

(
z − z−1

)2)
We can simplify the one-dimensional Mahler measure as follows:

m
(
4 + k2

(
z − z−1

)2) = 2m
(
2 + ik

(
z − z−1

))
= 2 log

(
1 +
√

1 − k2
)

= 2 log
(

(1 + p)2

1 + p2

)
.

103



Chapter 5. Trigonometric integrals and Mahler measures

Eliminating k yields

2Im (Li2(ip)) =
π

2
log
(

(1 + p)2

2

)
− π log

(
(1 + p)2

1 + p2

)
+

π

2
m

((
4(1 + y)2 − (z + z−1

)2)+
(

1 − p2

1 + p2

)2

(1 + y)2
(
z − z−1

)2)
= − π

2
log(2) − π log(1 + p)

+
π

2
m

⎛⎝(4(1 + y)2 − (z + z−1
)2) (1 + p2)2

+ (1 + y)2
(
z − z−1

)2 (1 − p2)2

⎞⎠ .

Since 0 < p < 1, it follows that

2
∫ p

0

tan−1(u)
u

du =
π

2
m

⎛⎝(4(1 + y)2 − (z + z−1
)2) (1 + p2)2

+ (1 + y)2
(
z − z−1

)2 (1 − p2)2

⎞⎠
− π

2
log(2) − π log(1 + p).

(5.2.9)

It is relatively easy to verify that Eq. (5.2.9) holds when p = 0 and p = 1.
Using Eq. (5.2.4), we can also extend Eq. (5.2.9) to p > 1, which completes
the proof of Eq. (5.2.7).

5.3 Relations between TS(v, 1) and Mahler’s
measure, and a reduction of TS(v, w) to
multiple polylogarithms

The first goal of this section is to establish five identities relating TS(v, 1) to
three-variable Mahler measures. We will prove these formulas in Theorem
5.3.2, using the methods outlined in Section 5.2. Corollary 5.3.3 examines
a few special cases of these results.

Theorem 5.3.5 accomplishes the second goal of this section, which is
to express TS(v, w) in terms of multiple polylogarithms. This result, which
appears to be new, is stated in Eq. (5.3.14). The importance of Eq. (5.3.14)
lies in its easy proof, and more importantly in the fact that it immediately
reduces TS(v, 1) to multiple polylogarithms. Finally, Proposition 5.3.6 will
demonstrate that the multiple polylogarithms in Eq. (5.3.14) always reduce
to standard polylogarithms.

We will need the following simple lemma to prove Theorem 5.3.1.
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Lemma 5.3.1. Assume that v and w are real numbers with v > 0 and
w ∈ (0, 1], then

TS(v, w) = tan−1(v)
∫ w

0

sin−1(z)
z

dz −
∫ tan−1(v)

0

∫ w
v

tan(θ)

0

sin−1(z)
z

dzdθ,

(5.3.1)

TS(v, w) = sin−1(w)
∫ v

0

tan−1(u)
u

du −
∫ sin−1(w)

0

∫ v
w

sin(θ)

0

tan−1(z)
z

dzdθ.

(5.3.2)

Proof. To prove Eq. (5.3.1) first integrate TS(v, w) by parts to obtain:

TS(v, w) = tan−1(v)
∫ w

0

sin−1(z)
z

dz

−
∫ 1

0

d
du

(
tan−1(vu)

) ∫ wu

0

sin−1(z)
z

dzdu.

Making the u-substitution θ = tan−1(vu) we have:

TS(v, w) = tan−1(v)
∫ w

0

sin−1(z)
z

dz −
∫ tan−1(v)

0

∫ w
v

tan(θ)

0

sin−1(z)
z

dzdθ,

which completes the proof of the identity.
The proof of Eq. (5.3.2) follows in a similar manner.

The fact that Lemma 5.3.1 expresses TS(v, w) as a double integral in
two different ways, makes TS(v, w) more versatile than either S(v, w) or
T(v, w). These two different expansions will allow us to combine TS(v, w)
with Mahler measures for both arctangent and arcsine integrals.

Theorem 5.3.2. The following Mahler measures hold whenever v ≥ 0:

m
(
1 + x +

v

2
(1 − x)(y + z)

)
=

2
π

∫ v

0

tan−1(u)
u

du − 4
π2

TS(v, 1) (5.3.3)

m
(

x +
v2

4
(1 + x)2 +

(
y +

v

2
(1 + x)

)2
z

)
=

2
π

∫ v

0

tan−1(u)
u

du − 4
π2

TS(v, 1) +
1
2
m
(

x +
v2

4
(1 + x)2

) (5.3.4)
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m
(

(1 + y)
(

1 +
v2

4
(x + x−1)2

)
+

v

2
(1 − y)

(
x + x−1

) (
z + z−1

))
=

4
π

∫ v

0

tan−1(u)
u

du − 8
π2

TS(v, 1)
(5.3.5)

m
(
(z − z−1) +

v

2
(x + x−1)(y + y−1)

)
=

2
π

∫ v

0

tan−1(u)
u

du − 4
π2

TS(v, 1)
(5.3.6)

m

⎛⎜⎜⎜⎝
(
4(1 + y)2 − (z + z−1

)2)(1 +
v2

4
(
x + x−1

)2)2

+
(
z − z−1

)2 (1 + y)2
(

1 − v2

4
(
x + x−1

)2)2

⎞⎟⎟⎟⎠
=

4
π

∫ v

0

tan−1(u)
u

du − 8
π2

TS(v, 1) +
4
π

∫ π/2

0
log (1 + v sin(θ)) dθ

+ log(2)
(5.3.7)

Proof. We will prove Eq. (5.3.3) first, since it has the most difficult proof.
Letting w = 1 in Eq. (5.3.1) yields

TS(v, 1) =
π

2
log(2) tan−1(v) −

∫ tan−1(v)

0

∫ tan(θ)/v

0

sin−1(z)
z

dzdθ.

Since 0 ≤ tan(θ)
v ≤ 1, we may substitute Eq. (5.2.1) for the nested arcsine

integral to obtain

TS(v, 1) =
π

2
log(2) tan−1(v) − π

2

∫ tan−1(v)

0
m
(

2
v

tan(θ) + y + z

)
dθ

=
π

2
log(2) tan−1(v) − π

2

∫ π/2

0
m
(

2
v

tan(θ) + y + z

)
dθ

+
π

2

∫ π/2

tan−1(v)
m
(

2
v

tan(θ) + y + z

)
dθ.

In the right-hand integral tan(θ)
v ≥ 1, hence by Cassaigne and Maillot’s

formula

m
(

2
v

tan(θ) + y + z

)
= log

(
2
v

tan(θ)
)

.
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Substituting this result yields:

TS(v, 1) =
π

2
log(2) tan−1(v) +

π

2

∫ π/2

tan−1(v)
log
(

2
v

tan(θ)
)

dθ

− π

2

∫ π/2

0
m
(

2
v

tan(θ) + y + z

)
dθ

=
π

2

∫ v

0

tan−1(u)
u

du − π

2

∫ π/2

0
m
(
tan(θ) +

v

2
(y + z)

)
dθ

=
π

2

∫ v

0

tan−1(u)
u

du − π2

4
m
(
1 + x +

v

2
(1 − x)(y + z)

)
.

Eq. (5.3.3) follows immediately from rearranging this final identity.
The proofs of equations (5.3.4) through (5.3.7) are virtually identical,

hence we will only prove Eq. (5.3.5). Letting w = 1 in Eq. (5.3.2), we have

TS(v, 1) =
π

2

∫ v

0

tan−1(u)
u

du −
∫ π/2

0

∫ v sin(θ)

0

tan−1(z)
z

dzdθ. (5.3.8)

Substituting Eq. (5.2.5) for the nested arctangent integral yields

TS(v, 1) =
π

2

∫ v

0

tan−1(u)
u

du

− π

4

∫ π/2

0
m
(
(1 + y)

(
1 + v2 sin2(θ)

)
+ v sin(θ)(1 − y)(z + z−1)

)
dθ

=
π

2

∫ v

0

tan−1(u)
u

du

− π2

8
m
(

(1 + y)
(

1 − v2

4
(x − x−1)2

)
+

v

2i
(1 − y)(x − x−1)(z + z−1)

)
.

Letting x → ix, we obtain

TS(v, 1) =
π

2

∫ v

0

tan−1(u)
u

du

− π2

8
m
(

(1 + y)
(

1 +
v2

4
(x + x−1)2

)
+

v

2
(1 − y)(x + x−1)(z + z−1)

)
.

Eq. (5.3.5) follows immediately from rearranging this final equality.
Finally, we will remark that the while Eq. (5.3.5) follows from substitut-

ing Eq. (5.2.5) into Eq. (5.3.8), we must substitute Eq. (5.2.2) to prove Eq.
(5.3.4), Eq. (5.3.6) follows from substituting Eq. (5.2.6), and Eq. (5.3.7)
follows from substituting Eq. (5.2.7).
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Corollary 5.3.3. The formulas in Theorem 5.3.2 reduce, in order, to the
following identities when v = 2:

m ((1 + x) + (1 − x)(y + z)) =
28
5π2

ζ(3), (5.3.9)

m
(
x + (1 + x)2 + (1 + x + y)2z

)
=

28
5π2

ζ(3) + log

(
1 +

√
5

2

)
, (5.3.10)

m
(
(1 + x + z)

(
1 + x−1 + z−1

)
+ y(1 + x − z)

(
1 + x−1 − z−1

))
=

56
5π2

ζ(3),
(5.3.11)

m
((

z − z−1
)

+
(
x + x−1

) (
y + y−1

))
=

28
5π2

ζ(3), (5.3.12)

m

((
4z(1 + y)2 − (1 + z)2

) (
1 + 3x + x2

)2
+ (1 − z)2(1 + y)2

(
1 + x + x2

)2
)

=
56
5π2

ζ(3) +
16
3π

G

+ log(2).

(5.3.13)

In Eq. (5.3.13), and throughout the rest of the paper, G denotes Catalan’s
constant. In particular, G = 1 − 1

32 + 1
52 − 1

72 + . . .

Proof. As we have already stated, Condon proved Eq. (5.3.9) in [105]. His
proof also showed that

TS(2, 1) =
π

2

∫ 2

0

tan−1(u)
u

du − 7
5
ζ(3).

Using this formula, equations (5.3.10) through (5.3.13) follow immediately
from Theorem 5.3.2.

Theorem 5.3.2 shows that we can obtain closed forms for several three-
variable Mahler measures by reducing TS(v, 1) to polylogarithms. We have
proved a convenient closed form for TS(v, 1) in Eq. (5.4.18). Corollary 5.4.6
also shows that this closed form immediately implies Condon’s evaluation of
TS(2, 1). We will postpone further discussion of Eq. (5.4.18) until Section
5.4.

We will devote the remainder of this section to deriving a closed form
for TS(v, w) in terms of multiple polylogarithms. For convenience, we will
use a slightly non-standard notation for our multiple polylogarithms.
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Definition 5.3.4. Define Fj(x) by

Fj(x) =
∞∑

n=0

x2n+1

(2n + 1)j
=

Lij(x) − Lij(−x)
2

,

and define Fj,k(x, y) by

Fj,k(x, y) =
∞∑

n=0

x2n+1

(2n + 1)j

n∑
m=0

y2m+1

(2m + 1)k
.

We will employ this notation throughout the rest of the paper.

Theorem 5.3.5. If v
w �∈ (−i∞,−i] ∪ [i, i∞) and w ∈ [−1, 1], then we can

express TS(v, w) in terms of multiple polylogarithms. Let R =
v
w

1+
√

1+( v
w )2

,

and let S = iw +
√

1 − w2, then

TS(v, w) =2F3(R) − F3(RS) − F3(R/S) − 4F1,2(R, 1)
+ 2F1,2(R,S) + 2F1,2(R, 1/S)

+ i sin−1(w) {F2(RS) − F2(R/S)
−2F1,1(R,S) + 2F1,1(R, 1/S)} .

(5.3.14)

Proof. First note that by u-substitution

TS(v, w) =
∫ sin−1(w)

0
tan−1

( v

w
sin(θ)

)
cot(θ)θdθ. (5.3.15)

Since w ∈ [−1, 1], it follows that our path of integration is along the real
axis. Next substitute the Fourier series

tan−1
( v

w
sin(θ)

)
= 2

∞∑
n=0

R2n+1

2n + 1
sin ((2n + 1)θ) , (5.3.16)

into Eq. (5.3.15). Swapping the order of summation and integration, we
have

TS(v, w) = 2
∞∑

n=0

R2n+1

2n + 1

∫ sin−1(w)

0
sin ((2n + 1)θ) cot(θ)θdθ.

Uniform convergence justifies this interchange of summation and integration.
In particular, Eq. (5.3.16) converges uniformly whenever |R| < 1 and θ ∈ R.
It is easy to show that |R| < 1 except when v

w ∈ (−i∞,−i]∪[i, i∞), in which
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case |R| = 1. If |R| = 1, then Eq. (5.3.16) no longer converges uniformly,
and hence the following arguments do not apply.

Evaluating the nested integral yields

TS(v, w) = 4
∞∑

n=0

R2n+1

2n + 1

{
sin−1(w)

n∑
k=0

′
sin
(
(2k + 1) sin−1(w)

)
2k + 1

−
n∑

k=0

′
1 − cos

(
(2k + 1) sin−1(w)

)
(2k + 1)2

}
,

(5.3.17)

where
n∑

k=0

′
ak = a0 + · · ·+an−1 + an

2 . Simplifying Eq. (5.3.17) completes our

proof.

Eq. (5.3.14) deserves a few remarks, since it is a fairly general result.
Firstly, observe that a closer analysis of Eq. (5.3.16) would probably allow
us to relax the restriction that w ∈ [−1, 1]. Secondly, Eq. (5.3.14) most
likely has applications beyond the scope of this paper. For example, we can
use Eq. (5.3.14) to reduce the right-hand side of the following equation

∞∑
n=1

(−1)n

(2n + 1)2

(
2n

n

)(w

2

)2n+1
n∑

k=1

(−1)k+1

k

= TS(1, w) − π

4

∫ w

0

sin−1(t)
t

dt +
log(2)

2

∫ w

0

sinh−1(t)
t

dt,

(5.3.18)

to multiple polylogarithms.
We can use the final result of this section, Proposition 5.3.6, to reduce

TS(v, w) to regular polylogarithms. This proposition allows us to equate
TS(v, w) with a formula involving around twenty trilogarithms. While a
clever usage of trilogarithmic functional equations might simplify this result,
it seems more convenient to simply leave Eq. (5.3.14) in its current form.

Proposition 5.3.6. The functions F1,1(x, y) and F1,2(x, y) can be expressed
in terms of polylogarithms, we have:

4F1,1(x, y) =Li2

(
x(1 + y)
1 + x

)
− Li2

(
x(1 − y)
1 + x

)
− Li2

(−x(1 + y)
1 − x

)
+ Li2

(−x(1 − y)
1 − x

)
.

(5.3.19)
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To reduce F1,2(x, y) to polylogarithms, apply Lewin’s formula, Eq. (5.7.5),
four times to the following identity:

F1,2(x, y) =F3(xy) − 1
2

log
(
1 − x2

)
F2(xy)

+
1
4

∫ x

0

log
(
1 − u2

)
log
(

1+yu
1−yu

)
u

du.

(5.3.20)

Proof. To prove Eq. (5.3.20), first swap the order of summation to obtain

F1,2(x, y) = F3(xy) + F1(x)F2(y) −
∞∑

n=0

y2n+1

(2n + 1)2

n∑
k=0

x2k+1

2k + 1
.

Substituting an integral for the nested sum yields

F1,2(x, y) = F3(xy) + F1(x)F2(y) −
∞∑

n=0

y2n+1

(2n + 1)2

∫ x

0

1 − u2n+2

1 − u2
du

= F3(xy) +
∫ x

0

u

1 − u2
F2(yu)du.

Integrating by parts, the identity becomes

F1,2(x, y) =F3(xy) − 1
2

log(1 − x2)F2(xy)

+
1
4

∫ x

0

log
(
1 − u2

)
log
(

1+yu
1−yu

)
u

du,

which completes the proof of Eq. (5.3.20).
We can verify Eq. (5.3.19) by differentiating each side of the equation

with respect to y.

Finally, observe that we can obtain simple closed forms for F1,2(x, 1) and
F2,1(1, x) from Eq. (5.4.9).

5.4 An evaluation of TS(v, 1) using infinite series

This evaluation of TS(v, 1) generalizes a theorem due to Condon. Condon
proved a formula that Boyd and Rodriguez Villegas conjectured:

m
(
1 + x + (1 − x)(y + z)

)
=

28
5π2

ζ(3).
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Condon’s result is equivalent to evaluating TS(2, 1) in closed form. As The-
orem 5.3.2 has shown, generalizing this Mahler measure depends on finding
a closed form for TS(v, 1). Eq. (5.4.18) accomplishes this goal by expressing
TS(v, 1) in terms of polylogarithms.

This calculation of TS(v, 1) is based on several series transformations.
The first step is to expand TS(v, 1) in a Taylor series; observe that the
following formula holds whenever |v| < 1:

TS(v, 1) =
π

2

∞∑
k=0

(−1)k

(2k + 1)2
v2k+1 − 1

2

∞∑
k=0

(−1)k

(2k + 1)3
(2v)2k+1(

2k
k

) . (5.4.1)

We can easily prove Eq. (5.4.1) by starting from Eq. (5.3.8). Formula
(5.4.1) shows that TS(v, 1) is analytic in the open unit disk. Unfortunately
Eq. (5.4.1) does not converge when v = 2, and hence it can not be used to
calculate TS(2, 1). It will be necessary to find an analytic continuation of
TS(v, 1) in order to carry out any useful computations.

The following family of functions will play a crucial role in our calcula-
tions.

Definition 5.4.1. Define hn(v) by the infinite series,

hn(v) =
∞∑

k=0

(−1)k

(2k + 1)n

(2v)2k+1(
2k
k

) . (5.4.2)

Using the definition of h3(v), combined with the identity

∞∑
k=0

(−1)k

(2k + 1)2
v2k+1 =

∫ v

0

tan−1(u)
u

du,

it follows that Eq. (5.4.1) can be rewritten as

TS(v, 1) =
π

2

∫ v

0

tan−1(u)
u

du − 1
2
h3(v). (5.4.3)

Finding a closed form for TS(v, 1) we will entail finding a closed form
for h3(v). Theorem 5.4.5 accomplishes this goal, however several auxiliary
lemmas are needed first. The idea behind our proof is very simple: first find
a closed form for h2(v), and then integrate it to find a closed form for h3(v).

Batir recently used this method in an interesting paper [99] to obtain
a formula that is equivalent to Eq. (5.4.15). Unfortunately Batir seems
to have missed Eq. (5.4.12), so we will provide a full derivation of this
important result.
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Lemma 5.4.2. The function h2(v) is analytic if v �∈ (−i∞,−i] ∪ [i, i∞).
Furthermore, we can express h2(v) in terms of the dilogarithm,

h2(v) = 4
∞∑

k=0

1
(2k + 1)2

(
v

1 +
√

1 + v2

)2k+1

= 2Li2

(
v

1 +
√

1 + v2

)
− 2Li2

( −v

1 +
√

1 + v2

)
.

(5.4.4)

Proof. We use the following elementary identity to prove Eq. (5.4.4),

24k

(2k + 1)2
(
2k
k

) =
∞∑

j=0

(−1)j

2j + 1
(2k)!

(k + j + 1)!(k − j)!
. (5.4.5)

Substituting Eq. (5.4.5) into the definition of h2(v), we have

h2(v) =
∞∑

k=0

(−1)k

(2k + 1)2
(2v)2k+1(

2k
k

)
= 4

∞∑
k=0

(−1)k
(v
2
)2k+1

∞∑
j=0

(−1)j

2j + 1
(2k)!

(k + j + 1)!(k − j)!
.

If we assume that |v| < 1, then the series converges uniformly, hence we may
swap the order of summation to obtain

h2(v) = 4
∞∑

j=0

1
2j + 1

∞∑
k=0

(−1)k+2j (2k + 2j)!
(k + 2j + 1)!k!

(v

2

)2k+2j+1

= 4
∞∑

j=0

1
(2j + 1)2

(v

2

)2j+1
∞∑

k=0

(j + 1
2)k(j + 1)k

(2j + 2)k

(−v2)k

k!
,

where (x)n = Γ(x+n)
Γ(x) . But then we have

h2(v) = 4
∞∑

j=0

1
(2j + 1)2

(v

2

)2j+1

2F1

[
j+ 1

2
,j+1

2j+2

∣∣− v2
]
,

where 2F1

[
a,b
c

∣∣x] is the usual hypergeometric function. A standard hyper-
geometric identity [106] shows that

2F1

[
j+ 1

2
,j+1

2j+2

∣∣− v2
]

=
22j+1

(1 +
√

1 + v2)2j+1
,
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from which we obtain

h2(v) = 4
∞∑

j=0

1
(2j + 1)2

(
v

1 +
√

1 + v2

)2j+1

,

concluding the proof of the identity.
We can use Eq. (5.4.4) to analytically continue h2(v) to a larger domain.

Recall that Li2(r)−Li2(−r) is analytic whenever r �∈ (−∞,−1]∪ [1,∞), and
v

1+
√

1+v2
is analytic whenever v �∈ (−i∞,−i]∪ [i, i∞). Since we have already

assumed that v �∈ (−i∞,−i]∪ [i, i∞), we simply have to show that the range
of r = v

1+
√

1+v2
does not intersect the set {(−∞,−1] ∪ [1,∞)}.

Some elementary calculus shows that |r| =
∣∣∣ v
1+

√
1+v2

∣∣∣ ≤ 1 for all v ∈ C,
with equality occurring only when v ∈ (−i∞,−i] ∪ [i, i∞). It follows that
h2(v) is analytic on C − {(−i∞,−i] ∪ [i, i∞)}.

Since we have now expressed h2(v) in terms of dilogarithms, we can find
a closed form for h1(v) by differentiating Eq. (5.4.4):

h1(v) =
2√

1 + v2
log
(
v +
√

1 + v2
)
. (5.4.6)

In Theorem 5.4.5, we will integrate Eq. (5.4.4) to find a closed form
for h3(v) involving trilogarithms. To prove this theorem, we first need to
establish two lemmas. Lemma 5.4.3 evaluates a necessary integral, while
Lemma 5.4.4 expresses F2,1(1, x) in terms of polylogarithms.

Lemma 5.4.3. If j ≥ 0 is an integer, and r = v
1+

√
1+v2

, then we have the
following identity:∫ v

0

1
u

(
u

1 +
√

1 + u2

)2j+1

du = log
(

1 + r

1 − r

)
+

r2j+1

2j + 1
−2

j∑
k=0

r2k+1

2k + 1
. (5.4.7)

Proof. To evaluate the integral

wj(v) =
∫ v

0

1
u

(
u

1 +
√

1 + u2

)2j+1

du,

first make the substitution z = u
1+

√
1+u2

. In particular we can show that

u = 2z
1−z2 and du

dz = 2 (1+z2)
(1−z2)2

. Therefore we have

wj(v) =
∫ r

0
z2j

(
1 + z2

1 − z2

)
dz

=
∫ r

0

2
1 − z2

dz −
∫ r

0

1 − z2j

1 − z2
dz −

∫ r

0

1 − z2j+2

1 − z2
dz.
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Next substitute the geometric series 1−z2j

1−z2 =
∑j−1

k=0 z2k into each of the right-
hand integrals, and swap the order of summation and integration to obtain

wj(v) =
∫ r

0

2
1 − z2

dz −
j−1∑
k=0

r2k+1

2k + 1
−

j∑
k=0

r2k+1

2k + 1

= log
(

1 + r

1 − r

)
+

r2j+1

2j + 1
− 2

j∑
k=0

r2k+1

2k + 1
.

Lemma 5.4.4. The following double polylogarithm

F2,1(1, x) =
∞∑

n=0

1
(2n + 1)2

n∑
k=0

x2k+1

2k + 1
(5.4.8)

can be evaluated in closed form. If |x| < 1,

8F2,1(1, x) =4Li3(x) − Li3(x2) − 4Li3(1 − x) − 4Li3

(
x

1 + x

)
+ 4ζ(3)

+ log
(

1 + x

1 − x

)
Li2(x2) +

π2

2
log(1 + x) +

π2

6
log(1 − x)

+
2
3

log3(1 + x) − 2 log(x) log2(1 − x)

(5.4.9)

Proof. We will verify Eq. (5.4.9) by differentiating each side of the identity.
First observe that the infinite series in Eq. (5.4.8) converges uniformly
whenever |x| ≤ 1, hence term by term differentiation is justified at all points
in the open unit disk. It follows that

d
dx

F2,1(1, x) =
∞∑

n=0

1
(2n + 1)2

(
1 − x2n+2

1 − x2

)
=

π2

8

(
1

1 − x2

)
− x

1 − x2

(
Li2(x) − 1

4
Li2(x2)

)
,

(5.4.10)

whenever |x| < 1.
Let ϕ(x) denote the right-hand side of Eq. (5.4.9). Taking the derivative
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of ϕ(x) we obtain:

dϕ

dx
=

4
x

Li2(x) − 2
x

Li2(x2) +
4

1 − x
Li2(1 − x)

− 4
(

1
x
− 1

1 + x

)
Li2

(
x

1 + x

)
+

2
1 − x2

Li2(x2)

− 2
x

(
log2(1 + x) − log2(1 − x)

)
+

π2

2

(
1

1 + x

)
− π2

6

(
1

1 − x

)
+

2
1 + x

log2(1 + x) − 2
x

log2(1 − x) +
4

1 − x
log(x) log(1 − x)

(5.4.11)

We can simplify Eq. (5.4.11) by eliminating Li2(1 − x) and Li2
(

x
1+x

)
with

the functional equations:

Li2(1 − x) =
π2

6
− log(x) log(1 − x) − Li2 (x) ,

Li2

(
x

1 + x

)
= −1

2
log2(1 + x) + Li2(x) − 1

2
Li2(x2).

Substituting these identities into Eq. (5.4.11) and simplifying, we are left
with

dϕ

dx
= π2

(
1

1 − x2

)
− 8x

1 − x2

(
Li2(x) − 1

4
Li2(x2)

)
=

d
dx

{8F2,1(1, x)} .

Eq. (5.4.10) justifies this final step. Since the derivatives of 8F2,1(1, x) and
ϕ(x) are equal on the open unit disk, and since both functions vanish at
zero, we may conclude that 8F2,1(1, x) = ϕ(x).

The proof of Eq. (5.4.9) requires a remark. Despite the fact that the
right-hand side of Eq. (5.4.9) is single valued and analytic whenever |x| < 1,
the individual terms involving Li3(1−x) and log(x) are multivalued for x ∈
(−1, 0). To avoid all ambiguity, we can simply use F2,1(1, x) = −F2,1(1,−x)
to calculate the function at negative real arguments .

Theorem 5.4.5. The function h3(v) is analytic on C−{(−i∞,−i] ∪ [i, i∞)}.
If v �∈ (−i∞,−i] ∪ [i, i∞), then h3(v) can be expressed in terms of polyloga-
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rithms. Let r = v
1+

√
1+v2

, then

h3(v) =
1
2
Li3(r2) + 4Li3(1 − r) + 4Li3

(
r

1 + r

)
− 4ζ(3)

− log
(

1 + r

1 − r

)
Li2(r2) − 2π2

3
log(1 − r) − 2

3
log3(1 + r)

+ 2 log(r) log2(1 − r).

(5.4.12)

We can recover an equivalent form of Condon’s identity by letting v = 2:

h3(2) =
14
5

ζ(3). (5.4.13)

Proof. This proof is very simple since we have already completed all of the
hard computations. Observe from Eq. (5.4.2) that if |v| < 1,

h3(v) =
∫ v

0

h2(u)
u

du. (5.4.14)

Lemma 5.4.2 shows that h2(v) is analytic provided that v �∈ (−i∞,−i] ∪
[i, i∞). If we assume that the path of integration does not pass through
either of these branch cuts, then it is easy to see that Eq. (5.4.14) provides
an analytic continuation of h3(v) to C − {(−i∞,−i] ∪ [i, i∞)}.

Next we will prove Eq. (5.4.12). Substituting Eq. (5.4.4) into Eq.
(5.4.14) yields an infinite series for h3(v) that is valid whenever v �∈ (−i∞,−i]∪
[i, i∞). We have

h3(v) = 4
∞∑

n=0

1
(2n + 1)2

∫ v

0

1
u

(
u

1 +
√

1 + u2

)2n+1

du.

The nested integrals can be evaluated by Lemma 5.4.3. Letting r = v
1+

√
1+v2

it is clear that

h3(v) =4
∞∑

n=0

1
(2n + 1)2

(
log
(

1 + r

1 − r

)
+

r2n+1

2n + 1
− 2

n∑
j=0

r2j+1

2j + 1

)

=
π2

2
log
(

1 + r

1 − r

)
+ 4Li3(r) − 1

2
Li3(r2) − 8F2,1(1, r),

(5.4.15)

where F2,1(1, r) has a closed form provided by Eq. (5.4.9). Since |r| < 1
whenever v �∈ (−i∞,−i] ∪ [i, i∞), we may substitute Eq. (5.4.9) to finish
the calculation.
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Observe that when v = 2, we have r =
√

5−1
2 . It is easy to verify that

3−√
5

2 = r2 = 1 − r = r
1+r . Using Eq. (5.4.12), it follows that

h3(2) =
17
2

Li3

(
3 −√

5
2

)
− 4ζ(3) − 3 log

(
1 +

√
5

2

)
Li2

(
3 −√

5
2

)

+
4π2

3
log

(
1 +

√
5

2

)
− 26

3
log3

(
1 +

√
5

2

)
.

(5.4.16)

Eq. (5.4.13) follows immediately from substituting the classical formulas
for Li3

(
3−√

5
2

)
and Li2

(
3−√

5
2

)
into Eq. (5.4.16) (see [100], pages 248 and

249).

Notice that Eq. (5.4.13) is equivalent to a new evaluation of the 4F3

hypergeometric function,

4F3

[
1,1, 1

2
, 1
2

3
2
, 3
2
, 3
2

∣∣∣∣− 4
]

=
7
10

ζ(3). (5.4.17)

Corollary 5.4.6. If r = v
1+

√
1+v2

and v �∈ (−i∞,−i] ∪ [i, i∞), then

TS(v, 1) =
π

2

∫ v

0

tan−1(u)
u

du − 1
4
Li3(r2) − 2Li3(1 − r) − 2Li3

(
r

1 + r

)
+ 2ζ(3) +

1
2

log
(

1 + r

1 − r

)
Li2(r2) +

π2

3
log(1 − r)

+
1
3

log3(1 + r) − log(r) log2(1 − r),

(5.4.18)

TS(2, 1) =
π

2

∫ 2

0

tan−1(u)
u

du − 7
5
ζ(3). (5.4.19)

Proof. Eq. (5.4.18) follows immediately from substituting Eq. (5.4.12) into
Eq. (5.4.3), while Eq. (5.4.19) follows from combining Eq. (5.4.13) with
Eq. (5.4.3).

The fact that we can reduce h1(v), h2(v) and h3(v) to standard poly-
logarithms is somewhat miraculous. Integrating Eq. (5.4.15) again, we can
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show that

h4(v) =
π2

4

(
log(1 − r2) log

(
1 − r

1 + r

)
+ 2Li2

(
1 − r

2

)
− 2Li2

(
1 + r

2

))
+ π2F2(r) + 4F3(r) − 8F3,1(1, r) − 8F2,2(1, r)
+ 16F2,1,1(1, 1, r).

(5.4.20)

Considering the complexity of these multiple polylogarithms, it seems un-
likely that hn(v) will reduce to standard polylogarithms for n ≥ 4.

5.5 Relations between S(v, 1) and Mahler’s
measure, and a closed form for S(v, w).

In this section we will study the double arcsine integral, S(v, w). Recall that
we defined S(v, w) with an integral:

S(v, w) =
∫ 1

0

sin−1(vx) sin−1(wx)
x

dx.

First, we will show that both S(v, 1) and S(v, v) reduce to standard poly-
logarithms. Next, we will discuss several interesting results relating S(v, 1)
and S(v, v) to Mahler’s measure and binomial sums. Finally, Theorem 5.5.4
concludes this section by expressing S(v, w) in terms of polylogarithms.

Theorem 5.5.1. If 0 ≤ v ≤ 1, then S(v, v) and S(v, 1) both have simple
closed forms:

S(v, 1) =
π

2

∫ v

0

sin−1(x)
x

dx −
(

Li3(v) − Li3(−v)
2

)
, (5.5.1)

S(v, v) =

⎛⎝Li3
(
e2i sin−1(v)

)
+ Li3

(
e−2i sin−1(v)

)
4

⎞⎠− ζ(3)
2

+ sin−1(v)

⎛⎝Li2
(
e2i sin−1(v)

)
− Li2

(
e−2i sin−1(v)

)
2i

⎞⎠
+
(
sin−1(v)

)2 log(2v).

(5.5.2)

Proof. To prove Eq. (5.5.1), we will substitute the Taylor series for sin−1(vx)
into the integral S(v, 1) =

∫ 1
0

sin−1(vx) sin−1(x)
x dx. After swapping the order

119



Chapter 5. Trigonometric integrals and Mahler measures

of summation and integration, we have

S(v, 1) = 2
∞∑

n=0

1
2n + 1

(
2n

n

)(v

2

)2n+1
∫ 1

0
sin−1(x)x2ndx

= π

∞∑
n=0

1
(2n + 1)2

(
2n

n

)(v

2

)2n+1 −
∞∑

n=0

v2n+1

(2n + 1)3

=
π

2

∫ v

0

sin−1(x)
x

dx −
(

Li3(v) − Li3(−v)
2

)
.

To prove (5.5.2) make the u-substitution x = sin(t)
v , and then integrate

by parts as follows:

S(v, v) =
∫ 1

0

(
sin−1(vx)

)2
x

dx =
∫ sin−1(v)

0
t2 cot(t)dt

=
(
sin−1(v)

)2 log(v) − 2
∫ sin−1(v)

0
t log(sin(t))dt.

Next substitute the Fourier series for log(sin(t)) into the previous equation.
Recall that

log(sin(t)) = − log(2) −
∞∑

n=1

cos(2nt)
n

is valid for 0 < t < π. Integrating by parts a second time completes the
proof.

The function S(v, v) provides a connection to a second family of inter-
esting binomial sums. If we recall the formula (see [106], page 61)

(sin−1(x))2 =
1
2

∞∑
n=1

(2x)2n

n2
(
2n
n

) ,
then it is immediately obvious that if |v| ≤ 1 we must have

S(v, v) =
1
4

∞∑
n=1

(2v)2n

n3
(
2n
n

) . (5.5.3)

Comparing Eq. (5.5.3) with Eq. (5.5.2) yields a classical formula:

S
(

1
2
,
1
2

)
=

1
4

∞∑
n=1

1
n3
(
2n
n

) =
1
2

∞∑
n=1

cos
(

πn
3

)
n3

− ζ(3)
2

+
π

6

∞∑
n=1

sin
(

πn
3

)
n2

. (5.5.4)
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Proposition 5.5.2. If v ∈ [0, 1] and w ∈ (0, 1], we have

S(v, w) = sin−1(w)
∫ v

0

sin−1(u)
u

du

− π

2

∫ sin−1(w)

0
m
(

2v

w
sin(θ) + y + z

)
dθ.

(5.5.5)

Proof. This proof is similar to the proof of Proposition 5.3.1. After an
integration by parts, and the u-substitution u = sin(θ)/w, we obtain

S(v, w) = sin−1(w)
∫ v

0

sin−1(u)
u

du − π

2

∫ sin−1(w)

0

∫ v
w

sin(θ)

0

sin−1(z)
z

dzdθ.

Since 0 ≤ v ≤ 1 and 0 < w ≤ 1, it follows that 0 ≤ v
w sin(θ) ≤ 1. Therefore

we may complete the proof by substituting Eq. (5.2.1) for the nested arcsine
integral.

Corollary 5.5.3. We can recover Vandervelde’s formula by letting w = 1
in Eq. (5.5.5):

m (v(1 + x) + y + z) =
2
π

∫ v

0

sin−1(u)
u

du − 4
π2

S(v, 1)

=
4
π2

(
Li3(v) − Li3(−v)

2

) (5.5.6)

Notice that if v = w = 1
2 in Eq. (5.5.5), we have

S
(

1
2
,
1
2

)
=

π

6

∫ 1/2

0

sin−1(u)
u

du − π

2

∫ π/6

0
m (2 sin(θ) + y + z) dθ

=
π

6

∫ 1/2

0

sin−1(u)
u

du − π2

12
m
(
1 − x1/6 + y + z

)
(5.5.7)

Comparing Eq. (5.5.7) to Eq. (5.5.4) allows us to express a famous binomial
sum as the Mahler measure of a three-variable algebraic function.

The final result of this section allows us to express S(v, w) in terms of
standard polylogarithms.
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Theorem 5.5.4. Suppose that 0 ≤ v < w ≤ 1, and let θ = sin−1(w) −
sin−1(v). Then we have

2S(v, w) =S(v, v) + S(w,w) − S (sin(θ), sin(θ))

− 2Li3
( v

w

)
+ Li3

( v

w
eiθ
)

+ Li3
( v

w
e−iθ
)

− iθLi2
( v

w
eiθ
)

+ iθLi2
( v

w
e−iθ
)

+
θ2

2
log
(

1 +
v2

w2
− 2v

w
cos(θ)

)
.

(5.5.8)

Notice that Eq. (5.5.2) reduces S(v, v), S(w,w), and S (sin(θ), sin(θ)) to
standard polylogarithms.

Proof. The details of this proof are not particularly difficult. First observe
the following trivial formula:

S(v, v) − 2S(v, w) + S(w,w) =
∫ 1

0

(
sin−1(wu) − sin−1(vu)

)2
u

du.

Rearranging, and then applying the arcsine addition formula yields

2S(v, w) =S(v, v) + S(w,w)

−
∫ 1

0

(
sin−1

(
wu

√
1 − v2u2 − vu

√
1 − w2u2

))2

u
du.

(5.5.9)

This substitution is justified by the monotonicity of the arcsine function. In
particular, 0 ≤ v < w ≤ 1 implies that 0 ≤ sin−1(wu) − sin−1(vu) ≤ π

2 for
all u ∈ [0, 1].

Next we will make the u-substitution z = wu
√

1 − v2u2 − vu
√

1 − w2u2.
In particular, we can show that

u2 =
z2

w2 + v2 − 2vw
√

1 − z2
,

and we can easily verify that

1
u

du

dz
=

1
z
− vwz

(v2 + w2 − 2vw
√

1 − z2)
√

1 − z2
.
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Observe that the new path of integration will run from z = 0 to z = sin(θ) =
w
√

1 − v2 − v
√

1 − w2. Therefore, Eq. (5.5.9) becomes

2S(v, w) =S(v, v) + S(w,w)

−
∫ sin(θ)

0

(
sin−1 (z)

)2(1
z
− vwz

(v2 + w2 − 2vw
√

1 − z2)
√

1 − z2

)
dz

=S(v, v) + S(w,w) − S (sin(θ), sin(θ))

+
∫ sin(θ)

0

(
sin−1 (z)

)2 vwz

(v2 + w2 − 2vw
√

1 − z2)
√

1 − z2
dz.

If we let t = sin−1(z), then this last integral becomes

2S(v, w) =S(v, v) + S(w,w) − S (sin(θ), sin(θ))

+
∫ θ

0
t2

vw sin(t)
v2 + w2 − 2vw cos(t)

dt.
(5.5.10)

Since 0 ≤ v < w ≤ 1, a formula from [106], page 48, shows that

vw sin(t)
v2 + w2 − 2vw cos(t)

=
∞∑

n=1

( v

w

)n
sin(nt). (5.5.11)

The Fourier series in Eq. (5.5.11) converges uniformly since v < w. It follows
that we may substitute Eq. (5.5.11) into Eq. (5.5.10), and then swap the
order of summation and integration to obtain:

2S(v, w) =S(v, v) + S(w,w) − S (sin(θ), sin(θ))

+
∞∑

n=1

( v

w

)n
∫ θ

0
t2 sin(nt)dt.

(5.5.12)

Simplifying Eq. (5.5.12) completes the proof of Eq. (5.5.8).

5.6 q-series for the dilogarithm, and some
associated trigonometric integrals

In this section we will prove several double q-series expansions for the dilog-
arithm. While these formulas are relatively simple, it appears that they are
new. The first of these formulas, Eq. (5.6.8), follows from a few simple
manipulations of Eq. (5.5.1). The remaining formulas follow from integrals
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that we have evaluated in Theorem 5.6.5. Recall that Theorem 5.6.5 figured
prominently in the proof of Theorem 5.2.3.

In this section, the twelve Jacobian elliptic functions will play an im-
portant role our calculations. Recall that the Jacobian elliptic functions are
doubly periodic and meromorphic on C. The Jacobian sine function, sn(u),
inverts the incomplete elliptical integral of the first kind. If u ∈ C is an
arbitrary number, then under a suitable path of integration:

u =
∫ sn(u)

0

dz√
(1 − z2)(1 − k2z2)

.

The Jacobian amplitude can be defined by the equation sn(u) = sin(am(u)),
and the Jacobian cosine function is defined by cn(u) = cos(am(u)). As usual
the complementary sine function is given by dn(u) =

√
1 − k2sn2(u). Notice

that every Jacobian elliptic function implicitly depends on k; this parameter
k is called the elliptic modulus.

Following standard notation, we will denote the real one-quarter period
of sn(u) by K. Since sn(K) = 1, we may compute K from the usual formula

K := K(k) =
∫ 1

0

dz√
(1 − z2)(1 − k2z2)

=
π

2 2F1

[
1
2
, 1
2

1

∣∣k2
]
.

Let K ′ = K(
√

1 − k2), and finally define the elliptic nome by q = e−π K′
K .

Proposition 5.6.1. If k ∈ (0, 1), then we have the following integral:∫ K

0
am(u)cn(u)du =

π

2
sin−1(k)

k
−
(

Li2(k) − Li2(−k)
2k

)
. (5.6.1)

Proof. Taking the derivative of each side of Eq. (5.5.1), we obtain:

d
dk

S(k, 1) =
∫ 1

0

sin−1(x)√
1 − k2x2

dx =
π

2
sin−1(k)

k
−
(

Li2(k) − Li2(−k)
2k

)
.

(5.6.2)
Making the u-substitution x = sn(u) completes the proof.

We will need the following two inversion formulas for the elliptic nome.
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Lemma 5.6.2. Let q be the usual elliptic nome. Suppose that q ∈ (0, 1),
then q is invertible using either of the formulas:

k = sin

(
4

∞∑
n=0

(−1)n

2n + 1
qn+1/2

(1 + q2n+1)

)
, (5.6.3)

k = tanh

(
4

∞∑
n=0

1
2n + 1

qn+1/2

(1 − q2n+1)

)
. (5.6.4)

Proof. To prove Eq. (5.6.3) observe that

sin−1(k) = k

∫ 1

0

dx√
1 − k2x2

= k

∫ K

0
cn(u)du (5.6.5)

Recall the Fourier series expansion for cn(u) (see [106], page 916):

cn(u) =
2π

kK

∞∑
n=0

qn+1/2

1 + q2n+1
cos
(

π(2n + 1)
2K

u

)
. (5.6.6)

Since 0 < q < 1, this Fourier series converges uniformly. It follows that
we may substitute Eq. (5.6.6) into Eq. (5.6.5), and then swap the order of
summation and integration to obtain:

sin−1(k) =
2π

K

∞∑
n=0

qn+1/2

1 + q2n+1

∫ K

0
cos
(

π(2n + 1)
2K

u

)
du

= 4
∞∑

n=0

(−1)n

2n + 1
qn+1/2

(1 + q2n+1)
. (5.6.7)

Eq. (5.6.3) follows immediately from taking the sine of both sides of the
equation.

Eq. (5.6.4) can be proved in a similar manner when starting from the
integral

tanh−1(k) = k

∫ 1

0

dx

1 − k2x2
.

Next we will utilize the Fourier-series expansions for the Jacobian elliptic
functions to prove the following theorem:
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Theorem 5.6.3. If q is the usual elliptic nome, then the following formula
holds for the dilogarithm:

Li2(k) − Li2(−k)
8

=
∞∑

n=0

1
(2n + 1)2

qn+1/2

(1 + q2n+1)

+ 4
∞∑

n=0
m=1

1
(2n + 1)2 − (2m)2

qn+m+1/2

(1 + q2m)(1 + q2n+1)

(5.6.8)

Proof. We have already stated the Fourier series expansion for cn(u) in Eq.
(5.6.6). We will also require the Fourier series [106] for am(u):

am(u) =
π

2K
u + 2

∞∑
n=1

1
n

qn

1 + q2n
sin
(πn

K
u
)

. (5.6.9)

Substituting Eq. (5.6.6) and Eq. (5.6.9) into the integral in Eq. (5.6.1), and
then simplifying yields:

Li2(k) − Li2(−k)
8

− π

8
sin−1(k)

= −π

2

∞∑
n=0

(−1)n

2n + 1
qn+1/2

(1 + q2n+1)
+

∞∑
n=0

1
(2n + 1)2

qn+1/2

(1 + q2n+1)

+ 4
∞∑

n=0
m=1

1
(2n + 1)2 − (2m)2

qn+m+1/2

(1 + q2m)(1 + q2n+1)
.

(5.6.10)

This proof is nearly complete, the final step is to substitute the identity

sin−1(k) = 4
∞∑

n=0

(−1)n

2n + 1
qn+1/2

(1 + q2n+1)

into Eq. (5.6.10). This formula for sin−1(k) follows immediately from
Lemma 5.6.2.

The fact that Eq. (5.6.8) follows easily from an integral of the form∫ K

0
am(u)ϕ(u)du,
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suggests that we should try to generalize Eq. (5.6.8) by allowing ϕ(u) to
equal one of the other eleven Jacobian elliptic functions. Theorem 5.6.5
proves that ten of these eleven integrals reduce to dilogarithms and elemen-
tary functions. First, Theorem 5.6.4 will prove that the one exceptional
integral can be expressed as the Mahler measure of an elliptic curve.

Theorem 5.6.4. The following formulas hold whenever k ∈ (0, 1]:

m
(

4
k

+ x +
1
x

+y +
1
y

)
= − log

(
k

1 +
√

1 − k2

)
+

2
π

∫ 1

0

sin−1(x)
x
√

1 − k2x2
dx (5.6.11)

= − log
(

k

1 +
√

1 − k2

)
+

2
π

∫ K

0
am(u)

cn(u)
sn(u)

du. (5.6.12)

Proof. First observe that if k ∈ R and 0 < k ≤ 1, then

m
(

4
k

+ x +
1
x

+ y +
1
y

)
= − log

(
k

4

)
+ m

(
1 +

k

4

(
x +

1
x

+ y +
1
y

))
.

For brevity let ϕ(k) = m
(
1 + k

4

(
x + 1

x + y + 1
y

))
. Making the change of

variables (x, y) → (x/y, yx), we have:

ϕ(k) =m
(

1 +
k

4
(
x + x−1

) (
y + y−1

))
=m

(
k

4
(
y + y−1

))
+ m

(
x2 +

4
k

(
1

y + y−1

)
x + 1

)
= log

(
k

4

)
+ m

(
x2 +

4
k

(
1

y + y−1

)
x + 1

)
.

Applying Jensen’s formula with respect to x reduces ϕ(k) to a pair of one-
dimensional integrals:

ϕ(k) = log
(

k

4

)
+

1
2π

∫ 2π

0
log+

∣∣∣∣∣1 +
√

1 − k2 cos2(θ)
k cos(θ)

∣∣∣∣∣ dθ

+
1
2π

∫ 2π

0
log+

∣∣∣∣∣1 −√1 − k2 cos2(θ)
k cos(θ)

∣∣∣∣∣ dθ.

(5.6.13)

The right-hand integral vanishes under the assumption that 0 < k ≤ 1.
Therefore, it follows that Eq. (5.6.13) reduces to

ϕ(k) = log
(

k

4

)
+

2
π

∫ π/2

0
log

(
1 +
√

1 − k2 cos2(θ)
k cos(θ)

)
dθ.
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With the observation that
∫ π/2
0 log (cos(θ)) dθ = −π

2 log(2), this formula
becomes:

ϕ(k) =
2
π

∫ π/2

0
log

(
1 +
√

1 − k2 cos2(θ)
2

)
dθ. (5.6.14)

Making the u-substitution of x = cos(θ), we obtain

ϕ(k) =
2
π

∫ 1

0
log

(
1 +

√
1 − k2x2

2

)
1√

1 − x2
dx.

Integrating by parts to eliminate the logarithmic term yields:

ϕ(k) = log

(
1 +

√
1 − k2

2

)
+

2
π

∫ 1

0

sin−1(x)
x

(
1 −√

1 − k2x2

√
1 − k2x2

)
dx

= log

(
1 +

√
1 − k2

2

)
+

2
π

∫ 1

0

sin−1(x)
x
√

1 − k2x2
dx − 2

π

∫ 1

0

sin−1(x)
x

dx.

Since
∫ 1
0

sin−1(x)
x dx = π

2 log(2), it follows that

ϕ(k) = log

(
1 +

√
1 − k2

4

)
+

2
π

∫ 1

0

sin−1(x)
x
√

1 − k2x2
dx,

from which we obtain

m
(

4
k

+ x +
1
x

+ y +
1
y

)
= − log

(
k

1 +
√

1 − k2

)
+

2
π

∫ 1

0

sin−1(x)
x
√

1 − k2x2
dx.

To prove Eq. (5.6.12) simply make the u-substitution x = sn(u).

The elliptic curve defined by the equation 4/k+x+1/x+y+1/y = 0 was
one of the simplest curves that Boyd studied in [103]. Rodriguez Villegas
derived q-series expansions for a wide class of functions defined by the Mahler
measures of elliptic curves in [113]. We can recover one of his results by
substituting the Fourier series expansions for am(u) and cn(u)/sn(u) into
Eq. (5.6.12).

If we let k = sin(θ), and then integrate Eq. (5.6.11) from θ = 0 to θ = π
2 ,

we can prove that

m
(

8 +
(

z +
1
z

)(
x +

1
x

+ y +
1
y

))
=

4
π

G +
4
π2

∫ 1

0

sin−1(x)
x

K(x)dx.

(5.6.15)
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Using Mathematica, we can reduce the right-hand integral to a rather com-
plicated expression involving balanced hypergeometric functions evaluated
at one.

Theorem 5.6.5. We will assume that 0 < k < 1 and that each Jacobian
elliptic function has modulus k. Let p =

√
1−k
1+k , r = k

1+
√

1−k2
, and s =

k√
1−k2

, then

∫ K

0
am(u)sn(u)du =

∫ 1

0

u sin−1(u)√
(1 − u2)(1 − k2u2)

du

=
Li2(is) − Li2(−is)

2ki

(5.6.16)

∫ K

0
am(u)cn(u)du =

∫ 1

0

sin−1(u)√
1 − k2u2

du

=
π

2
sin−1(k)

k
− Li2(k) − Li2(−k)

2k

(5.6.17)

∫ K

0
am(u)dn(u)du =

π2

8
(5.6.18)∫ K

0
am(u)

1
sn(u)

du =
∫ 1

0

sin−1(u)
u
√

(1 − u2)(1 − k2u2)
du

= −π

2
log (p) +

Li2(ip) − Li2(−ip)
i

(5.6.19)

∫ K

0
am(u)

1
cn(u)

du = ∞ (5.6.20)∫ K

0
am(u)

1
dn(u)

du =
∫ 1

0

sin−1(u)
(1 − k2u2)

√
1 − u2

du

=
1√

1 − k2

(
π2

8
+

Li2(r2) − Li2(−r2)
2

) (5.6.21)

∫ K

0
am(u)

sn(u)
cn(u)

du = ∞ (5.6.22)∫ K

0
am(u)

sn(u)
dn(u)

du =
∫ 1

0

u sin−1(u)
(1 − k2u2)

√
1 − u2

du

=
Li2(r) − Li2(−r)

k
√

1 − k2

(5.6.23)

129



Chapter 5. Trigonometric integrals and Mahler measures

∫ K

0
am(u)

cn(u)
sn(u)

du =
∫ 1

0

sin−1(u)
u
√

1 − k2u2
du

=
π

2
log (r) +

π

2
m
(

4
k

+ x +
1
x

+ y +
1
y

) (5.6.24)

∫ K

0
am(u)

cn(u)
dn(u)

du =
∫ 1

0

sin−1(u)
1 − k2u2

du

= − π

2k
log(p) − Li2(ir) − Li2(−ir)

ki

(5.6.25)

∫ K

0
am(u)

dn(u)
sn(u)

du = 2G (5.6.26)∫ K

0
am(u)

dn(u)
cn(u)

du = ∞ (5.6.27)

Proof. First observe that Eq. (5.6.20), Eq. (5.6.22), and Eq. (5.6.27) all
follow from the fact that cn(K) = 0. Similarly, Eq. (5.6.18) and Eq. (5.6.26)
both follow from the formula d

duam(u) = dn(u).
We already proved Eq. (5.6.17) in Proposition 5.6.1, and Eq. (5.6.24)

was proved in Theorem 5.6.4. This leaves a total of five formulas to prove.
To prove Eq. (5.6.16), observe that after letting u =

√
1 − z2, we have∫ 1

0

u sin−1(u)√
(1 − u2)(1 − k2u2)

du =
is

ki

∫ 1

0

sin−1(
√

1 − z2)√
1 − (is)2z2

dz.

If 0 < k ≤ 1/
√

2, then |s| ≤ 1. With this restriction on k, we may expand
the square root in a Taylor series to obtain:

=
1
ki

∞∑
m=0

(−1)m

(−1/2
m

)
(is)2m+1

∫ 1

0
sin−1(

√
1 − z2)z2mdz

=
1
ki

∞∑
m=0

(is)2m+1

(2m + 1)2

=
Li2(is) − Li2(−is)

2ki
. (5.6.28)

Notice that Eq. (5.6.28) extends to 0 < k < 1, since both sides of the
equation are analytic in this interval. Therefore, Eq. (5.6.16) follows imme-
diately.

To prove Eq. (5.6.19) make the u-substitution u = z√
1−k2+z2

. Recalling
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that sin−1
(

z√
1−k2+z2

)
= tan−1

(
z√

1−k2

)
, we obtain

∫ 1

0

sin−1(u)
u
√

(1 − u2)(1 − k2u2)
du =

∫ ∞

0

tan−1
(

z√
1−k2

)
z
√

1 + z2
dz.

Using Mathematica to evaluate this last integral yields:

= −π

2
log(p) +

√
1 − k2

3F2

[
1
2
,1,1
3
2
, 3
2

∣∣∣∣1 − k2

]

= −π

2
log(p) +

1
2

∞∑
n=0

(
2
√

1 − k2
)2n+1

(2n + 1)2
(
2n
n

)
= −π

2
log(p) + 2

(
Li2(ip) − Li2(−ip)

2i

)
,

where Eq. (5.4.4) justifies the final step.
To prove Eq. (5.6.21) observe that after the u-substitution u = sin(θ)

we have ∫ 1

0

sin−1(u)
(1 − k2u2)

√
1 − u2

du =
∫ π/2

0

θ

1 − k2 sin2(θ)
dθ.

Now substitute the Fourier series
√

1 − k2

1 − k2 sin2(θ)
= 1 + 2

∞∑
m=1

(−1)m

(
k

1 +
√

1 − k2

)2m

cos(2mθ) (5.6.29)

into the integral, and simplify to complete the proof.
The proof of Eq. (5.6.23) follows the same lines as the derivation of Eq.

(5.6.21). Observe that∫ 1

0

u sin−1(u)
(1 − k2u2)

√
1 − u2

du =
∫ π/2

0

θ sin(θ)
1 − k2 sin2(θ)

dθ.

Now substitute the Fourier series

k
√

1 − k2 sin(θ)
1 − k2 sin2(θ)

= 2
∞∑

m=0

(−1)m

(
k

1 +
√

1 − k2

)2m+1

sin ((2m + 1)θ)

(5.6.30)
into the integral, and simplify to complete the proof.
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Finally, we are left with Eq. (5.6.25). Expanding 1/(1 − k2u2) in a
geometric series yields:∫ 1

0

sin−1(u)
1 − k2u2

du =
∞∑

n=0

k2n

∫ 1

0
sin−1(u)u2ndu

=
∞∑

n=0

k2n

(
π/2

2n + 1
− 22n

(2n + 1)2
(
2n
n

))

= − π

4k
log
(

1 − k

1 + k

)
− h2(ik)

2ik
.

Substituting the closed form for h2(ik) provided by Eq. (5.4.4) completes
the proof.

We can obtain each of the following q-series by applying the method
from Theorem 5.6.3 to the formulas in Theorem 5.6.5.

Corollary 5.6.6. Let p =
√

1−k
1+k , and let r = k

1+
√

1−k2
. The following

formulas hold for the dilogarithm:

Li2(k) − Li2(−k)
8

=
∞∑

n=0

1
(2n + 1)2

qn+1/2

(1 + q2n+1)

+ 4
∞∑

n=0
m=1

1
(2n + 1)2 − (2m)2

qm+n+1/2

(1 + q2m)(1 + q2n+1)
,

(5.6.31)

Li2(r) − Li2(−r)
4

=
∞∑

n=0

1
(2n + 1)2

qn+1/2

(1 + q2n+1)

+ 4
∞∑

n=0
m=1

(−1)m

(2n + 1)2 − (2m)2
qm+n+1/2

(1 + q2m)(1 + q2n+1)
,

(5.6.32)

Li2(ip) − Li2(−ip)
8i

=
G

4
+

π

16
log(p) +

∞∑
n=0

(−1)n

(2n + 1)2
q2n+1

(1 − q4n+2)

+ 4
∞∑

n=0
m=1

(−1)n+m

(2n + 1)2 − (2m)2
qm+2n+1

(1 + q2m)(1 − q4n+2)
.

(5.6.33)
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Proof. As we have already stated, each of these formulas can be proved by
substituting Fourier series expansions for the Jacobian elliptic functions into
Theorem 5.6.5.

Using the method described, we have already proved Eq. (5.6.31) in
Theorem 5.6.3. Eq. (5.6.32) follows in a similar manner from Eq. (5.6.23).

Eq. (5.6.33) is a little trickier to prove. Expanding Eq. (5.6.26) in a
q-series yields the identity

∞∑
n=1

1
n

qn

1 + q2n

n−1∑
j=0

(−1)j

2j + 1

=
∞∑

n=0

(−1)n

(2n + 1)2
q2n+1

1 + q2n+1

+ 4
∞∑

n=0
m=1

(−1)n+m

(2n + 1)2 − (2m)2
qm+2n+1

(1 + q2m)(1 + q2n+1)
.

(5.6.34)

Next expand Eq. (5.6.19) in the q-series

Li2(ip) − Li2(−ip)
4i

=
G

2
+

π

8
log(p)

+
∞∑

n=1

1
n

qn

1 + q2n

n−1∑
j=0

(−1)j

2j + 1
+

∞∑
n=0

(−1)n

(2n + 1)2
q2n+1

1 − q2n+1

+ 4
∞∑

n=0
m=1

(−1)n+m

(2n + 1)2 − (2m)2
qm+2n+1

(1 + q2m)(1 − q2n+1)
,

and then combine it with Eq. (5.6.34) to complete the proof of Eq. (5.6.33).

It is important to notice that the nine convergent integrals in Theorem
5.6.5 only produce three interesting q-series for the dilogarithm. The other
q-series we may obtain from Theorem 5.6.5 really just restate known facts
about the elliptic nome. For example, if we expand Eq. (5.6.21) in a q-
series, we will obtain Eq. (5.6.31) with q replaced by q2 and k replaced

by r2. This is equivalent to the fact that q

((
k

1+
√

1−k2

)2
)

= q2(k). If we

let � =
(

k
1+

√
1−k2

)2
, then clearly k and � satisfy a second degree modular

equation [101].
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5.7 A closed form for T(v, w), and Mahler
measures for T

(
v, 1

v

)
Recall that we defined T(v, w) using the following integral:

T(v, w) =
∫ 1

0

tan−1(vx) tan−1(wx)
x

dx. (5.7.1)

Since this integral involves two arctangents, rather than one or two arcsines,
T(v, w) possesses a number of useful properties that S(v, w) and TS(v, w)
appear to lack.

First observe that T(v, w) obeys an eight term functional equation. If
we let T(v) =

∫ v
0

tan−1(x)
x dx, then we can use properties of the arctangent

function to prove the following formula:

T(v, w) + T
(

1
v
,

1
w

)
− T

(w

v
, 1
)
− T

( v

w
, 1
)

=
π

2

(
T(v) + T

(
1
w

)
− T

( v

w

)
− T (1)

)
.

(5.7.2)

If |v| < 1 and |w| < 1, we can substitute arctangent Taylor series expan-
sions into Eq. (5.7.1) to obtain:

T(v, w) =
∞∑

n=0

(−1)nw2n+2

(2n + 2)2

n∑
m=0

(v/w)2m+1

2m + 1

+
∞∑

n=0

(−1)nv2n+2

(2n + 2)2

n∑
m=0

(w/v)2m+1

2m + 1
.

(5.7.3)

Eq. (5.7.3) immediately reduces T(v, w) to multiple polylogarithms. Theo-
rem 5.7.1 improves upon this result by expressing T(v, w) in terms of stan-
dard polylogarithms.
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Theorem 5.7.1. If v and w are real numbers such that |w/v| ≤ 1, then

−4T(v, w) =2Li3
(w

v

)
− 2Li3

(
−w

v

)
+ Li3

(
1 − vi

1 − wi

)
+ Li3

(
1 + vi

1 + wi

)
− Li3

(
1 + vi

1 − wi

)
− Li3

(
1 − vi

1 + wi

)
− Li3

(
w(1 − vi)
v(1 − wi)

)
− Li3

(
w(1 + vi)
v(1 + wi)

)
+ Li3

(
−w(1 + vi)

v(1 − wi)

)
+ Li3

(
−w(1 − vi)

v(1 + wi)

)
+ log

(
1 + v2

1 + w2

)(
Li2
(w

v

)
− Li2

(
−w

v

))
− 4 tan−1(v)

(
Li2(wi) − Li2(−wi)

2i

)
− 4 tan−1(w)

(
Li2(vi) − Li2(−vi)

2i

)
− π log

(
1 + v2

1 + w2

)
tan−1(w) + 4 log(v) tan−1(v) tan−1(w).

(5.7.4)

Proof. Substituting logarithms for the inverse tangents, we obtain

−4T(v, w) =
∫ 1

0
log
(

1 + ivu

1 − ivu

)
log
(

1 + iwu

1 − iwu

)
du

u

=
∫ iw

0
log
(

1 + v
wu

1 − v
wu

)
log
(

1 + u

1 − u

)
du

u
.

The identity then follows (more or less) immediately from four applications
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of Lewin’s formula∫ x

0
log (1 − z) log (1 − cz)

dz

z

=Li3

(
1 − cx

1 − x

)
+ Li3

(
1
c

)
+ Li3(1)

− Li3(1 − cx) − Li3(1 − x) − Li3

(
1 − cx

c(1 − x)

)
+ log(1 − cx)

[
Li2

(
1
c

)
− Li2(x)

]
+ log(1 − x)

[
Li2(1 − cx) − Li2

(
1
c

)
+

π2

6

]
+

1
2

log(c) log2(1 − x),

(5.7.5)

which was proved in [110], page 270. Condon has discussed the intricacies
of applying this equation in [105].

This closed form for T(v, w) is quite complicated. Notice that a slight
change in the integrand in Eq. (5.7.1) produces a remarkably simplified
formula:

∫ 1

0

tan−1(vx) tan−1(wx)√
1 − x2

dx = π

∞∑
n=0

(
v

1+
√

1+v2
w

1+
√

1+w2

)2n+1

(2n + 1)2
. (5.7.6)

To prove Eq. (5.7.6), make the u-substitution x = sin(θ), and then apply
Eq. (5.3.16) twice.

There are two special cases of Eq. (5.7.4) worth mentioning. First
observe that T

(
v, 1

v

)
reduces to a very simple expression. If we let w → 1/v

in Eq. (5.7.4), and perform a few torturous manipulations, we can show
that

T
(

v,
1
v

)
=

π

2
Im [Li2(iv)] − 1

2
(
Li3(v2) − Li3(−v2)

)
+

log(v)
2

(
Li2(v2) − Li2(−v2)

)
.

(5.7.7)

Laĺın obtained an equivalent form of Eq. (5.7.7) using a different method.
(See Appendix 2 in [107]. Laĺın’s formula for T(v, 1) + T(1/v, 1) reduces to
Eq. (5.7.7) after applying Eq. (5.7.2) with w = 1/v). Observe that when
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w = v in Eq. (5.7.4), we have

T(v, v) =
1
2
Re
[
Li3

(
1 + vi

1 − vi

)
− Li3

(
−1 + vi

1 − vi

)]
− 7

8
ζ(3)

+ 2 tan−1(v)Im [Li2(iv)] − log(v)
(
tan−1(v)

)2
.

(5.7.8)

Finally, it appears that T(v, 1) does not reduce to any particularly simple
expression. Letting w → 1 fails to simplify Eq. (5.7.4) in any appreciable
way. Expanding T(v, 1) in a Taylor series results in an equally complicated
expression:

T(v, 1) =
1
2

∞∑
n=0

v2n+1

(2n + 1)2

n∑
k=1

(−1)k+1

k

+
π

4

∫ v

0

tan−1(x)
x

dx − log(2)
4

(Li2(v) − Li2(−v)) .

(5.7.9)

Theorem 5.7.3 relates T(v, w) to three-variable Mahler measures, and
generalizes one of Laĺın’s formulas. Once again, we will need a simple lemma
before we prove our theorem.

Lemma 5.7.2. If v and w are positive real numbers, then

T(v, w) = tan−1(v)
∫ w

0

tan−1(u)
u

du −
∫ tan−1(v)

0

∫ w
v

tan(θ)

0

tan−1(z)
z

dzdθ,

(5.7.10)

T
(

v,
1
v

)
=

π

2

∫ v

0

tan−1(u)
u

du − 1
2

∫ π/2

0

∫ v2 tan(θ)

0

tan−1(z)
z

dzdθ. (5.7.11)

Proof. While we can verify Eq. (5.7.10) with a trivial integration by parts,
the proof of Eq. (5.7.11) is slightly more involved.

To prove Eq. (5.7.11), first let w = 1
v in Eq. (5.7.10). This produces

T
(

v,
1
v

)
= tan−1(v)

∫ 1/v

0

tan−1(u)
u

du

−
∫ tan−1(v)

0

∫ tan(θ)

v2

0

tan−1(z)
z

dzdθ.

(5.7.12)

Letting v → 1/v in Eq. (5.7.12) gives

T
(

1
v
, v

)
= tan−1

(
1
v

)∫ v

0

tan−1(u)
u

du −
∫ tan−1( 1

v )

0

∫ v2 tan(θ)

0

tan−1(z)
z

dzdθ
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=
(π

2
− tan−1(v)

)∫ v

0

tan−1(u)
u

du −
∫ π/2

tan−1(v)

∫ v2

tan(θ)

0

tan−1(z)
z

dzdθ

Now apply Eq. (5.2.4) twice, which transforms this last identity to

T
(

1
v
, v

)
=
(π

2
− tan−1(v)

)(∫ 1
v

0

tan−1(u)
u

du +
π

2
log(v)

)

−
∫ π/2

tan−1(v)

(∫ tan(θ)

v2

0

tan−1(z)
z

dz − π

2
log
(

1
v2

tan(θ)
))

dθ

(5.7.13)

To complete the proof, simply add equations (5.7.12) and (5.7.13) together,
and then simplify the resulting sum.

Theorem 5.7.3. If v > 0, then the following Mahler measures hold:

m

(
1 − v4

(
1 − x

1 + x

)2

+
(

y + v2

(
1 − x

1 + x

))2

z

)

=
4
π

∫ v

0

tan−1(u)
u

du − 8
π2

T
(

v,
1
v

)
+

1
2
m

(
1 − v4

(
1 − x

1 + x

)2
)

,

(5.7.14)

m

(
1 − v4

(
1 − x

1 + x

)2

+ v2

(
1 − x

1 + x

)(
1 − y

1 + y

)(
z − z−1

))

=
8
π

∫ v

0

tan−1(u)
u

du − 16
π2

T
(

v,
1
v

)
,

(5.7.15)

m
((

y − y−1
)

+ v2

(
1 − x

1 + x

)(
z − z−1

))
=

4
π

∫ v

0

tan−1(u)
u

du − 8
π2

T
(

v,
1
v

)
,

(5.7.16)
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m

⎛⎜⎜⎜⎜⎜⎝
(
4(1 + y)2 − (z + z−1

)2)(1 − v4

(
1 − x

1 + x

)2
)2

+
(
z − z−1

)2 (1 + y)2
(

1 + v4

(
1 − x

1 + x

)2
)2

⎞⎟⎟⎟⎟⎟⎠
=

8
π

∫ v

0

tan−1(u)
u

du − 16
π2

T
(

v,
1
v

)
+

4
π

∫ π/2

0
log
(
1 + v2 tan(θ)

)
dθ

+ log(2).
(5.7.17)

Proof. Each of these results follows, in order, from substituting Eq. (5.2.2),
Eq. (5.2.5), Eq. (5.2.6), and Eq. (5.2.7), into Eq. (5.7.11).

Corollary 5.7.4. The following identities are true:

m ((1 + z)(1 + y) + (1 − z)(x − y)) =
7

2π2
ζ(3) +

log(2)
2

, (5.7.18)

m
(
4(1 + y) + (1 − y)

(
x − x−1

) (
z − z−1

))
=

14
π2

ζ(3) (5.7.19)

m
(
(1 + x)

(
y − y−1

)
+ (1 − x)

(
z − z−1

))
=

7
π2

ζ(3) (5.7.20)

m
(
16(1 + y)2 − 4

(
z + z−1

)2 + (1 + y)2
(
z − z−1

)2 (
x + x−1

)2)
=

14
π2

ζ(3) +
4
π

G
(5.7.21)

Proof. To prove Eq. (5.7.18), let v = 1 in Eq. (5.7.14). From Eq. (5.7.7)
we know that T(1, 1) = π

2 G − 7
8ζ(3), hence

7
π2

ζ(3) + log(2) = m

(
1 −
(

1 − x

1 + x

)2

+
(

y +
1 − x

1 + x

)2

z

)
= m

(
4x + ((1 + x)y + (1 − x))2 z

)
.

Now let (x, y, z) → (
x, y

z ,−xz2
)

to obtain

7
π2

ζ(3) + log(2) = m
(
4x − ((1 + x)y + (1 − x)z)2 x

)
= m

(
4 − ((1 + x)y + (1 − x)z)2

)
139



Chapter 5. Trigonometric integrals and Mahler measures

= 2m (2 + (1 + x)y + (1 − x)z) .

With the final change of variables (x, y, z) →
(
z, 1

yz , x
yz

)
, we have

7
π2

ζ(3) + log(2) = 2m
(

2 +
(1 + z)

yz
+

(1 − z)x
yz

)
= 2m ((1 + z)(1 + y) + (1 − z)(x − y)) ,

completing the proof of Eq. (5.7.18).
The proof of Eq. (5.7.19) through Eq. (5.7.21) follows almost immedi-

ately from our evaluation of T(1, 1). The proof Eq. (5.7.21) also requires
the fairly easy fact that

∫ π/2
0 log (1 + tan(θ)) dθ = G + π

4 log(2)

5.8 Conclusion

In principle, we should be able to apply the techniques in this paper to
prove formulas for infinitely many three-variable Mahler measures. The
main difficulty, which is significant, lies in the challenge of finding infinitely
many Mahler measures for the arctangent and arcsine integrals. In Section
5.2 we proved one such formula for the arcsine integral, and four formulas
for the arctangent integral.
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Chapter 6

Conclusion

6.1 Computational proofs?

We will conclude this thesis by raising the question as to whether or not
computational proofs exist for formulas like (1.1.1) and (1.1.2). Indeed,
algorithms such as the PSLQ algorithm and the WZ algorithm now make
it possible for computers to both discover and prove interesting formulas
with relatively little human assistance (see [119] and [116]). For example,
Guillera recently proved the following hypergeometric series for 1/π2 using
purely computational methods [118]:

128
π2

=
∞∑

n=0

(−1)n

220n

(
2n

n

)5 (
820n2 + 180n + 13

)
. (6.1.1)

The novelty of Guillera’s approach is that it applies to both Ramanujan’s
original formulas for 1/π [120], and to computationally discovered examples
such as (6.1.1). At the very least, it seems extremely likely that a WZ
proof should exist for equation (1.1.1), since that identity closely resembles
formulas in [118]. Such an approach could also be used to eliminate the
algebraic K theory from proofs of similar formulas in [121] and [117].

It seems more difficult to speculate on whether or not computational
proofs should exist for identities such as (1.1.2). In Chapter 2 we reduced
that identity to an equivalent relation between a lattice sum and a hyper-
geometric function:

∞∑
n=0

(
2n

n

)2 (1/16)2n+1

2n + 1

?=
540
π2

∞∑
ni=−∞

i∈{1,2,3,4}

(−1)n1+n2+n3+n4

((6n1 − 1)2 + 3(6n2 − 1)2 + 5(6n3 − 1)2 + 15(6n4 − 1)2)2
.

(6.1.2)

For reasons outlined in Section 2.4, it seems likely that equation (6.1.2) is
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really a special case of a more general formula involving Meijer G-functions.
So far, we have been unable to prove or disprove this last statement.
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