
Quantum backreactions in slow-roll and de

Sitter spacetimes

by

Bojan Losic

B.Sc., University of Waterloo, 1999
M.Sc., UBC, 2001

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

Doctor of Philosophy

in

The Faculty of Graduate Studies

(in Physics)

The University Of British Columbia

September 01, 2005

c© Bojan Losic 2005



In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the
University of British Columbia, I agree that the Library shall make it freely available for reference
and study. I further agree that permission for extensive copying of this thesis for scholarly purposes
may be granted by the head of my department or by his or her representatives. It is understood
that copying or publication of this thesis for financial gain shall not be allowed without my written
permission.

(Signature)

Department of Physics and Astronomy

The University Of British Columbia
Vancouver, Canada

Date



ii

ABSTRACT

This thesis is comprised of three projects. In the first, I consider fluctuations in a perfect irrota-

tional fluid coupled to gravity in an Einstein static universe background. I show that a linearization

instability occurs in Einstein static spacetimes despite the presence of matter, and that this insta-

bility can only avoided by inducing spatially homogeneous perturbations of the spacetime. Since

the first order homogeneous perturbations in this case are well known to be exponentially (dy-

namically) unstable, the tactic of neglecting these modes to create a long-lived, perturbed Einstein

static universe does not work, even if all higher order (L > 1) modes are dynamically stable. The

main conclusion is that Einstein static is unconditionally unstable at first order in perturbation

theory despite the presence of a large class of neutrally stable, inhomogeneous, modes.

In the second, I examine the importance of second order corrections to linearized cosmological

perturbation theory in an inflationary background, taken to be a spatially flat FRW spacetime. The

full second order problem is solved in the sense that I evaluate the effect of the superhorizon second

order corrections on the inhomogeneous and homogeneous modes of the linearized flucuations. In

order to quantify their physical significance I study their effective equation of state by looking at

the perturbed energy density and isotropic pressure to second order. I define the energy density

(isotropic pressure) in terms of the (averaged) eigenvalues associated with timelike (spacelike)

eigenvectors of a total stress energy for the metric and matter fluctuations, and find that the

second order contributions to the dispersion of these eigenvalues becomes of the same order or

exceeds that of the linear contributions. This occurs for a wide range of initial conditions for

slow-roll inflation and results in a constraint on the small slow-roll parameter of that model. The

main conclusion is that the linearized approximation of a slowly rolling spacetime may, under

reasonable circumstances, be intrinsically sick since higher order contributions are comparable to,

or substantially larger than, the linear contributions.

In the third and final project, backreactions are considered in a pure de Sitter space whose

cosmological constant is generated by the potential of scalar field. The leading order effect of matter

backreactions on the gravitational field is considered. The initial value problem for the perturbed

Einstein equations is proven to generically possess linearization instabilites. I furthermore show

that these linearization instabilities can be avoided by assuming strict de Sitter invariance of the

quantum states of the linearized fluctuations. This invariance constraint applies to the entire

spectrum of states, from the vacuum to the excited states, and is in that sense much stronger than

the usual Poincare invariance of the Minkowski vaccum. Some sketches are presented on how to

construct de Sitter invariant states. The main conclusion is that to leading order in their effect on

the gravitational field, the quantum states of the matter and metric fluctuations must be de Sitter

invariant.
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CHAPTER 1

INTRODUCTION

The gradual decline of the political and intellectual authority of the medieval church in Italy and

northern Europe ushered in a new era of Western thinking about the origin and nature of the large-

scale Universe, and by extension our place in it. New standards for, and indeed the very emergence

of, critical thought sharpened the formulation of these fundamental questions and slowly led to the

establishment of what is today called the science of cosmology.

Many ancient cosmogonies competed with various different views on the shape of the universe

and its early history, but in most cases there seemed to be a consensus that the world was not in a

high state of symmetry. In particular, the condition of man was terrible and the world was running

amuck and askew from an early history of bliss whose rational elements could be described in what

today would be called mathematically elegant terms (such as, say, the three Gorgons in elucidating

galactic motions or a three-brane in some current cosmological models). Current observations,

however, hold that the large scale structure of the universe is remarkably spatially symmetric while

theory is inadequate to comment on the precise nature of the initial state. Whatever one’s view,

remarkable technological developments in observational techniques have recently firmly established

cosmology as a precision science wherein competing theories can actually lead to testably different

predictions.

In this thesis I examine some techniques used to study a large class of cosmological models,

and even though the treatment is largely mathematical the physical aspects of these studies are

emphasized throughout. In the following brief introduction we will broadly motivate this work at a

basic level and outline its accomplishments, using the opportunity to introduce some terminology

and set some notation. In Section 1.1 general relativity is introduced and in Section 1.2 the early

universe scenario known as inflation is introduced. In Section 1.3 some introductory and basic com-

ments are made about what cosmological perturbation theory is, and Section 1.4 ends the chapter

with a technical summary of the results of this thesis. In this first chapter it will prove impossible

to specifically cite all of the many people who have contributed to our current understanding of

cosmology, without which this thesis would be nothing more than my idle speculation on matters

way over my head.

1.1 General relativity

The convincing success of Newtonian mechanics as applied to inter-planetary scales in our own

solar system is truly impressive, and it seemed plausible in the mid 20th century that larger

scale systems like galaxies and even the universe would similarly be well-described. However in

a dramatic interplay between pure thought and some rudimentary measurements indicating small
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experimental discrepancies from Newtonian theory, an entirely new framework of viewing the large

scale universe (called General Relativity) was nearly singlehandedly produced by Albert Einstein

some 90 years ago. The full implications of this new framework for cosmology are still actively

being explored today, surely in part because the extent of the departure from Newtonian thought,

and complexity of equations, can hardly be overemphasized.

One of the hallmarks of Newtonian cosmological ideas, which pointedly only came under scrutiny

around the time GR was developed, was the notion that the distant past and distant future of the

universe as a whole were in a one to one correspondence. In other words, a particular early history

in Newtonian physics always corresponds to a particular future. The notion that this might not

be so in a deterministic theory, that for example the clasically evolving universe might not even

exist in the distant past of a given future or vice-versa, is now known to be one of the most

dazzling consequences of the general theory of relativity (GR). In this theory the apparently inert

spacetime which merely labels events with one time and three spatial coordinates (so that it is

four-dimensional in total) assumes a dynamical character and can interact not only with matter,

but also with itself. Such a dynamic and nonlinear system1 can easily admit situations where

e.g. the past may not exist for a given future, depending on the ’shape’ or geometry of the four-

dimensional spacetime. Within GR, the geometry of the universe acquires a much deeper and more

general physical meaning than before, and in that way completely alters how we even formulate a

potential cosmology (i.e. what kind of questions we can ask). It thus becomes important to extract

the central message GR has for cosmology, and it is in this effort we slowly become aware of the

stunning convergence of modern theory. Namely, that apparently disjoint bodies of knowledge,

even applied to completely different physical systems, can actually overlap and be useful in their

respective domains. With this in mind, we turn to pure geometry.

Using one of the great advances in mathematics, Gauss’s Theorema Egregium, it is possible

to completely characterize the geometry of a space in an intrinsic way, without referring to any

embeddings in a higher ‘background‘ space as one would for example with a 2-dimensional (2-d)

sphere or cylinder embedded in three dimensions. This effectively means that any being that lived

on a given surface and had no knowledge of how that surface was embedded in some complicated

higher space could still completely determine the geometry of that surface. Thus, Gauss’s advance

was to provide the most general possible characterization of the intrinsic geometry of a surface, and

in so doing show that the extrinsic features of its geoemtry, those related to its embedding, were

not essential in this characterization. A very important and related idea, which Einstein spent a

great deal of time thinking about, was that the particular coordinatization of the surface is not

important. The intrinsic features of the surface are unique, which the details of a particular choice

of e.g. ’time’ or ’space’ coordinates can only obscure or illuminate. Therefore it is natural for us

to apply Gauss’s framework to space-time itself using the GR intuition that space-time is a surface

with some nontrivial geometry. In fact, much of the technical and intuitive complication of GR

is related to the usage of this intrinsic language (largely developed by Riemann in the late 19th

century), and indeed to the very notion of not having an absolute, ’background’, space-time as in

Newtonian physics.

1Often viewed by analogy to a ball on a rubber tarp, which isn’t a very good analogy since it implies only spatial

curvature occurs and that the tarp is always flat when there is no ball, both of which are not always true in GR.
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A rather key feature of this space-time geometry is its (intrinsic) curvature2. For example,

the 2-d sphere and cylinder mentioned above are distinguished by the fact that the former is

intrinisically curved while the latter is not, even though both appear curved when embedded in

three dimensions. In GR, once again, this abstract idea of intrinsic curvature is applied to an

entire space-time. In a great leap, the theory describes how to straighforwardly relate the intrinsic

curvature of spacetime to a generalized concept of the gravitational field which, in an appropriate

limit, reduces to the Newtonian gravitational field. Therefore, assembling all of the above ideas,

the key message of general relativity is: the intrinsic curvature of a spacetime is directly related to

a generalized concept of a gravitational field . The link between the intrinsic curvature of spacetime

and a generalized notion of the gravitational field is one of the most phenomenal examples of the

so-called modern convergence of theory3.

What does this mean for cosmology? For one it implies that the history and spatial properties

of the large-scale universe are best described in terms of an intrinsic description of spacetime

which, as a whole, does not evolve with respect to anything and yet dynamically participated

in physical processes. This is revolutionary. Furthermore, it implies that the matter content of

the universe can significantly influence how it evolves, as it interacts with spacetime, and that

the very spacetime interacts with itself (colloquially, ’gravity gravitates’) in processes which can

be described as gravitational interactions. In view of all of this, the programme of cosmology

turns to characterizing the spacetime geometry according to the dynamical laws which govern its

interaction with itself and the matter content of the cosmos. Thus in this thesis we have replaced the

philosophical prejudice that spacetime is an inert arena which absolutely labels physical processes

with the prejudice that spacetime dynamically participates in such processes, in the precise way

spelled out by GR.

In this thesis we shall consider techniques which approximate these spacetime dynamics, gener-

ally called perturbation theory, or in the cosmological context, ‘cosmological perturbation theory‘.

The reason the full spacetime dynamics are approximated at all is that they are expressed in terms

of coupled, nonlinear, partial differential equations whose only known exact solutions assume many

simplifying assumptions which, for reasons spelled out later, are not acceptable for many detailed

studies of current cosmological models. Despite their complexity, the common expression of these

equations is deceptively simple, namely

F (R)
︸ ︷︷ ︸

Linear function of curvature

= T
︸︷︷︸

Matter stress-energy

, (1.1)

where R is some measure of the spacetime curvature. In four dimensions, these are ten coupled

equations whose solutions give the values of the generalized gravitational field for a given spacetime

and matter configuration. To make analytic headway, perturbation theory in general relativity

inherently considers only perturbations from a given exact solution and in that way attempts to

2Roughly, if one transports a tangent vector around a closed circuit on a given curved surface, the initial vector
and final vector do not coincide. The angle between them is linearly proportional to the ’intrinsic curvature’ of a
surface.

3It is no accident that this link makes no use of any particular kind of symmetry (such as the Poincare group),
or the notion of ‘particles‘. GR is a background independent (i.e., wholly intrinsic) field theory which only admits
a usable particle interpretation in special cases.
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approximate an exact solution 4 to (1.1) near the highly symmetric known solution using a power

series (assuming these perturbations are ‘small‘ in some reasonable measure). The first order

correction is called linear, the higher order corrections are generally referred to as backreactions.

In the next section I shall describe which solutions to (1.1) are postulated to be extremely

relevant for the early history of the universe.

1.2 Inflationary scenario

Equations (1.1) suddenly make possible giving the universe dynamics as a whole. It can shrink

and grow or even pinch off as suggested above, and space itself can be created and destroyed.

We can use the equations to study the consequences of one of the most phenomenal observational

discoveries about our universe, namely that it is incredibly smooth and homogeneous on the largest

scales. Assuming such a uniform distribution of matter and energy in the universe, this rate of

creation or destruction is driven in a straightforward way, by equations (1.1), by the energy density

and pressure of the stress energy of the matter. If one insists on positive energy densities and

pressures and only looks at the case of space being created (expanding universe), then it is easy to

see this implies the energy density must have been larger in the past. This in turn implies that,

by equations (1.1), the rate of space creation/expansion was larger in the past. Furthermore if

the pressure is always bigger than zero, the energy density must have been inifinite at some finite

time in the past and one can only presume that at this finite time the universe came into being.

However, light travelling from this finite beginning time could have only travelled a distance which

is much, much smaller than the scales of the universe we observe today. We know this from looking

at the well-known Cosmic Microwave Background (CMB) radiation and furthermore assume, as I

do in this thesis, that no physical processes can propagate faster than the speed of light. Clearly

equations (1.1) are a mixed blessing, since they have replaced the mystery of what dynamics the

universe can have as a whole with the problem of providing a causal explanation for the large-scale

uniformity of the observed universe.

There are a variety of ways one can try and solve this conundrum. By fiat, one can invoke

some kind of being that created the universe as we see it and end the inquiry as such right there5.

However, if we can find some way around the conclusion that in the finite time since the beginning of

the universe light could only travel a small portion of the visible universe, then perhaps there is hope

for actually acquiring some explanatory power. As usual, this requires crushing a naive assumption

we have made, and in the late ’70’s and early ’80’s this move was made almost simultaneously in

the USSR and USA. The idea was to create enough time for the entire universe to be in causal

contact with itself by slowing down the rate at which space was created in the past. This will require

some kind of mechanism to slow down the increase of energy density as the universe grows smaller

in the past. This is achieved by simply allowing the pressure to do work on the universe as it

collapses, i.e. allow a negative pressure to develop, and in fact if the pressure is large enough the

4The only people who are brave enough to even contemplate trying to solve equations (1.1) without as many
special simplifying assumptions are the numerical relativists. The fruits of their effort are the only insight (aside
from the Hawking-Penrose singularity theorems) we have about the analytic structure of general solutions to the
field equations, which appears to be extremely rich.

5However, despite everything, we push on: Qui tacet, consentire videtur.
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energy density will be a constant independent of the size of the universe. The first investigations

demonstrated that an era of such negative pressure could lead to a slow enough rate of expansion

in the past, or in other words a sufficiently long enough time for light to traverse the fledgling

universe, and allow a causal explanation for the large scale homogeneity we see.

Generally the above scenario is known as inflation and the universe started out in a hot, dense,

event called the Big Bang (as coined, ironically, by the principal advocate of the competing Steady

State models, Fred Hoyle)6. The inflationary scenario provides a way to view why the Big Bang

should lead to a homogeneous universe, i.e. it allows us to understand the spatially homogeneous

solutions to (1.1) in terms of a dynamical explanation of the large scale homoegenity of the universe

if negative pressures can be somehow arranged. It turns out that this is relatively simple to do if

the dominant stress energy of the universe is ’potential dominated’ (as opposed to the ’rest mass’,

’kinetic’, dominated stress energy we mostly observe in our every day lives) and thus not terribly

affected by the universe as it expands or contracts. The inflationary scenario manages to create an

era like this by postulating such a special stress-energy in the early universe, and in this way it is

usually stated that inflation solves the major causality problems of the Big Bang scenario7.

Another compelling success of inflation is that it miraculously solves the question of local inho-

mogeneities by postulating that quantum fluctuations in the early, negative pressure dominated,

matter were amplified to a classical level during the transition from the inflationary era to a more

’matter dominated’ era. The amplitude of the quantum fluctuations is directly related to the rate

at which the (classical) negative pressure matter transforms to positive pressure matter, and in

fact the very first models of inflation had a very tiny rate of conversion so the fluctuations were

too large and created a very inhomogeneous universe. The miracle of inflation is in embedding this

mechanism for explaining the inhomogeneity of the universe within the potential dominated era

which explains its homoegneity. Though extremely compelling, there is still widespread agreement

in the community (with notable exceptions) that inflation can still only claim the status of a sce-

nario, rather than a full fledged theory. In this thesis we ignore these tough foundational issues

and only directly address the part of the inflationary scenario which deals with the generation and

amplification of quantum fluctuations.

1.3 Cosmological perturbation theory

The theory of linearized fluctuations, or linearized gravitational fluctuations in the language of GR,

in an expanding universe has become one of the cornerstones of modern cosmology. The quantum

fluctuations invoked in the inflationary scenario are necessary to explain how nonlinear structures

on the scale of galaxies and clusters came to be. With perturbation theory we can describe these

fluctuations and study the growth of structure in the universe, including the predicted fluctuations

in the CMB, using the essential intuition that the perturbations will grow in time as a result of

6It is perhaps worth emphasizing that the Big Bang should be distinguished from a moment of time in which the
universe began, which is a common misconception. In GR, one may think of the Big Bang as a point in parameter
space, called a singularity, in which the spacetime of this model ceases to exist (which is considerably worse).

7Inflation does not solve the problem of the initial singularity of the universe because it actually requires relatively
special initial conditions to work. Vexingly, this actually leads to successful arguments that it does not generically
solve the homogeneity problems either.
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gravitational instability. In a static (nonexpanding) universe, Newtonian intuition suggests that

this growth will be exponential whilst in an expanding universe one’s intuition might be that the

growth slows down to a power law dependence (which is correct).

Just as (1.1) is compactly written down and explained, the above words are easy to say or

write down. Expanding equations (1.1) order by order and solving them order by order about

one’s favourite exact cosmological solution in one or more small parameters (depending on one’s

approximations), however, is fraught with technical difficulty which will be described in some detail

in later chapters. Key issues include filtering out fluctuations in coordinates as opposed to real

fluctuations in spacetime, and interpreting these fluctuations in a way which does not depend on

how one coordinatizes the background solution8. Here and henceforth, ‘background solution‘ or

‘background‘ will refer to the exact solution of (1.1) about which the perturbations are defined. In

this thesis we will also pay special attention to issues which are peculiar to cosmological perturbation

theory (and other theories whose field equations are nonlinear) whenever the background solution

is sufficiently symmetric.

The vast majority of previous work in cosmological perturbation theory has been on the lin-

earized sector. Back of the envelope calculations easily reveal that the rms amplitude of the

anisotropies in the CMB roughly give the amplitude of the linearized fluctuations, which is roughly

10−5, and so naively the second order fluctuations should be extremely subdominant. However,

the relative importance of the second order contributions is subtle and can sometimes affect the

linearized perturbations and the background spacetime in a certain cumulative sense which defies

naive estimates. This process is commonly referred to as ‘backreaction‘ and has been investigated

seriously in the past by many authors, often in near heroic calculations. However there is still

considerable debate on how to assess the importance of these higher order fluctuations, primar-

ily because of the technical complications required to do even simple calculations in second order

cosmological perturbation theory but also because the leading order nonlinearities of GR bring

up fundamental issues in the full theory which have not been resolved9. Despite this, interest is

growing in these sorts of calculations as people realize that its results may have important things

to add to a whole host of pressing issues in theoretical cosmology, and even in the effort to reconcile

the well-known incompatibility between GR and quantum field theory. Indeed, a better and more

definitive understanding of what the leading order nonlinearities in standard relativistic (quantum)

cosmological perturbation theory might be telling us is, in my opinion, at the very least as valuable

as pursuing modifications to the foundations of GR itself.

1.4 What is new in this thesis?

In this thesis I make a modest step in this direction by considering the relative importance of a

certain class of backreactions on a certain class of linearized fluctuations, all within a general class

of inflationary models. I also answer questions concerning their effect on the background spacetime

and details of their quantum states. This step is taken in three studies, which to my knowledge

8Not all perturbed gravitational fields correspond to perturbed spacetimes.
9Such as the question of observables. The only known observables in classical GR are constants.
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are original.

• In the first study I examine a peculiarity (called a linearization instability) in relativistic

perturbation theory which allows for the possibility that some solutions of the linearized

field equations are not in fact linearizations of solutions to the full field equations. I extend

the existing theory by explicit construction, showing that such situations still exist even

when matter is present (which, in a sense to be spelled out later, is counterintuitive). We

show an example of how the exclusion of all spurious solutions to the linearized equations

actually leads to critical dynamical instabilities in a class of proposed cosmological models.

These dynamical instabilities effectively rule out these cosmological models, and in particular

rule out their candidates for a quantum initial state of the universe. Noteworthy aspects

include the extension of the known results in vacuum to cases involving matter and the first

known example that linearization instabilities can alter the physical conclusions of linearized

perturbation theory. This is peer-reviewed work [1].

• In the second study the importance of long-wavelength backreactions on linearized cosmo-

logical fluctuations about an inflating spacetime is assessed. Particular attention is paid to

the limit where the inflating spacetime tends to a well-known vacuum solution10 and two

key results are obtained. The first is that the effect of these backreactions can be described

as an additional negative cosmological constant in the background spacetime. The second

is that there is a wide class of inflationary initial conditions under which some completely

reasonable assuptions about the background matter11 will lead the relative amplitude of the

backreactions to dominate over that of the linearized fluctuations. Noteworthy features of

this analysis are its treatment of higher order gauge ambiguities, solution of the backreaction

equations of motion, its novel construction of observables and reformulation of the backreac-

tion programme, and its suggestion that the linearized perturbative approximation of a wide

class of inflationary spacetimes fails. This is peer-reviewed work [2].

• In the third and final study, I examine the classical and quantum backreaction problem in a

special vacuum spacetime with a positive cosmological constant (de Sitter). This is done in

order to gain insight into another aspect of the second study, and ironically the techniques

of the first study are crucial in achieving some of its results. In the classical problem we

follow a novel gauge-reduction technique, which in the quantum case we show does not con-

tain any anomalies. I then proceed to formulate the theory in Hamiltonian form, and find

that linearization instabilities can exist. I find that the quantum mechanical statement that

all solutions to the quantized linearized equations of motion be legitimate is equivalent to

requiring that the states of these solutions be deSitter invariant. This requirement seems

to unduly restrict the possible symmetry of the linearized states and forces one to directly

confront the problem of constructing observables in de Sitter. I examine several ideas on

how to do this and show some sketches on how to achieve nontrivial deSitter invariant states.

Noteworthy aspects include the imposition of these symmetry requirements, the construction

10The so called de Sitter limit.
11The slow-roll approximation.
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of these states, and the proof that there exist no quantum anomalies which block the invari-

ance requirement. This is work in progress, though portions of it could presumably already

be published.

The general strategy in the following chapters is to briefly introduce the required introductory

material (terminology, notation, etc) and then proceed directly to the calculations and conclusions.

The first two projects will be taken directly from previously published work while the third will

draw from notes. The thesis will end with a summation of the whole work, together with an outlook

for future work. The following chapters will, unfortunately, have to rely more on technical jargon

than this introduction. The point of view of the thesis will switch freely from first person and third

person, i.e. adopt a narrative point of view, to better delineate what I have done with what others

have done.
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CHAPTER 2

LINEAR PERTURBATION THEORY

Before extending Section 1.3 somewhat and discussing perturbation theory in general relativity, in

this Chapter I start by taking a short look at the homogeneous and istropic background spacetime.

Indeed, in Section 2.1 I follow a more formal procedure (as Wald does in [3]) of rigorously defining

spatial homogeneity and isotropy and showing what possible metrics are compatible with these

assumptions. Next, in Section 2.2, a brief introduction to linear cosmological perturbation theory

(see [4] for an extensive review) is given. One of the main features of this theory that I emphasize

is that there exists a well-defined procedure to cast the basic equations of motion for energy density

fluctuations in the form of a time-dependent simple harmonic oscillator, a fact which will be very

important for Chapter 4 of this thesis. The classical theory of linearized perturbations is commonly

cast in the Lagrangian form, and this is the language initially adopted in Section 2.2. However, the

theory of quantum fluctuations as well as the quantum and classical initial value problem, is more

easily treated in the Hamiltonian form and this naturally leads to the natural expression of the

phenomenon of linearization stability (see [5], [6], [7], [8], [9], [10] ), which is introduced in Section

2.3. Some original but ancillary results about linearization stability are presented near the end of

Section 2.3 as part of the conceptual and technical build-up to Chapter 3.

Index Notation: In this thesis abstract index notation will be heavily used. In this notation,

tensor equations will be written without assuming an explicit basis. However, components of

tensors will be frequently be written in a specific coordinate basis (e.g. the comoving coordinates

of FRW) in this and following chapters. Generally, Greek letters will denote the indices of basis-

dependent tensor components and Latin letters their abstract, basis independent, cousins. Their

ranges should be clear by context, e.g. an expression involving derivatives of spatial tensors will

involve only spatial derivatives unless explicitly stated otherwise.

2.1 Homogeneous and isotropic spacetimes

Roughly, we may understand that spatial homogeneity implies that we do not occupy a special

place in the universe, that wherever we happen to be the basic characteristics of what we observe

would appear to be the same. In a similar way spatial isotropy implies that large-scale observations

should not depend on what direction we look. Of course, then only one observer1 at most can find

the universe isotropic so it is not clear how useful this concept is. In fact, the rigorous definitions

of these concepts requires a bit more thought and geometric construction.

We may imagine a spacetime endowed with the usual Lorentzian metric gab and foliate it by

spatial hypersurfaces Σt labelled by successive instants of ‘time‘ t. The Lorentzian metric gab

1Or, technically, one class of observers for an expanding universe (the comoving observers).
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induces a Riemannian (positive definite) metric hab(t) on each Σt by restricting the action of gab at

each m ∈ Σt to vectors tangent to the basis vectors of Σt. Given this setup we may now rigorously

say, following Wald in [3], that a spacetime is spatially homogeneous (H) and isotropic (I) if

• H: there exists an isometry, a transformation which preserves the spatial metric, such that

for all t any m ∈ Σt can be carried to any n ∈ Σt

• I: it is impossible to construct any geometrically preferred vectors on Σt

With the aim of finding the field equations for such a symmetric space, we now ask what kind of

characteristics any curvature tensor built from such a Riemannian metric can have. Thus, consider

the Riemannian curvature (3)R cd
ab of hab(t). We recall that (3)Rabcd = (3)Rcdab by the fundamental

definition of the curvature tensor, which is defined by the commutator of two covariant derivatives

on, say, the tensor Mab restricted to Σt:

(DaDb −DbDa)M
c
d = −(3)Rc`adM

`
d + (3)R`dabM

c
` , (2.1)

where Da is the covariant derivative compatible with the spatial metric hab(t). Another important

property of the Riemann tensor is known as the Bianchi identity, which states that

D[a
(3)Rbc]de = 0, (2.2)

where curly (square) brackets around indices denote (anti)symmetrization of those same indices.

Following Wald in [3], we note that we may view (3)R cd
ab at a point p ∈ Σt as a linear map,

L, of a vector space W of antisymmetric, covariant, rank 2 tensors (two-forms) at p onto itself2:

L : W → W . Using the symmetry property (3)Rabcd = (3)Rcdab, it follows that L is symmetric with

a natural, positive-definite inner product on W determined by the Riemannian metric hab. This

means that W has an orthonormal eigenbasis of vectors of L, and if any the eigenvalues of these

eigenvectors were distinct this would give a geometrical way in which to pick out a preferred two-

form (and thus a vector). Our requirement of isotropy therefore requires that all the eigenvalues

be equal, or in other words the curvature must be of the form

(3)Rabcd = Khc[ahb]d, (2.3)

where K is an unspecified dimensionful scalar function. We may immediately plug equation (2.3)

into the Bianchi identities (2.2) and deduce that (using metric compatibility)

DeK = 0, (2.4)

which means that K must be a (dimensionful) spatial constant. This conclusion is actually required

by the assumption of homogeneity but the interesting thing here is that it was not a required

assumption, for the constancy of K is automatic by the Bianchi identities (2.2). In this way,

spatial isotropy implies spatial homogeneity and we need only need assume isotropy.

2It is antisymmetric map because (3)R
(cd)

ab = 0 = (3)R cd
(ab)

, mapping onto itself means, for 2-forms ωab ∈ Σt,

(3)R cd
ab ωcd = ωab.
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Equation (2.3) implies that isotropic surfaces are spaces with a constant K, which has dimen-

sions [length]−2 and we identify as the scalar curvature. K is typically scaled to be ±1, 0, where

+1 indicates a closed geometry, −1 indicates a hyperbolic geometry, 0 a Euclidean one. Indeed,

spaces of constant curvature are well-studied and have metrics that can be cast in the form

ds̄2 =
∑

a,b

habdx
adx̄b =

δab
(1 +Kr2)2

dxadxb, (2.5)

where we have used the standard summation convention of implicitly summing over repeated raised

and lowered indices, δab is the Kronecker delta. Here I have chosen xa to be Cartesian coordiantes

used in characterizing the surface and r2 = x2 + y2 + z2.

Now that we have determined the spatial geometry consistent with spatial isotropy, we may

use this assumption once again to assure that any timelike observers with four velocity ua will be

orthogonal to homogeneous surfaces Σt. We may then easily write the full spacetime metric as

gab = −uaub + hab(t) (2.6)

since hab(t)u
a = 0 for all uau

a = −1. By means of these timelike observers we may ‘transport‘ the

coordinates of a given Σt to that at another t + t′, and in that way label each Σt by the proper

time τ observed by each of those observers. This proper time and our previously chosen spatial

coordinates then label each event within our coordinate chart, so one now has a general metric

and set of coordinate systems for spatially isotropic and homogeneous spacetimes. Thus, finally,

we may write the general metric as

ds2 = gabdx
adxb = −dτ2 + a(τ)2γijdx

idxj , (2.7)

where a(τ) is a so-called scale factor, so that hab(τ) = a(τ)2γab. We can see that there will only

be dynamics with respect to this proper time parameter τ .

Now we can try to find the field equations of GR for this particular space. The general field

equations of GR, i.e. the detailed versions of (1.1), were given by Einstein some 90 years ago as

Rdadb −
1

2
gabR

`
m`

m
+ Λgab ≡ Gab + Λgab = κTab, (2.8)

where the usual Einstein tensor is defined through contractions of the full, four dimensional, Rie-

mann tensor associated with gab, defined in turn completely analagously to (3)Rabcd above. Here

the choice κ ≡ 8πG
c4 ensures the correct Newtonian limit to the theory. The form of the left hand

side of (2.8) is dictated by the requirement that the right hand side satisfy conservation of stress-

energy (i.e. ∇bTab = 0, where ∇a is the covariant derivative compatible with gab) and Λ is the

so-called cosmological constant which for now we set to zero.

Keeping the dimensionality of Σt general, it is easy to show that for spatially isotropic spaces
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the contactions of the three-curvature are

(3)Rab = K(n− 1)hab (2.9)

(3)R = Kn(n− 1), (2.10)

for n ≡ dim(Σt). From these relations we can actually find the normal and tangential projections

of the field equations with respect to the surfaces Σt, i.e.

Gabu
aub = κTabu

aub (2.11)

hbaGb`u
` = κh `

b T`au
a, (2.12)

using the so-called Gauss-Codazzi equations which relate the three-curvature ((3)Rabcd) and four-

curvature ((4)Rabcd):

(3)R d
abc = ha

fhb
ghc

khd j
(4)Rfgk

j −KacK
d
b +KbcK

d
a (2.13)

D̄aK
a
b − D̄bK

`
` = (4)Rcdu

ahcb, (2.14)

where Kab ≡ 1
2£uhab is the contracted extrinsic curvature (commonly just called the extrinsic

curvature), defined by Lie-dragging the three metric along the normal to Σt (roughly, ‘taking the

time derivative of hab‘). These complicated relations allow one to show, in a calculation which is

not very illuminating at this stage, that

2Gabu
aub = (3)R+ (K`

`)
2 −KabK

ab (2.15)

hbaGb`u
` = hba

(4)Rb`u
` = 2D̄[`K

`
a], (2.16)

which puts us within striking distance of the projected field equations. Indeed, we note that

2Kab = £uhab
∗
= ∂τhab ≡ 2Hhab (2.17)

K`
` = nH, (2.18)

where H ≡ ∂0a(τ)
a(τ) ≡ ȧ/a and the overstar indicates we evaluate in the Lie derivative in the

coordinate system of (2.7). Finally, we plug this into equations (2.11), (2.12), (2.15), and (2.16) to

obtain

(n2 − n)H2 + n(n− 1)
K

a2

∗
= 2κT00 ≡ 2κρ, (2.19)

where the other three equations corresponding to equations (2.12) are trivially 0 = 0 by three-

metric compatibility. Here the assumption that the stress energy is of the form of a perfect fluid3

has been used. It can be shown that such a stress energy is of the most general form compatible

3The other three equations are formally D`(K`b − Tr(K)h`b) = κh `
b T`aua. These are the tangential projections

(along Σt) of the field equations, and are clearly nontrivial for anisotropic models.
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with spatial isotropy, namely, for a fluid with fluid velocity ua,

Tab = (ρ+ p)uaub + pgab, (2.20)

where ρ, p are the energy density and pressure respectively.

Equation (2.19) only contains single derivatives in τ and as such is not an evolution equation

for a(τ) but rather some type of initial value constraint equation. In order to obtain the evolution

equation we can use stress-energy, or conservation, condition ∇bTab = 0 (or equivalently, the

contracted Bianchi identities ∇aGab = 0) to obtain

ρ̇+ nH(ρ+ p) = 0. (2.21)

using equation (2.19) for ρ, we find after a simple calculation that

ä

a
=

κ

n2 − n {(2− n)ρ− np} (2.22)

Equations (2.22) and (2.19) represent the constrained evolution equations of general relativity for

any spatially isotropic space with perfect fluid matter. Whenever n = 3, which is the only case we

will consider in this thesis, the equations reduce to

3H2 + 3
K

a2
= κρ (2.23)

ä

a
= −κ

6
(ρ+ 3p), (2.24)

which are known as the Friedmann-Robertson-Walker (FRW) equations4. The solutions to the

FRW equations, which are suprisingly rich despite the restriction of spatial isotropy, are extensively

discussed in many texts (e.g. [3]).

To summarize, a spatially isotropic spacetime is automatically spatially homogeneous and has

general relativistic dynamics described by equations (2.22) and (2.19), which are nonlinear ordinary

differential equations in the proper time variable τ . The spacetime geometry these equations, or

rather the special cases equations (2.23) and (2.24), describe will form the background spacetime

about which we will perturb the metric.

2.2 Linearized theory

The pioneering 1946 paper by Lifschitz, [11], effectively introduced the modern form of linear

cosmological perturbation theory, which has subsequently been primarily modified by the way it

treats so-called gauge ambiguities. Mathematically the problem of describing the growth of small

perturbations in the context of cosmology reduces to linearizing the field equations of GR about

a particular solution to equations (2.23) and (2.24). Indeed, we violate the explicit covariance of

general relativity because the generalized gravitational field, or spacetime metric, is preferentially

4A curiosity for n = 2, i.e. ‘2 + 1‘ gravity, is that the energy density does not source any acceleration.
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decomposed into a background metric and a perturbation. The latter is taken to be small in some

‘reasonable‘ measure and the field equations for these perturbations are truncated at some order

and solved. The key result which is taken to put linearized theory about FRW on mathematically

sound ground is due to D’Eath in [7], where he shows that a large class of linear perturbations

which satisfy the linearized equations of motion actually represent linearizations (in the same small

parameter) of the exact solution. We discuss this in detail a little later in the context of linearization

stability, though we note here there is some dispute over his results for the case of a closed (K = +1)

FRW background (see [12] ).

Taking the background metric to be as in equation (2.27) and adopting the comoving coordinates

it is expressed in, we may write the general perturbation of a FRW metric as

ds2 = −(1 + εA(t, ~x) + ε2A(t, ~x) + . . .)dt2 + 2(εBi(t, ~x) + ε2Bi(t, ~x) + . . .)dtdxi

+a2(t)(γij + εhij(t, ~x) + ε2qij(t, ~x) + . . .)dxidxj , (2.25)

where ε is the small parameter of the metric perturbations. The order of a quantity will refer to

its order in ε unless otherwise noted. To linear order the above expansion of the metric has some

simplifying features. To illustrate this, we write the linearized perturbations in matrix form

δ(ds2) = a2(t)

(

−2A +2DiB

+2DiB +2DiDjE − 2ψγij

)

︸ ︷︷ ︸

Scalar sector

(2.26)

+a2(t)

(

0 −2Vi

−2Vi +2D(iFj)

)

︸ ︷︷ ︸

Vector sector

+a2(t)

(

0 0

0 +2tij

)

︸ ︷︷ ︸

Tensor sector

The vectors V i and F i, along with the tensor tij , are defined to satisfy constraints of the form

DiF
i = 0 , DiV

i = 0 , Djt
ij = 0 , tii = 0, (2.27)

to ensure that they do not contain parts that transorm as scalars and/or vectors, i.e. that they

are purely vectorial (transverse) and tensorial (traceless and transverse) perturbations. As we

indicate above, the first part of the perturbations are the so-called scalar perturbations, the second

part are the vector perturbations, and finally the tensor or gravity wave perturubations. This

classifications refers to the way in which these particular perturbations transform under coordinate

transformations. Although the terminology is perhaps unfortunate, one should just remember that

a ‘scalar’ perturbation is simply a tensorial perturbation made of the three-metric or covariant

derivative acting on scalars, and similarly for vectorial perturbations. Thus, we see that there are

four metric scalar functions A,ψ,E,B, two three-vectors Fi, Vi, and one symmetric three-tensor

tij , giving 4(1) + 2(3) + 1(6) = 16 functions. But there are precisely six constraints as well from

DiF i = 0 , DiV
i = 0 , Djt

ij = 0 , ti i = 0, which leaves 16− 6 = 10 independent components of

the metric tensor, as required.
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The various sectors of perturbations decouple and evolve indepedently at linear order5, and

each has a separate interpretation assigned to it. The tensor perturbations, as indicated, are

genuine gravitational waves while the vector perturbations describe vorticity, or rotational, types

of perturbations. Scalar perturbations ultimately describe perturbations in energy densities and

pressures and lead to impotant growths in inhomogeneities while vector and tensor perturbations,

to linear order, respectively decay away kinematically in an expanding universe and do not affect

inhomogenities. For this reason we focus our emphasis exclusively to scalar perturbations but bear

in mind that to second order the sectors can mix as they interact (this will come out in Chapter

4).

2.2.1 Gauge transformations

As compared to the general covariance of the full (infinite order) theory, which allows for arbi-

trary coordinate transformations, within the framework of linear perturbation theory we consider

only linear infinitesimal parts of these coordinate transformations (called gauge transformations

in cosmological perturbation theory). The individual perturbations of the metric or stress-energy

components will change in some well-defined way under such gauge transformations. Indeed, one

can write a general ε-dependent coordinate transformation by

x̃α = x̃α(x, ε), (2.28)

and define an associated linearized coordinate transformation by

ζa = lim
ε→0

∂x̃c(x, ε)

∂ε

∂Xa(x̃(x, ε), ε)

∂x̃c
, (2.29)

where Xa(x̃(x, ε), ε) = xa, ∀ε. Since the metric gab is a tensor it will in general transform by

gab(x, ε) =
∂x̃c

∂xa
∂x̃d

∂xb
g̃cd(x̃(x, ε), ε), (2.30)

one can show that under a linear coordinate transformation the linear metric fluctuations δgab

suffer the change

lim
ε→0

∂gab(x, ε)

∂ε
≡ δgab = δg̃ab + £ζ(gab(ε = 0)) ≡ g̃ab + £ζ ḡab, (2.31)

where £ζ is the usual Lie derivative along the vector ζa. To linear order it is fairly clear that

transformation (2.28) cannot affect the tensor sector, while the vector and scalar sectors will in

general be affected. The scalar or vector nature of the perturbations is in turn only preserved

by scalar or vector gauge transformations, defined by analogy to the perturbations themselves.

There will in general exist (an infinite number) of combinations of scalar perturbations which are

invariant, to first order, under this restricted class of coordinate transformations [13]. Again, in

what follows of this introduction we will only consider the scalar fluctuations.

5This is nontrivial to prove. Scalar-vector and tensor-scalar decoupling is equivalent to a condition on the
background curvature. Spatial isotropy is powerful enough to satisfy these curvature constraints.
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In standard cosmological perturbation theory one usually makes a particular choice of ζa to sim-

plify the interpretation and fix the grauge freedom of the scalar fluctuations, called the longitudinal

gauge [4]:

ζ0 = B − aĖ, (2.32)

ζi = −∂iE, (2.33)

which effectively sets the potentials B,E of the metric fluctuations B,i, E|ij to zero. This choice

leaves no additional residual coordinate freedoms for the remaining scalar perturbations, and it is

in this sense equivalent to using the so-called gauge invariant approach discussed in [13]. I will call

such gauge transformations exhaustive. There are an infinite number of such choices available.

2.2.2 Equations of motion

The field equations (2.8) can be derived from an action principle. The action is defined by integra-

tion of the Lagrangian density over a chart of the four dimensional spacetime, which in the case of

pure gravity (i.e. GR) is well-known as the Einstein-Hilbert action

S = − 1

2κ

∫

R
√

|g|d4x (2.34)

Applying Hamilton’s principle, δS = 0, in the usual way to this action leads directly to equations

(2.8) where Tab = 0. In this thesis we will consider perfect irrotational fluids, which we will later

show can be represented by minimally coupled scalar fields (taken to be velocity potentials for

the fluid) with some potential V (φ). One can quickly see this equivalence6 by seeing that the

stress-energy

Tab = ∇̄aφ∇̄bφ−
(

1

2
g`mφ,`φ,m + V (φ)

)

gab (2.35)

can be written in the form of the perfect fluid stress energy given by equation (2.20) provided the

identification

ua =
∂aφ

√
−φ,aφ,a

(2.36)

holds. Just as the metric was perturbed, so too is the scalar field φ perturbed as

φ = φ̄+ εΦ + ε2F + . . . , (2.37)

and indeed the metric and matter fluctuations interact with each other through the perturbed field

equations.

6One should note that a subtlety with this equivalence (which is worth further investigation) lies in requiring the
scalar field satisfy uaua = −1. This is a strong restriction on the scalar field (velocity potential) gradients which, for
example, will lead to continuously self-similar critical solutions found for fluid collapse. This should be contrasted
with the discrete self-similarity of critical solutions originally found by Choptuik in Phys. Rev. Lett. 70, 9 (1993),
which assume no restriction on the gradients.
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To obtain the linearized equations of motion in vacuum one must expand the right hand side

of equation (2.34) to second order, take the first variation and apply Hamilton’s principle, and

similarly for the sum of gravitational and matter actions to get the complete equations. This

procedure is straightforward but comprised entirely of cumbersome algebraic steps (see [4] for the

full details). After some manipulations7, the combined second order action for the metric and

matter fluctuations is (see [14] for the original calculation)

(2)S =
1

2κ

∫

a(η)2
√

|γ̄|
[

−6ψ′2 − 12HAψ′ + 2(∆̄ψ′)(2A− ψ)− 2(H′ + 2H2)A2 (2.38)

+κ
(

Φ′2 + Φ∆̄Φ− a(η)2V,φφΦ2
)

+ 2κ(3φ̄′ψ′Φ− φ̄′Φ′A− a(η)2AΦV,φ)

+K
[
−6ψ2 + 2A2 + 12ψA+ 2(B −E ′)∆̄(B −E′)

]
+ 4∆̄(B −E′)(

κφ̄′Φ

2
−HA− ψ′)

]

d4x,

where K is the scalar curvature parameter from equation (2.23), the primes indicate differentiation

with respect to conformal time η, and ∆̄ is the spatial laplacian D̄aD̄a for the spatial hypersurfaces.

Conformal time η is defined via the relation dt = a(η)dη and I will interchange between comoving

and conformal time often in what follows, primarily because it facilitates checking results with other

work, which is mainly done in conformal time. In the above, γij is the metric of the background

spacetime at η = constant, and |γ| is its determinant.

The background equations of motion, in conformal time, are

H2 +K −H′ =
(φ̄′)

2
κ

2
(2.39)

2H′ +K +H2 =
κ

2
(2a2V − (φ̄′)

2
) (2.40)

∂ηφ̄
′ + 2Hφ̄′ + a2V,φ = 0, (2.41)

where Equation (2.41) is the only nontrivial component of ∇̄bT̄ ab = 0. Varying the right hand

side of (2.38) with respect to the various perturbations and setting it equal to zero will give the

linearized equations of motion for scalar fluctuations. Instead of doing this directly we will proceed

to cast the action into first order (Hamiltonian) form in order to get a better view of the role

of the constraints and how they generate gauge-transformations. In the following development

we assume a decomposition of spacetime very similar to the one given to define the background

spacetime around equation (2.6).

Indeed, one may define the canonical variables

πψ ≡ ∂L
∂ψ′ =

2a2
√

|γ̄|
κ

(

−3(ψ′ +HA) + ∆̄(E′ −B) +
3κφ̄′Φ

2

)

(2.42)

πΦ = a2
√

|γ̄|(Φ′ − φ̄′A) (2.43)

πE =
2a2
√

|γ̄|
κ

∆̄ (K(E′ −B) + ψ′ +HA) , (2.44)

7A phrase of some endearment to the author.
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where the Lagrangian density L is the integrand of (2.38) times 2κ. The conjugate momenta for

the scalar lapse and shift perturbations, A and B respectively, are

πA = 0 (2.45)

πB = 0, (2.46)

and are referred to as the primary constraints of the theory. They signify, since e.g. Ȧ cannot

be inverted in terms of πA, that A, B are in some sense not dynamical because they obey the

kinematic property of not having kinetic terms in the action. Re-expressed in terms of these

conjugate variables, one may show after a lengthy calculation that

(2)S =

∫ (

πψψ
′ + πEE

′ + πΦΦ′ − (2)H
)

d4x

=

∫ (

πψψ
′ + πEE

′ + πΦΦ′ −
[

J(η)

(

πE(2πψ +
3πE
∆̄

) + 2(∆̄ + 3K)
πΦ

2

κ
−Kπψ2

)

(2.47)

+
a(η)2

√

|γ̄|
κ

[

(∆̄ + 3K)ψ2 − κ

2
((∆̄ + 3K)−H2 −H′ +

φ̄′′′

φ̄′′
)Φ2

]

+
κφ̄′

2
πψΦ +ACA +BCB

])

d4x,

where

CA = −Hπψ + φ′BπΦ +
2a2
√

|γ|
κ

(

−(−`(`+ 2) + 3K)ψ +
κ

2
(Hφ′B − φ′′B)Φ

)

, (2.48)

CB = πE , (2.49)

J(η) ≡ κ

4a2
√

|γ̄|(∆̄ + 3K)
(2.50)

If one now varies the right hand side of equation (2.47) with respect to the canonical variables and

applies Hamilton’s principle, the equations of motion are given in first order form. In particular,

if we vary with respect to A and B, the scalar lapse and the shift perturbations, the relations

CA = 0, CB = 0 result. In Dirac’s language of constrained Hamiltonian theory [15], they are known

as the secondary constraints and can be thought of as equivalent to the demand that the primary

constraints are preserved from slice Σt to Σt+t′ . Equation (2.48) is the linearized version of the

so-called Hamiltonian constraint of GR, the left hand side of which is given by equation (2.15).

Similarly, (2.49) is the (scalar) linearized version of the momentum constraints of GR. They will

simply be referred to as the ’constraints’ in what follows, unless otherwise noted.

If one demands that the Hamiltonian and momentum constraints are preserved from Σt to Σt+t′ ,

both in the full theory and in linearized perturbation theory, no new constraints arise. In fact, again

in the language of Dirac [15], the linearized Hamiltonian and momentum constraints are both said

to be of first class in the sense that they directly generate the linearized gauge transformations8

under which the canonical variables can change. In order to show how they do this and then define

the gauge-fixed Hamilton equations for the cosmological perturbations, we will require additional

structure of the phase space spanned by (A,B, ψ,E,Φ;πA, πB , πψ , πE , πΦ) ≡ (qi; pi) which allows

8In fact, unlike in the full theory, they form a Lie algebra.
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some notion of evolution.

This additional structure will partially come from the Hamiltonian function, H = H(qi; pi),

which defines dynamical evolution on our five dimensional phase space via the Hamilton equations

dqi
dt

=
∂H

∂pi
(2.51)

dpi
dt

= −∂H
∂qi

(2.52)

We can express the Hamilton equations in a more succinct form by writing z = (qi; pi) and

introducing the 10 × 10 anti-symmetric matrix Ωµν , with Ωµν = 1 when ν = µ + 5 and Ωµν = 0

when |µ− ν| 6= 5. Then, we obtain, for µ = 1..., 10,

dzµ

dt
=

10∑

ν=1

Ωµν
∂H

∂yν
(2.53)

The matrix Ωµν is commonly referred to as the inverse symplectic form on the phase space spanned

by zµ. The inverse symplectic form gives rise to a product structure for functions of the canonical

phase space variables zµ called the Poisson bracket, which is defined by

{α, β} = Ωµν∇µα∇νβ

=
∑

i

(
∂α

∂qi

∂β

∂pi
− ∂β

∂qi

∂α

∂pi

)

(2.54)

where α and β are arbitrary functions of the (qi; pi).

With the Hamiltonian and the Poisson bracket, we now have enough structure on the phase

space to discuss evolution and gauge transformations. Using the bracket, the total time derivative

of a dynamical variable F (z) is simply

Ḟ = {F,Htotal}+
∂F

∂t
, (2.55)

which allows the standard Hamiltonian equations of motion to be compactly expressed as

q̇i = {qi, H} = ∂piH, (2.56)

ṗi = {pi, H} = −∂qiH. (2.57)

It is crucial to note the appearance of the partial derivative term in equation (2.55) since it makes

contributions whenever there is an explicit time dependece in a canonical variable. The canonical

variables will change under the general (scalar) transformation

η → η + T (η, ~x) (2.58)

xi → xi + ∂iL, (2.59)
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which can be thought of as generated by an infinitesimal vector field ζa = (T, ∂iL), as in equation

(2.29). The Poisson brackets allow us to see how the constraints force the canonical variables to

change in a very specific manner when transformations (2.58) and (2.59) are performed. Indeed,

one may show that the infinitesimal change in in some canonical variable zµ is

δζ (zµ) = T{zµ, CA}+ L{zµ, CB}, (2.60)

which, when applied to the cosmological perturbations, results in e.g.:

δζψ = T{ψ, CA}+ L{ψ, CB} = T (−H) + 0 = −HT (2.61)

δζπψ =
2a(η)2

√

|γ̄|
κ

(∆̄ + 3K)T (2.62)

δζΦ = T φ̄′ (2.63)

δζπΦ = a(η)2
√

|γ̄|(Hφ̄′ − φ̄′′)T (2.64)

δζE = L (2.65)

δζπE = 0 (2.66)

Using the above transformations we can deliberately select T and L, i.e. make a gauge choice, such

that particular combinations of these fluctuations are zero. One popular choice was already de-

scribed in equations (2.32) and (2.33), known as the longitudinal gauge. We adopt this longitudinal

gauge by choosing a particular T and L such that

η → η + (B(η, yi)−E′(η, yi)), (2.67)

xi → xi −DiE(η, yi), (2.68)

which effectively sets B = 0 = E. We then solve the constraints, (2.48) and (2.49) set to zero, in

the longitudinal gauge for a given set of fluctuations in terms of the remaining set. Solving for πΦ

and πψ , it can be easily shown that the Hamiltonian action implies that

πE = −∆

3
πψ ⇒ A = ψ, (2.69)

and we can finally write the reduced Hamiltonian for the fluctuations. For the case of K = 0, i.e.

a spatially flat FRW background,

(2)H =

∫

(πνν
′ − L̃)d3x =

1

2

∫

(πν
2 + γijν,iν,j −

z′′

z
ν2)
√

|γ̄|d3x, (2.70)

where z ≡ aφ̄′

H , ν ≡ a(η)(Φ + φ̄′

Hψ), and we have discarded the boundary terms which naturally

occur at spatial infinity. These results agree with equations (10.71)-(10.73) of [4], and the key

feature to note is that the reduced Hamiltonian is of the form a time-dependent simple harmonic

oscillator. It is remarkable that the second order action (2.47) can be cast in this form and the

ease with which one makes the transition to treating quantum perturbations is directly related to
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this simplicity.

To summarize, we have obtained the reduced Hamiltonian action for the inhomogeneous cosmo-

logical fluctuations in the longitudinal gauge-fixing. It has the form of a simple harmonic oscillator

with time dependent frequency z′′

z that depends explicitly on the background scale factor a(η)

and matter φ̄(η). I note in passing that there is a subtlety with obtaining the reduced action for

the spatially homogeneous fluctuations about flat FRW [16] that is worth mentioning. Namely,

if one simply takes the action (2.47) and performs the limit ∆̄F (η, ~x; qi, pi) → 0 and furthermore

sets K = 0, where F is any of canonical variables, then the reduced Lagrangian action is formally

divergent. The proper procedure to find the reduced action is best illustrated by the following

example, which involves three primary steps.

• start with a homogeneously perturbed metric and compute the only nontrivial constraint for

this case (the Hamiltonian constraint);

• gauge-fix the time reparametrization freedom T in an exhaustive way, for example setting

the scalar field perturbation Φ = 0.

• solve the gauge-fixed constraint for the matter variables and only then substitute the results

into the action.

In this example, the homogeneous fluctuations in a flat FRW background are described by the

reduced Hamiltonian action

(2)S =

∫
(

πψψ
′ − πψ2

(

κV (φ)

6(φ̄′)
2

))

d4x. (2.71)

It is important to note that the homogeneous modes of scalar fluctuations in flat FRW are dynamical

and real, they cannot be set to zero via homogeneous gauge transformations. However typically

it is best to check on a case-by-case basis as, for example, it is equally true that the ` = 1 scalar

perturbations of a K = +1 FRW spacetime can be set to zero by a gauge transformation9.

2.3 Linearization stability

Beginning in the 1970’s with the work of Fischer, Marsden, Moncrief, D’Eath, and Arms (see [5], [6],

[7], [8], [9], [10] ) it was realized that there were situations where the linearized Einstein equations

would have spurious solutions. These solutions do not correspond to linearized approximations of

the desired nonlinear solution of the field equations. The existence of such spurious solutions to

the linearized field equations of a given theory is referred to as its ‘linearization instability‘. This

unfortunate terminology does not refer to any dynamical instability, it only refers to the possible

existence of spurious solutions to the linearized equations.

The theory of linearization instabilities, as cast in the modern form by Moncrief et al in [5]

and [6], also provided a second order condition on the linearized perturbations which is necessary

(and presumably sufficient, though not proven so far) to exclude such spurious solutions. In this

9Here, ` is defined by ∆F = −`(` + 2)F on a closed Σt slice of K = +1 FRW.
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section we will briefly review the basics of linearization instabilities via a Hamiltonian formulation

for gravity, and add in some small new results along the way. The purpose of this section is

to motivate and set the notation for a calculation that demonstrates that the requirement of

linearization stability actually leads to a physical instability in a specific model called Einstein

static.

Before jumping straight into formalism, however, it is perhaps useful to take a basic look at

what a linearization instability is. Consider the equation x2 + y2 = 0 and suppose we do not know

its general (real) solutions. We decide to linearize it about the clear background solution x̄ = ȳ = 0,

and thus attempt to solve the simpler equation 2(x̄δx+ ȳδy) = 0. Given this background solution

it is clear that the perturbations δx and δy can be any real number, even though we know from

the general solution (x = y = 0) they can only be δx = δy = 0. Therefore the equation x2 + y2 = 0

is said to be linearization unstable around x̄ = 0 = ȳ.

2.3.1 En route to linearization stability: Hamiltonian formulation

In order to discuss linearization stability it is essential to consider the linearized field equations as

a set of constrained evolution equations. It is sufficient to examine only the linearized constraint

equations for a linearization stability10 analysis. As in Section 2.1, the gravitational field may

be characterized in terms of the evolution of a spacelike surface with respect to a given foliation

of spacetime into such surfaces. In Section 2.2.2 we sketched how to pass from the Lagrangian

formulation to the constrained Hamiltonian formalism in perturbation theory. A similar procedure

holds for the exact theory of GR, which we now outline in more detail in order to more properly

setup the following, more general, linearized analysis of the constraints.

As we did previously, we choose a time function t which labels the various hypserfurfaces Σt.

However, we now also define a ‘time flow‘ vector field ta satisfying the normalization condition

ta∇at = 1. Using a metric gαβ we can decompose ta into normal and tangential parts with respect

to the hypersurfaces Σt. In this way we define the lapse and shift functions respectively

N ≡ −gabtanb (2.72)

N i ≡ habt
b, (2.73)

where na is the unit normal to Σt (or, the normalized vector ua for the isotropic observer of

Section 2.1) and hab(t) is the induced spatial metric on Σt defined by equation (2.6). Physically,

after the spacetime metric is completely known, N measures the flow of proper time τ with respect

to coordinate time t for an observer moving normally to Σt, while Na measures the tangential

projection of ta onto Σt. In fact it is easy to see that the normal na can be expressed in terms of

the lapse and shift functions via

na =
1

N
(ta −Na), (2.74)

10Indeed, the standard techniques of linearization instability theory are only applicable to elliptic equations.
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which allows the inverse spacetime metric to be written as

gab = hab − nanb = hab − 1

N2
(ta −Na)(tb −N b) (2.75)

The form of the above inverse metric suggests that a good choice of variables will be the spatial

metric hab, the lapse N and shift Na and it is clear that the information contained in the set

(hab, N,Na) is the same as that contained in the inverse metric gab. Thus the former set seems

like a good choice of field variables for any decomposed formulation of field equations, as suggested

initially in [17]. Along the same lines one can show that the relation

√

−|g| = N
√

|h|, (2.76)

which when combined with the rest of the results above allows one to re-express the gravitational

action in terms of the new ‘ADM‘ variables to obtain a Hamiltonian functional for general relativity.

One should note that since the gravitational Lagrangian density defined in equation (2.34), re-

expressed in these ADM variables, does not contain any time derivatives of N orN a their conjugate

momenta vanish in precisely the same way as in perturbation theory (cf. equations (2.45) and

(2.46)), forming the primary constraints of GR. This is itself implies that we should not view N

and Na as dynamical variables11.

Since we have already effectively expressed the field equations in a projected form in the devel-

opment around the Gauss-Codazzi equations (2.13) and (2.14), it only remains to define a conjugate

momentum to the spatial metric hab in order to achieve a Hamiltonian formulation. We define this

momentum-density12 on the hypersurface Σt via

πab ≡
√

|h|(Kab − habK), (2.77)

where K ≡ Ka
a and Kab was defined below equation (2.14), which we slightly modify to Kab ≡

1
2£nhab.

Finally, using all of the above with the results following from equations (2.13) and (2.14), we

can write the Hamiltonian and momentum constraints of the exact theory of GR as

H⊥ =
√

|h|
(

Gabcdπ
abπcd − (3)R

)

− 2κρ = 0, (2.78)

Hi = −2Djπ
ij − κJ i = 0, (2.79)

respectively13 , where

Gabcd ≡ 1

2|h| (hadhbc + hachbd − habhcd) , (2.80)

ρ ≡
√

|h|Tαβnαnβ , (2.81)

J i ≡ −
√

|h|hibTbcnc, (2.82)

11In this sense it is acceptable to reduce one’s configuration space to only Riemannian metrics hab on Σt.
12A density is any quantity which is weighted by a factor of a spatial or full space-time volume element.
13The constraints are actually more usefully regarded as weakly equal to zero [15].
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and where ρ and J i are the matter enegy density and momentum flux density across Σt respectively.

For the particular case of a minimally coupled scalar field, whose stress energy is given by equation

(2.35), one can easily show that

Lφ = −1

2

√

−|g|
[
gabφ,aφ a + 2V (φ)

]

= −1

2
N
√

|h|
([

− 1

N2

]

φ̇2 + 2

[
N i

N2

]

φ̇φ,i + 2V (φ) + hijφ,iφ,j

)

, (2.83)

along with

ρ =
πφ

2

2
√

|h|
+
√

|h|
(

V (φ) +
1

2
hijφ,iφ,j

)

(2.84)

J i = πφ∂
iφ, (2.85)

where

πφ ≡ ∂Lφ
∂φ̇

= −1

2
N
√

|h|
[

2φ̇

[

− 1

N2

]

+ 2

[
N i

N2

]

φ,i

]

. (2.86)

These results allow us to express the Hamiltonian density of the combined gravity-scalar field

system using their Lagrangians as defined above. It is

H = πabḣab + πφφ̇−LG −Lφ

= NH⊥ +N iHi +N

[

πφ
2

2
√

|h|
+ V (φ)

√

|h|
]

+N iπφφ,i +
N
√

|h|
2

[
hijφ,iφ,j

]
(2.87)

and we again emphasize that H is a density of weight 1, and not the total Hamiltonian. An

easy comparison between equation (2.87) and equations (2.84)-(2.85), (2.78)-(2.79) reveals that

the Hamiltonian density is simply a linear combination of the total Hamiltonian and momentum

constraints with the lapse and shift functions as coefficients. Therefore, perturbations of the total

Hamiltonian density automatically correspond to perturbations of the constraints. We use this fact

in studying the linearized and higher order perturbations of the constraints in the following section

and chapters.

2.3.1.1 Hamilton’s equations for gravity

To obtain the total Hamiltonian H for the gravity-scalar field system, we integrate the density H
given in equation (2.87) over Σt. This is

H =

∫

Σt

NαHαd3x, (2.88)

where we define the shorthand Nα = (N,Na) and Hα = (H⊥,Hi). Because the Hamiltonian is

defined as the integral over a density, it is a coordinate invariant on Σt. It is important to note

that for the case of Σt topologically open, H will equal certain boundary terms [18] essentially
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because the Einstein-Hilbert Lagrangian denisty defined by equation (2.34) also includes a surface

term. We will not deal with these terms in this thesis, for reasons explained a little later.

In order to obtain the equations of motion from H we vary the action to obtain

δH =

∫

Σt

N̄αδHα + δNαH̄αd3x (2.89)

=

∫

Σt

N̄αδHαd3x =

∫

Σt

N̄α

(
δHα
δua

δua

)

d3x, (2.90)

using the background constraints (denoted by overbars, as all background quantities are in this

thesis), where ua denotes the phase space variables (field configurations) (hab, π
ab, φ, πφ). Similarly,

δua denotes the first variation of the phase space variables.

The variations of the ua, H will be defined as follows, following Wald in [3]. Suppose H [ua] is

a functional of ua, or in other words a map from field configurations into numbers. Let u
(λ)
a be a

smooth 1-parameter family of field configurations, starting from u
(0)
a , which satisfy some boundary

conditions. Denote δua =
du(λ)
a

dλ

∣
∣
∣
λ=0

, and we suppose that δH
δλ

∣
∣
λ=0

is well-defined, i.e. exists, for

such families of u
(λ)
a . In this way we can also define a smooth 1-parameter family of connections

associated with the family of 3-metrics hab(λ), which is essential in varying the curvature terms in

the constraints. Indeed, let λDa denote the covariant derivative operator associated with hab(λ)

and 0Da denote the covariant derivative operator associated with the background metric h̄ab. The

difference between λDa and 0Da ≡ D̄a is determined by the tensor field Cabc(λ) given by

Cabc(λ) =
1

2
ha`(λ)

[
D̄bhc`(λ) + D̄chb`(λ)− D̄`hbc(λ)

]
, (2.91)

where Cabc(λ = 0) ≡ C̄abc = 0 automatically by metric compatibility. To find the analgous

difference in the Ricci curvatures associated with the two connections, substitute C for usual

connection Γ in the definitions of the Riemann tensor14 and contract to form the Ricci tensor. The

result is

Rab(λ) = R̄ab + 2Ccb[aC
`
`]c − 2∇̄[aC

c
c]b, (2.92)

where square (curly) brackets henceforth indicate antisymmetrization (symmetrization) of the in-

dices they contain.

Finally, varying the various terms in the integrand we start with the gravitational Hamiltonian

constraint terms

δH⊥
δua

=
δ

δua

[√

|g|Gabcdπabπcd − (3)R
]

(2.93)

14Which I take to be [D̄a, D̄b]A
c ≡ (3)R̄c

`abA
`.
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and find, after some straightforward manipulations, that

δ
[√

|g|Gabcdπabπcd
]

= − 1

4
√

|h̄|
δh
(
2π̄`mπ̄`m − π̄2

)
+

1

2|h̄|
[
δhadh̄bc + h̄adδhbc + δhach̄bd + δhbdh̄ac

−δhabh̄cd − δhcdh̄ab
]
π̄abπ̄cd + 2

√

|h̄|Ḡabcdπ̄cdδπab (2.94)

−δ
[√

|g|(3)R
]

=

√

|h̄|
(

(3)Ḡabδhab −
√

|h̄|(D̄mD̄a − h̄ma∆̄)δhma

)

, (2.95)

where δh ≡ h̄abδhab and (3)Ḡab ≡ (3)R̄ab − 1
2 h̄ab

(3)R̄. Similarly, the variation of the gravitational

parts of the momentum constraints go as

δHi
δhab

δhab = 2(δCijcπ̄
cj + δCjjcπ̄

ij) (2.96)

δHi
δπab

δπab = 2D̄jδπ
ij , (2.97)

where we define δCijc using the definition given in equation (2.91). It is important to note that

the inverse first order variation obeys δhab = −h̄a`h̄bmδh`m because δ(δab ) = 0, where δab is the

Kronecker delta.

Noting the interesting fact that (again discarding surface terms)

∫

Σt

δHi
δhab

d3x = 2

∫

Σt

(−1

2
δhjch̄

im(−D̄mπ̄
cj))d3x, (2.98)

which implies that, for some spatial vector field X i,

∫

Σt

Xi
δHi
δhab

d3x =

∫

Σt

δhjc£X π̄
jcd3x, (2.99)

we may finally write the total gravitational variation of the total gravitational Hamiltonian as

δGH =

∫

Σt

Xα
δHα
δua

δuad
3x (2.100)

and pick off the pure gravitational Hamiltonian equations from

δHG

δhab
= N

[

(2π̄abπ̄ab − π̄2)

(

−h̄ab
4
√

|h̄|

)

+
1

√

|h̄|
(2π̄acπ̄

cb − π̄π̄ab) +

√

|h̄|((3)Ḡab + L̂ab)

]

+ £ ~N π̄
ab,

where L̂ab ≡ −(D̄mD̄a − h̄ma∆̄), and

δHG

δπab
=

N
√

|h̄|
(2π̄ab − π̄h̄ab)− 2£ ~N h̄ab (2.101)
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Following the same procedure for the matter terms using equations (2.83)-(2.86) , we obtain

δHφ = δ

∫
{

N

[

πφ
2

2
√

|h|
+ V (φ)

√

|h|
]

+N iπφφ,i +
N
√

|h|
2

[
hijφ,iφ,j

]

}

d3x

=

∫
{[

N̄
π̄φ
√

|h̄|
+ N̄ iφ̄,i

]

δπφ +

[

N̄
√

|h̄|V,φ − h̄ij π̄φL ~N h̄ij − N̄
√

|h̄|
2

∆̄φ̄

]

δφ (2.102)

+N̄

[

−
π̄2
φ

4
√

|h̄|
+

√

|h̄|
4

h̄ij φ̄,iφ̄,j +
1

2
V (φ̄)

√

|h̄|
]

h̄abδhab − N̄
√

|h̄|
2

φ̄,iφ̄,jδhij

}

d3x,

or in other words

δρ = N

[(

−
π̄2
φ

4
√

|h̄|
+

√

|h̄|
2

(
1

2
h̄ij φ̄,iφ̄,j + V (φ))

)

δh−
√

|h̄|
2

φ̄,iφ̄,jδhij

+

√

|h̄|(V (φ),φ̄ −
∆̄φ̄

2
)δφ+

π̄φ
√

|h̄|
δπφ

]

, (2.103)

δJ i = −ḡij π̄φ£ ~N ḡijδφ− φ̄δπφḡij£ ~N ḡij . (2.104)

Assembling the above results, finally we can form Hamilton’s equations for the total system:

− ˙̄πab =
δH

δhab
=

δHG

δhab
− 2κ

 

h̄
ab
N

 

− π̄2
φ

4
p

|h̄|
+

p

|h̄|
2

(
1

2
h̄

ij
φ̄,iφ̄,j + V (φ))

!

−N

p

|h̄|
2

φ̄
,a
φ̄

,b

!

(2.105)

ḣab =
δH

δπab
=

δHG

δπab
(2.106)

− ˙̄πφ =
δH

δφ
= −2κN̄

q

|h̄|V,φ + κh̄
ij
π̄φL ~N h̄ij + 2κN̄

p

|h̄|
2

∆̄φ̄ (2.107)

˙̄φ =
δH

δπφ
= −2κN̄

π̄φ
p

|h̄|
− κN̄

i
φ̄,i (2.108)

These dynamical equations give the background equations of motion in Hamiltonian form. I

have already shown how, in an entirely analagous way, the linearized equations of motion for

the fluctuations arise from the second order Hamiltonian action for the case of scalar metric and

matter fluctuations in Section 2.2.2. However the advantage of the above formulation is that the

Hamiltonian action (with no surface terms) is explicitly shown to be a projection of the constraints

Hα along a vector field Nα. Therefore metric and matter fluctuations will induce perturbations in

the Hamiltonian action which will be of the same form, namely that of the perturbed constraints

projected along some vector field. In the next section I will show how this plays a role in the

analysis of linearization instabilities.

2.3.2 Classical Linearization Instability

As mentioned at the introduction of Section 2.3, the foundations of linearization instabilities in

gravity have been worked on considerably in the past 35 years. The original, highly-mathematical,

approach to the subject is due to Fischer and Marsden in [9] and [10]. Their viewpoint was that a
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solution to the field equations is linearization stable iff each of its linear perturbations is tangent

to a smooth curve of exact solutions. In the unstable case they showed there will always be some

spurious solutions to the associated perturbed equations which are not tangent to any curved of

exact solutions.

Their formalism was later changed to among other things better emphasize the physics15, largely

by Moncrief, in [19] and [5]. In this work Moncrief basically reformulated the entire argument in a

number of important ways, primarily by viewing the problem in terms of a Taylor approximation

to the projected Hamiltonian and momentum constraints. A natural outcome of this new point of

view is a straightforward generalization of classical linearization instabilities to the consideration

of quantum linearization instabilities, which will be quite useful for later work discussed in this

thesis. Another advantage to this formulation is its clear emphasis on the role of isometries in

the background spacetime. I will therefore deviate strongly from a historical presentation of this

subject and follow this reformulation here from the beginning. I will leave some of the more formal

arguments and derivations for Appendix ? in order to more immediately focus on issues which lead

to Chapter 3.

With this in mind, consider the Hamiltonian and momentum constraints, equations (2.78) and

(2.79), written in the notation

Φα(ua) ≡ (H⊥,Hi) = 0, (2.109)

where ua are the phase space variables and the indices on α run from 0 to 3. Following the

developments of Section 2.3.1.1, one can imagine projecting the constraints along some general

vector field (4)X , i.e.

P (Φ, (4)X) =

∫

Σt

(4)XαΦαd
3x. (2.110)

It is important to note the absence of surface terms in equation (2.109). I will henceforth explicitly

assume that Σt is topologically closed, i.e. has no boundary, so that no surface terms can ever

arise in what follows. Therefore, the following arguments only apply when either this topological

assumption or some equivalent boundary condition is used to eliminate the spatial surface terms

which will in general be there. Furthermore, for simplicity I will assume a vacuum spacetime (which

is what most other work on the subject also assumes) until the later sections.

Given equation (2.110), the central question now is how one can perturbatively approximate the

projection P in the neighbourhood of some exact solution (h̄ab, π̄
ab; N̄ , N̄a) of the constraints. In

other words, given initial data (h̄ab, π̄
ab; N̄ , N̄a) for a background spacetime, how do we approximate

the (coordinate invariant) projected constraints for the perturbed spacetime? One scheme is, using

15Their results were also strengthened. The initial papers required a maximal slice, K̄a
a = 0, for the background,

and no such requirement need hold in Moncrief’s work.
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the intuition of Section 2.3.1.1, to define perturbations of the projection P via the formulae

δP =

∫

Σt

(4)XαδΦαd
3x (2.111)

δ2P =

∫

Σt

(4)Xαδ2Φαd
3x (2.112)

...

where δnΦ are successive perturbations of the constraints. The key starting point of the lineariza-

tion stability analysis is the result that, given the assumption of Σt closed, δP vanishes iff (4)Xα

is a Killing vector of the background . I.e., the linearized projection of the constraints given

in equation (2.111) is automatically trivial if it is projected along a Killing direction of the full,

four-dimensional, background spacetime16. Therefore, the first nontrivial perturbative approxima-

tion to P will occur at second order, equation (2.112). But, using the intuition developed in Section

2.3.1.1, this is precisely the statement that in order to faithfully approximate the Hamilton equa-

tions for the perturbations at linear order, one must take into account the second order projections

of the constraints along any Killing directions of the background17. For proof of these statements

I refer to Moncrief in [19] and [5], where he first gave these proofs (for the vacuum case only) in

their present form.

Therefore, if the above conditions apply, the problem of solving the linearized constraint equa-

tions becomes equiavelent to solving

δΦα = 0, (2.113)
∫

Σt

(4)Xαδ2Φαd
3x = 0, (2.114)

simultaeneously, where £(4)Xαgab = 0. In fact, now one can perturb a spacetime with Killing vectors

and closed spacelike slices Σt and ask what distinguishes ‘acceptable‘ perturbations and spurious

ones. ‘Acceptable‘ perturbations, genuine linearizations, will simultaneously satisfy (2.113) and

(2.114) whilst spurious solutions will only satisfy equation (2.113). There are as many equations

of the type of (2.114) as there are background Killing vectors, and I will refer to these equations

as linearization stability (LS) conditions to avoid confusion with the initial-value constraints Φ.

It is also important to note that both the LS conditions and the linearized equations must be

satisfied in order for the initial data for the second order fluctuations be well-posed. If one ‘feeds‘

spurious solutions to the second order constraint equations, their second order solutions will not

be integrable.

We now discuss some properties of the LS conditions. We shall show that they are preserved

from slice to slice, i.e. through ’evolution’, and are gauge-invariant.

16By this I mean the Cauchy development of the background, to be truly consistent with the 3 + 1 language.
17If surface terms were present δP would not be zero, but rather equal to a surface term, and in that sense the

projected constraints would simply be identities order by order in perturbation theory and yield no new information.
Identical reasoning reveals that any δ2ua that occur in equation (2.113) are surface terms.
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2.3.2.1 Properties of the LS conditions

As mentioned above, the LS conditions are preserved ( [19], [5] ) from Σt to Σt+t′ . We demonstate

this for the LS conditions involving the momentum constraints to convey the basic point and

flavour of the calculation, which to my knowledge is original (though the same result in the case of

vacuum was known to Moncrief using different lines of reasoning). The analagous calculation for

the Hamiltonian constraint is similar but more tedious and not particularly illuminating.

In section 2.3 it was shown that the momentum constraints are the generators of the spatial

diffeomorphisms. We may them using the standard Poisson bracket defined previously18,

{hk`(x′),
∫

Σt

[
πij£N∗hij

]
d3x} = £N∗hk`(x

′), (2.115)

because of the fundamental commutation relation {hk`(x′), πk`(x)} =
√

|h|δ3(x′−x). Furthermore,

one can show that the momentum-constraint LS conditions, including the scalar matter, are

Cη =

∫

Σt

[

δπij£
N

(η)
∗
δhij + δπφ£N

(η)
∗
δφ
]

d3x (2.116)

for each of the η Killing vectors in the background (denoted by N
(η)
∗ ), where I have defined Cη

to label the LS conditions. In this form it is easy to observe the time independence of the Cη .

Indeed, after a few manipulations using the Hamilton equations (2.105) - (2.108) to get rid of the

time derivatives,

Ċη =

∫

Σt

[

˙δπ
ij
£
N

(η)
∗
δhij + δπij£

N
(η)
∗

˙δhij + δπij£
Ṅ

(η)
∗
δhij + δπ̇φ£N

(η)
∗
δφ+ δπφ£N

(η)
∗
φ̇+ δπφ£Ṅ

(η)
∗
δφ
]

d3x

=

∫

Σt

[

− δ2H

δ(δhij)
£
N

(η)
∗
δhij −

δ2H

δ(δπij)
£
N

(η)
∗
δπij − δ2H

δ(δφ)
£
N

(η)
∗
δφ− δ2H

δ(δπφ)
£
N

(η)
∗
δπφ

]

d3x

+

∫

Σt

δπij£
Ṅ

(η)
∗
δhij + δπφ£Ṅ

(η)
∗
δφd3x

= −
∫

Σt

[

Di

(

N i
∗ δ

2H
∣
∣
(δu)2

)]

d3x =

∫

Σt

[

−£
N

(η)
∗

δ2H
∣
∣
(δu)2

]

d3x

= −
∮

∂Σt

[

ni

(

N i
∗ δ

2H
∣
∣
(δu)2

)]

d3x = 0 (2.117)

where we have used a spatial by-parts integration to shift over the Lie derivatives and the primary

constraints πN∗ = 0, πN∗
i

= 0 to nullify the time derivatives of the lapse and shift. It is thus clear

that if the constraints are obeyed on one slice they are obeyed on all, as deduced by [19], [5] for

the vacuum case.

Turning to the gauge invariance of the LS conditions, consider a small shift of coordinates along

the (spatial) vector field ~ζ such that δg̃ij → δgij + £~ζδgij , δπ̃
ij → δπij +£~ζδπ

ij , δφ̃→ δφ+£~ζδφ,

δπ̃φ → δπφ+£~ζδπφ and Ñ i → ~N+£~ζ
~N . Then the induced first-order difference in the constraints

18Recall that, from equation (2.54), {F,G} ≡ δF
δgij

δG
δπij

− δF
δπij

δG
δgij

for any two functions F and G of the gravita-

tional ua.
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will be

C − C̃ =

∫

Σt

[

(£~ζδπ
ij)£ ~N∗

δgij + δπij£ ~N∗
£~ζδgij + (£~ζδπ

ij)£ ~N∗
£~ζδgij + δπij£(£~ζ

~Ni)δgij

]

+

∫

Σt

[

(£~ζδπφ)£ ~N∗
δφ+ δπφ£ ~N∗

£~ζδφ+ (£~ζδπφ)£ ~N∗
£~ζδφ+ δπφ£(£~ζ

~Ni)
δφ
]

d3x

=

∫

Σt

[

δπij£[ ~N∗,~ζ]
δgij + δπij£[~ζ, ~N∗]δgij

]

d3x+

∫

Σt

[

δπφ£[ ~N∗,~ζ]
δφ+ δπφ£[~ζ, ~N∗]δφ

]

d3x = 0(2.118)

by definition of the Lie bracket19 and spatial compactness of Σt. I note that all the surface terms

in the above manipulations are zero because they are of the form
∫

Σt

[

niζ
iδπab£ ~N∗

δgab

]

d2σ, and

niζ
i = 0. Therefore the constraints are invariant under an arbitrary (small) coordinate deformation

on the slice Σt.

2.4 Conclusion

In this Chapter I have given a brief introduction to linearized cosmological perturbation theory,

starting with a slightly more rigorous definition of the spatially isotropic FRW background space-

time. Moving freely from the Lagrangian to the Hamiltonian formalism, and treating the matter

as a scalar field, it was shown that the equations of motion of the scalar perturbations are that

of a simple harmonic oscillator with time-dependent frequency. Then, the issue of linearization

stability was introduced and discussed by introducing the so-called ADM formalism of gravity.

Necessary conditions to ensure linearization stability were discussed, and some original arguments

were given to show that the (nonvacuum version of these) LS conditions have preservation and

gauge-invariance properties.,

Thus it is now finally possible to discuss a practical application where the LS conditions become

physically important. The next chapter goes through a calculation where the LS conditions make

a crucial difference in the linearized analysis of perturbations about a particular model called the

Einstein static spacetime.

19Suppose X and Y are smooth vector fields in a coordiante basis ∂i: X = Xi∂i, Y = Y i∂i. Then the coordiante

Lie bracket is defined by [X, Y ] = Xi ∂Y j

∂xi
∂

∂xj
− Y i ∂Xj

∂xi
∂

∂xj
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CHAPTER 3

LINEARIZATION INSTABILITIES IN

EINSTEIN STATIC

3.1 Introduction

Recently there has been renewed interest in a class of cosmological models known as the Einstein

static models. This infamous class of models was designed by Einstein to predict a static spacetime

(i.e. a(t) = a0, a0 ∈ < in the FRW language) since he held the view that the universe was obviously

static. It was soon abandoned by Einstein after Edwin Hubble discovered the law that bears his

name, which shows that the universe is actually expanding. It is also the class of models which

introduced the famous cosmological constant Λ mentioned in equation (2.8). Another notable

feature of these models was that spacetime fluctuations in them are unstable to first order in

perturbation theory, as first found by Eddington in 1931 [20]. An initial perturbation of an Einstein

static model, which uses a cosmological constant to ‘balance‘ the gravity of a perfect fluid in much

the same way a pencil balances on edge, either grows into a catastrophic collapse or expansion of

the entire spacetime.

However, Barrow et al in [21] re-examined the stability of the Einstein static spacetime against

arbitrary linear fluctuations in the metric and matter and found, surprisingly, that some modes are

stable. More precisely, they found that given a sufficiently large speed of sound in the background,

all non-gauge, spatially inhomogeneous scalar modes were neutrally stable (i.e. the fluctuations

are not damped), and furthermore vector and tensor modes were neutrally stable on all scales

irrespective of the equation of state in the background. The essence of this stability arises from

the spatial compactness of the Einstein static spacetime, i.e. there exists a maximum physical

wavelength in this closed space and furthermore the Jeans length is a significant fraction of this

maximum scale. It turns out that for specific equations of state in the background matter all

physical wavelengths fall below the Jeans wavelength and the inhomogeneous modes are thus stable

for the usual reasons. The spatially homogeneous perturbations, however, are still always unstable.

This suprising non-Newtonian stability for a large class of fluctuations, which was pointed out

earlier in different and more restricted contexts in [22], is one of the key elements of support for the

Emergent Universe models proposed recently by Ellis et al. These models explicitly construct spa-

tially closed, positively curved, cosmologies which do not bounce and in which inflation (triggered

by precisely the famous homogeneous instability of Einstein static) is not preceded by an era of

deceleration. This lies in stark contrast to deSitter and most other models of closed inflation. The

Emergent Universe models have no initial singularity, undergo the usual inflationary period ending

in the usual reheating era, and immediately solve the horizon problem owing to the staticity of the
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initial state. Another key feature of these models is that a finite number of e-foldings of inflation

occurs over an infinite time in the past. Given this, nonlinear effects can be rather important and

in particular nonlinear metric and matter fluctuations will almost certainly modify the stability

properties of this particular model.

In this Chapter I investigate the initial value problem for second order inhomogeneous fluctua-

tions about the Einstein static solution. In particular, I focus on the impact of the LS conditions

on the stability analysis given by Barrow et al. I shall focus entirely on the higher order constraint

associated with the timelike Killing field of the Einstein static initial state. I emphasize that these

remarks are entirely concerned with the initial value problem and thus do not touch on the question

of the time evolution of these fluctuations.

I find, in the case of a general irrotational perfect fluid with cosmological constant, that there

are no nontrivial solutions to both the linearized constraints and the LS conditions when we exclude

the linear homogeneous scalar metric and matter fluctuations. In other words, the leading order

linear metric and matter fluctuations must be trivial if their linear seeds do not include ‘zero mode‘

homogeneous fluctuations. It is well known that these homogeneous modes are unstable, just as

arbitrary perturbations of a dust model in Einstein static model are unstable. This would seem to

suggest that if the universe is in a neighbourhood of the Einstein static solution then it does not

stay there, even if perturbed with the neutrally stable modes found in reference [21]. This is one of

the first instances where the linearization stability issues make a physical difference in the analysis

of metric and matter stability (see also Brill and Deser in [23]).

This chapter is organized as follows. In Section 3.2 I briefly outline the details of the Einstein

static background model. In Section 3.3 I define, using the constraint equations in the standard

ADM decomposition of the Einstein equations defined in Section 2.3, an orthogonal decomposition

(following [23]) of perturbations into transverse and longitudinal parts. In Section 3.4 I formulate

and compute the nonlinear LS conditions, leaving conclusions for Section 3.5. The entire analysis

is quite similar to that in Brill and Deser’s original paper [23], however there are clear differences.

Firstly, Brill and Deser consider the problem with a compactified section of Minkowski spacetime as

the background, whereas I examine a curved Einstein static background which in general introduces

curvature terms. They also do not have to deal with matter terms, as I have emphasized above,

and furthermore the irrotational perfect fluid matter with cosmological constant discussed below is

more general than the minimally coupled scalar fields discussed in Barrow et al’s paper [21]. In this

sense I show that there is a wider class of matter models in which linearization instability occurs

than I need to consider given the claims of [21]. The bulk of the material in this Chapter is drawn

from [1].

3.2 Einstein static spacetime and perfect fluids

Consider a FRW universe in comoving coordinates (t, ~x) with scale factor a(t), with signature (-

1,1,1,1), and with a perfect fluid with energy density ρ and pressure p. The equations of motion
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for the scale factor a(t) are, according to the Einstein equations,

ä

a
= −κ

3
[ρ(1 + 3w)− Λ] , (3.1)

H2 =
κ

3
(ρ+ Λ)− K

a2
, (3.2)

where K ≡ ±1, 0 is the constant curvature of the t = const slices, H ≡ ∂tln(a) is the Hubble

parameter, Λ is a cosmological constant, w ≡ p
ρ , and κ ≡ 8πG in units where c = 1. One can

combine these equations to form Ḣ = −κ2 (ρ(1 + w)) + K
a2 .

As Einstein found some time ago, demanding that the universe be static (ȧ = ä = 0 ) obviously

sets K to be positive (take it to be 1) and leads to constraints relating the initial energy density

and pressure of the fluid to Λ. The equilibrium radius of such a static universe is set by these

constraints to be

a2
0 =

1 + 3w

Λ(1 + w)
, (3.3)

where (1 + w)ρ > 0. In the case of dust it is seen that a2
0 = 1/Λ.

However, consider the general perfect fluid equations. The equations of motion of a perfect

fluid are given by the conservation equations of T µν = (ρ+ p)uµuν + pgµν , or in other words

(ρ+ p);µu
µuν + (ρ+ p)uµ;µuν + (ρ+ p)uµuν;µ + p;ν = 0 (3.4)

Taking the dot product of (3.4) with the timelike1 fluid velocity uν , we get the primary conservation

law

ρ;µu
µ + (ρ+ p)uµ;µ = 0, (3.5)

and multiplying this law by uν and subtracting from equation (3.4) we get

0 = (ρ+ p)uµuν;µ + p;ν + p,µu
µuν

= (
ρ+ p√
N

)(
√
Nu[ν);µ]u

µ, (3.6)

where

N(ρ) = exp

(

2

∫
dp

ρ+ p

)

(3.7)

is a function of ρ assuming that there exists some constitutive equation p = p(ρ). These equations

are trivially satisfied if we assume that the term N
1
2 (ρ)uµ satisfies

N
1
2 (ρ)uµ = φ;µ, (3.8)

where φ is a scalar potential, i.e. a veclocity potential, for the flow. This is an appropriate

1Timelike here means taking normalization uaua = −1.
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generalisation of the irrotational conditions of non-relativistic flow [24]. Finally, multiplying this

equation by itself we have that

N(ρ) = −φ;µφ
;µ (3.9)

which is the equivalent of Bernouli’s equation for non-relativistic irrotational flow. We will concern

ourselves with constitutive equations where p is linearly proportional to ρ.

I wish to treat the case of an arbitrary irrotational perfect fluid in terms of this scalar field φ

that acts as the velocity potential of the fluid (as in [25] ). Following Mukhanov and Garrigas in

[25], one may do this in a clever way by choosing the scalar field to have the action

S =
1

2α

∫

(−φ,λφ,λ)α
√

−|g|d4x, α ∈ < (3.10)

Comparing the stress energy that results from varying the above action with respect to the metric

with that of a perfect fluid, we can easily identify the corresponding energy density and pressure

in terms of φ:

ρ = (α− 1

2
)Nα, (3.11)

p =
Nα

2
. (3.12)

For α = 1 we obtain the stiff (w = 1) perfect fluid, i.e. a minimally coupled scalar field. However,

note that the speed of sound is given by c2s = p/ρ = (2α− 1)−1 and thus causality restricts α ≥ 1.

It turns out that stable (inhomogeneous) scalar fluctuation modes only exist when the background

speed of sound satisfies the bound v2
s ≥ 1

5 ([21], [22]) for no Jeans instability, which translates

into α ≤ 3. I.e. there is no Jeans instability for any physical inhomogeneous modes given these

conditions. Thus we take 1 ≤ α ≤ 3 in what follows. We also note in passing that in order for the

four velocity to be timelike the gradients of the velocity potential φ are restricted to ones such that

their temporal gradient dominates their spatial counterpart. In this model we take the background

φ = ( ρ0
α−1/2 )

1
α t to satisfy equation (3.7) in the background, so the timelike condition will always

be satisfied for the perturbations.

In any case the generalized Einstein static initial conditions (in terms of φ) become

Nαα+ 1

2
= Λ =

α+ 1

ακa2
0

, (3.13)

i.e. a2
0 = (α + 1)/(αΛ) and N = (2Λ/(κ(α + 1)))

1
α . This may be interpreted physically as the

equilibrium condition between the tension of a positive cosmological constant and the tendency for

gravitational collapse of the fluid.
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3.3 Initial-value constraint equations

As shown in Section 2.3, the gravitational field may be characterized in terms a constrained Hamil-

tonian analysis, with constraints

− 1
√

|g|

(

πabπab −
1

2
π2

)

+
√

|g|(3)R = 2κ
√

|g|ρ, (3.14)

(πab) |b = κJa, (3.15)

where (3)R is the Ricci curvature scalar for the three surface (in what follows I will drop the 3

superscript) and π ≡ gabπ
ab. The three-metric will be referred to as gab in this Chapter, and the

associated covariant derivative will be denoted ∇̄a. All background quantities are barred.

At zeroth order, i.e. in the background Einstein static spacetime, there is only one nontrivial

constraint namely

ρ̄ =
3Λ

2κ
, (3.16)

where the background conditions R̄ab = Λḡab, π̄
ab = 0 are taken to hold. At linear order (using

the background equations) the constraint equations are

δR = 2κδρ, (3.17)

∇̄bδπab = κ
√

|ḡ|δJa, (3.18)

and similarly the second order equations are, using the linearized and background equations above,

δ2R =
1

|ḡ|

(

δπabδπab −
1

2
δπ2

)

+ 2κδ2ρ (3.19)

∇̄bδ2πab + 2
[
δCabmδπ

mb + δCbbmδπ
am
]√

|ḡ| = κδ2(Ja
√

|g|), (3.20)

Here 2δCabm ≡ ḡac(∇̄mδgbc+∇̄bδgmc−∇̄cδgbm) is the perturbed connection, as defined in equation

(2.91). One can rewrite equation (3.19), the equation associated with time reparametrization

invariance at second order, using δ2R = 2δgabδRab + ḡabδ2Rab + δ2gabR̄ab to obtain

∆̄δ2g − ∇̄m∇̄bδ2gbm − Λḡabδ
2gab = ∇̄`B` + 2δCcb[aδC

`
`]cḡ

ab + 2δgabδRab

− 1

|ḡ|

(

δπabδπab −
1

2
δπ2

)

− 2κδ2ρ, (3.21)

where by ∇̄`B` I denote a combination of terms that occur in the form of a total derivative. In

obtaining (3.21) I have expanded the second order Ricci scalar in terms of the perturbed connection

defined above and grouped second order terms and products of linear order terms. One can similarly

simplify the momentum constraints (20) but in this paper our main concern will be the second order

timelike, or “Hamiltonian”, constraint.

Typically what one does is to solve the constraints for a given set of fluctuation variables and
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in that way solve for the constrained variables in terms of the free variables. A convenient way to

facilitate this process is through an orthogonal decomposition of the fluctuations in gab and πab

into longitudinal and transverse parts. As pointed out in by Brill and Deser in [23] this procedure

differs crucially for tensors in closed spaces from the usual one in flat space since one can now have

fluctuations in global parameters such as the total volume of the space while still having no local

excitations.

Following the notation of Brill et al one may decompose the metric perturbation into its various

transverse, transverse traceless, and longitudinal parts via

δgab = δg
(TT )
ab +

1

2

(
−∇̄a∇̄b + ∆̄ḡab

)
δg(Tr) + Ãδg ḡab + 2δg

(V )
(a|b), (3.22)

where ∆̄ ≡ ∇̄c∇̄c. The transvserse traceless and longitudinal parts are defined as usual:

ḡabδg
(TT )
ab = 0 = ∇̄aδg(TT )

ab , (3.23)

∇̄aδg(V )a = 0, (3.24)

and here Ãδg ≡ Aδg+ Λ
2 δg

(Tr). The homogeneous fluctuations Ãδg are essentially the global fluctu-

ations (related to the volume fluctuation) unique to perturbations of closed spaces. An analagous

decomposition holds for the momentum fluctuation (the homogeneous modes Ãδπ describe the

‘time rate of change‘ of the volume fluctuation).

Using the above decomposition, note that an identity due to the symmetry of the background

is that the perturbations are all ‘doubly transverse‘. Indeed, recover that

∇̄bδgab = ∆̄δg(V )
a + ḡbm

(

−R̄`bmaδg(V )
`

)
∗
= (∆̄ + Λ)δg(V )

a (3.25)

∇̄a∇̄bδgab = ḡan[∇̄n, ∆̄]δg(V )
a

∗
= 0 (3.26)

Also note that one may write

δ2R = Λḡabδ
2gab + 2δgabδRab + 2ḡabδCcb[aδC

`
`]c − 2∇̄[aδ

2C̃cc]bḡ
ab + ∇̄`B`, (3.27)

where

2δ2C̃abc ≡ ḡam
(
∇̄bδ2gcm + ∇̄cδ2gbm − ∇̄mδ2gbc

)
(3.28)

One may use the decompositions above to eliminate the ‘doubly transverse‘ term and obtain

∆̄δ2g − Λḡabδ
2gab = 2δgabδRab + ∇̄`B` + 2δCcb[aδC

`
`]cḡ

ab

− 1

|ḡ|

(

δπabδπab −
1

2
δπ2

)

− 2κδ2ρ, (3.29)

where δ2ρ are the second order energy density fluctuations. I explicitly insert the above decompo-

sitions into equation (3.28) in the next section.
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In the case of the generalized scalar field φ introduced in section II, the Hamiltonian formulation

is more involved since the canonical momentum conjugate to φ is generally

πφ ≡ ∂L
∂φ̇

=

√

|ḡ|
N (φ̇−N iφ,i)

(

φ̇2

N 2
− 2N iφ̇φ,i

N 2
− φ,iφ,i

)α−1

,

where N and N i are the purely kinematical lapse and shift variables of the ADM formalism. For

general 3 ≥ α ≥ 1 this expression cannot be inverted in closed form to find φ̇ = φ̇(πφ), however for

a spatially homogeneous scalar field it is possible and the resulting Hamiltonian (energy density)

is

H0 =
2α− 1

2α

(

(πφ)
2α

√

|g|

) 1
2α−1

+
Λ

κ
=
√

|g|ρ, (3.30)

where π̄φ =
√

|ḡ| ˙̄φ
2α−1

. I define the fluctuations δπφ and δ2πφ using the formal definition of πφ

given above. For example the first order fluctuation in πφ is formally defined by

δπφ ≡ π̄φ
√

|ḡ|

(

δ

(√

|g|
N

)

+
√

|ḡ|
(

δφ̇
2α− 1

˙̄φ
− 2(α− 1)δN

))

, (3.31)

and similarly for the second order fluctuation (though new cross-terms like δN iδφ,i and δφ,iδφ,i

start to appear). Formally perturbing equations (3.11) and (3.12) with the above definitions of

δπφ, δ
2πφ yields

2κδρ = αΛ
δN

N̄
=

2Λα

2α− 1

[
δπφ
π̄φ
− δg

2

]

, (3.32)

2κδ2ρ = αΛ

[

(α− 1)

(
δN

N̄

)2

+
δ2N

N̄

]

, (3.33)

where the second order term is given explicitly by

δ2N = 2(δ ˙̄φ
2

+ ˙̄φδ2φ̇)− 4 ˙̄φδφ̇δÑ − 2 ˙̄φ2δ2Ñ + 6 ˙̄φ2(δÑ)2 − 2 ˙̄φδÑ iδφ,i − δφ,iδφ,i,

so that, in Hamiltonian form, I finally obtain

2κδ2ρ =
2αΛ

2α− 1




δ2πφ
π̄φ
− δ2

√

|g|
√

|ḡ|
− δφ,iδφ,i

2

(

π̄φ
√

|ḡ|

) 2
1−2α

+
1

(2α− 1)2

(

(2α2 + 8α− 7)(δ ln
√

|g|)2 + (2α2 + 4α− 5)(δ lnπφ)
2

−4(α2 + 3α− 3)(δ ln
√

|g|)(δ lnπφ)
)]

(3.34)

Here δg ≡ ḡabδgab and N̄α = Λ/(κ(2α − 1)) by the zeroth order constraint (3.16). Inserting the

above matter perturbations into equation (3.29) and using the second-order identity ḡabδ2gab +
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ḡabδ
2gab = −2δgabδgab, I arrive at

(∆̄ + Λ
α− 1

2α− 1
)δ2g = Λ

(
2− 3α

2α− 1

)

δgabδgab + 2δgabδRab + 2δCcb[aδC
`
`]cḡ

ab

− 1

|ḡ|

(

δπabδπab −
1

2
δπ2

)

− 2Λα

2α− 1




δ2πφ
π̄φ
− δφ,iδφ,i

2

(

π̄φ
√

|ḡ|

) 2
1−2α

+
1

(2α− 1)2

(

(−2α2 + 10α− 8)(δ ln
√

|g|)2 (3.35)

+(2α2 + 4α− 5)(δ lnπφ)
2 − 4(α2 + 3α− 3)(δ ln

√

|g|)(δ lnπφ)
)]

The various terms in (δπφ) can be reexpressed in terms of the metric fluctuations, using the

linearized Hamiltonian constraint, via

δ lnπφ = − (2α− 1)

2Λα

([

∆̄ + Λ
α− 1

2α− 1

]

δg − ∇̄c∇̄bδgcb
)

≡Mδg, (3.36)

so that the only explicit matter dependence in the second order hamiltonian constraint appears

through the δ2πφ and ḡijδφ,iδφ,j terms.

We are now finally in a position to state the LS conditions and derive their consequences. In

the next section I show to gauge-fix the fluctuations to second order and then compute the timelike

LS condition.

3.4 The LS conditions

3.4.1 Fixing the linear gauge

As is usual in relativistic perturbation theory one must fix the coordinate freedom inherent in the

metric and matter fluctuations. In this particular case I want to remove the homogeneous second

order matter dependence, which enters through the δ2πφ term, in order that equation (3.35) is

of the form Lδ2F = S((δF )2) (where L is an elliptic operator (with only constants in its kernel)

acting on the fluctuations in some quantity F in a closed space). In this form (since the timelike

Killing vector component is trivial) the LS conditions (2.113) simply become
∫
S = 0 where the

integral is over the closed space [23].

Fortunately the Einstein static background crucially simplifies the relevant gauge transformation

laws of the fluctuations not only at linear order, but also at second order. Indeed the term δ2πφ

only depends on the linear gauge fixing essentially because ˙̄πφ = 0 knocks out any ˙̄πφ
(2) term in

the second order gauge transformations. Furthermore, I am only interested in the homogeneous

part of this δ2πφ term so I pick a linear gauge-fixing to eliminate the homogeneous part and leave

only the inhomogeneous part δ2π̃φ to remain.

Consider the linear spacetime coordinate transformation x̂β = xβ + (T, ∂iM + M̃ i), where
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(T,M, M̃ i) satisfy

∆̄
(
(2α− 1)∆̄ + (α− 1)Λ

)
T = −(2α− 1)δπ(Tr) (3.37)

∫

S3

{
2M∆̄δπφ + δ2πφ

}√

|ḡ|d3x = 0 (3.38)

M̃ i = −δgi(V ), ∇̄iM̃ i = 0, (3.39)

and where the spatial dependence of the modes is understood in terms of the eigenfunctions of the

spatial laplacian: ∆̄F = −∑L
L(L+2)
a2
0

F = −∑L
Λα
α+1L(L+ 2)F,L ∈ Z+. In this new coordinate

system δgi(V ) = 0, the homogeneous part of δ2πφ is zero, and δπ(Tr) = 0. Thus

− 1

|ḡ|

(

δπabδπab −
1

2
δπ2

)

− 2Λα

π̄φ(2α− 1)
δ2πφ = − 1

|ḡ|

(

δπabTT δπ
TT
ab −

3

2
(Ãδπ)2

)

− 2Λα

π̄φ(2α− 1)
δ2π̃φ, (3.40)

and therefore the tranformations given by (3.37)-(3.39) completely fix the vector degrees of freedom

at linear order, however we still have the freedom M → M + f(t) in the scalar sector which one

may use to eliminate the homogeneous modes Ãδg by picking a special f(t) (whose form is not

particular illuminating at this stage). Furthermore, the linearized Hamiltonian constraint (3.36) in

this coordinate system implies that ∆̄δπφ cannot be zero everywhere, which means one can always

pick a function M such that equation (3.38) is satisfied.

3.4.2 Gauge-fixed LS conditions

The LS condition associated with (3.35) (an integrability condition on δ2g(Tr)), is effectively the

integral of the right hand side of equation (3.35) set to zero:

0 =

∫

S3

Λ

(
2− 3α

2α− 1

)

δgabδgab + 2δgabδRab + 2δCcb[aδC
`
`]cḡ

ab − 1

|ḡ|

(

δπabδπab −
1

2
δπ2

)

− 2Λα

2α− 1




δ2πφ
π̄φ
− δφ,iδφ,i

2

(

π̄φ
√

|ḡ|

) 2
1−2α

+
1

(2α− 1)2

(

(−2α2 + 10α− 8)(δ ln
√

|g|)2

+(2α2 + 4α− 5)(δ lnπφ)
2 − 4(α2 + 3α− 3)(δ ln

√

|g|)(δ lnπφ)
)]√

|ḡ|d3x

Using by-parts integration and compactness one can show that

2

∫

S3

√

|ḡ|
(

δgabδRab + δCcb[aδC
`
`]cḡ

ab
)

=

∫

S3

δgabδRab
√

|ḡ|,
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which implies, using the linear equations of motion and making the above gauge choice,

∫

S3

1

|ḡ|δπ
ab
TT δπ

TT
ab + δgab

∆̄δgab
2
− Λ

2(2α− 1)
δgabδgab

+

(
2Λα

(2α− 1)3

(

M2(2α2 + 4α− 5)− 2M(α2 + 3α− 3) +
−2α2 + 10α− 8

4

)

− Λ

2

)

(δg)2

−3

(

Ã2
δπ

2

)

V = 0, (3.41)

where V represents the volume of the initial static space and M is defined in equation (3.35).

I have eliminated the terms in δφ,i by using the scalar-sector momentum constraints (which are

∂i( Λ
2κπ̄φ

δπ(Tr)−δφ) = 0 ). The constraint is split into its inhomogeneous (L ≥ 2) and homogeneous

(L = 0) pieces2.

Finally, inserting the decompositions into equation (3.41) and using equation (3.36) to remove

the dependence in (δπφ)
2, I arrive at

0 =

∫

S3

A
√

|ḡ|d3x− 3

(

Ã2
δπ

2

)

V, (3.42)

where

A =
∑

L≥2

[

αΛ3k2

{
α2(2α2 + 4α− 5)

2(α+ 1)4(2α− 1)
k6 − α(6α2 + 21α− 20)

4(2α− 1)(α+ 1)3
k4

+
100α3 − 194α2 + 109α+ 8α2 − 20

8(α+ 1)3(2α− 1)3
k2 +

α− 1

2(2α− 1)(α+ 1)

}

(δg(tr))2 (3.43)

+

{
1

|ḡ|
[

δπ
(TT )
ab δπ

(TT )
`m

]

+
Λ

2α+ 1
(α(k2 − 2) +

α+ 1

2α− 1
)δg

(TT )
`m δg

(TT )
ab

}

ḡ`aḡmb
]

and where k2 ≡ L(L + 2). It is important to point out that equation (3.42) is not the integral

of the second order Hamiltonian action (2)S for the fluctuations since, given our gauge fixing, the

symplectic terms δπ(Tr)δġijTr do not contribute.

The main result of this Chapter is thus that the first term in equation (3.42), A, is positive

definite given α ≥ 1, L ≥ 2. I observe that this lone LS condition is an integral over S3, i.e. is

of positive measure. This means that in the absence of the homogeneous modes, which provide a

strictly negative definite contribution to the integral through the second term, there is no nontrivial

solution to the LS condition even though there are certainly solutions to the second order equations

which only have inhomogeneous linear seeds. In other words, if one wants to study the evolution

of the second order modes one must include, as part of their source, the zero modes at linear order

in order to properly satisfy the initial value constraints.

2The fluctuations corresponding to L = 1 can be shown to be purely coordinate fluctuations.
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3.5 Conclusions

I have shown that the inhomogeneous, second order scalar metric and matter fluctuations of the

Einstein static spacetime are not integrable unless one includes homogeneous linear fluctuations in

their source . This suggests that if the universe is in the local neighbourhood of the Einstein static

solution then to second order in the fluctuations (with arbitrary linear fluctuations) the familiar

homogeneous mode will, by virtue of its very presence, necessarily dominate and the spacetime

fluctuations will be unstable.

It is important to note that without the LS conditions it would seem acceptable to take the

existence of neturally stable inhomogeneous modes as an indication that, to linear order, the

Einstein static models are dynamically stable given sufficient pressure in the background. The LS

conditions forbid this conclusion by forcing the inclusion of the unstable, homogeneous, mode in

the second order initial value formulation for scalar modes. The physical significance of the LS

conditions is thus clearly one of a global (and in that sense weak) constraint on the entire set of

modes. Since they are formulated on a positive definite measure and the homogeneous modes, ‘zero

modes‘, exclusively are of negative norm, it seems natural that you cannot ignore the homogeneous

modes if you insist on a nontrivial solution to the LS condition.

It is worth emphasizing that this is not a claim of stability or instability at second order,

but rather at first order. Although the argument demands an exmaination of the second order

equations, they show that the equations must be unstable to first order. The issue of whether or not

second order perturbations can stabilize the spacetime at a sufficiently high value of the linearized

solution remains completely unclear. However, the unambiguous conclusions of this chapter is

that the Einstein universe is unconditionally unstable to first order perturbations regardless of the

presence of a large class of neutrally stable linear modes.

Interestingly enough, the LS conditions will come up again in the completely different context

of quantum backreactions in de Sitter spacetime in Chapter 5. Their close relationship to the

projected constraints of general relativity, and to the generators of gauge transformations those

perturbed constraints represent, will make for an interesting constraint on the possible type of

symmetry the linearized quantum states of that problem can have. Hopefully, however, the reader

has already been convinced that the whole issue of linearization stability is more than a formal

curiosity.
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CHAPTER 4

SUPERHUBBLE BACKREACTIONS IN

SLOW-ROLL INFLATION

4.1 Introduction

The second project of this thesis is concerned with assessing the importance of higher order cosmo-

logical perturbations in inflationary models of the universe. These cosmological perturbations will

be taken to be quantum mechanical in origin, following the intuition of inflation, and will interact

with their linear counterparts and the background spacetime in a process called backreaction. This

backreaction offers a glimpse of the fascinating nonlinear dynamics of metric and matter fluctua-

tions which may have played an important role in the early universe, both in current cosmological

research and even in the search for a quantum analogue of general relativity. In this chapter I

will focus on the physical effects of a particular class of backreactions in general inflation models.

In Section 4.2 I add slightly more detail to the brief introduction to inflation given in Section 1.2

in order to place the following work in context and define notation and terminology. Section 4.3

provides a brief literature survey, precise motivation for focusing on this particular class of backre-

actions, and outlines some of the constraints and assumptions of the following calculations. Next, I

will draw upon the results, notation, and terminology of Chapter 2 to set up the general formalism

of second order cosmological perturbations in Section 4.4. In Section 4.5 a novel set of observables

for these backreactions will be defined, and in Section 4.6 I will show how one calculates these

quantities in a procedure which involves controlling higher order gauge ambiguities and solving the

higher order equations of motion. In Section 4.7 the effects of the backreactions are assessed, and

finally I draw some conclusions.

Briefly, these conclusions suggest that there is a surprisingly large class of inflationary models

which do not admit a linearized perturbative approximation of a slow-roll spacetime. As I show

in the following sections, this occurs because the cumulative effects of backreactions are quite

important in the limit of slower and slower roll of the background scalar field.

4.2 A brief look at slow-roll inflation

As briefly indicated in Section 1.2, the major success of inflationary cosmology is in simultaneously

offering an explanation for the homogeneity of the universe along with a mechanism that explains

its inhomogeneity. The mechanism generating inhomogeneities involves quantum fluctuations in

the fields that represent the dominant form of stress-energy during the inflationary epoch, which

is a postulated ’potential’ dominated era of the early universe (which explains the homogeneity).
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More precisely, as indicated in Chapter 1, this inflationary epoch solves some central problems of

the big bang scenario by imagining the equation of state of the universe was very different at very

early times. To allow for the required causal contact over the region of sky we observe, the FRW

scale factor a(t) had to evolve so that its fractional rate of change is roughly a constant, i.e. has

exponential dependence a(t) ∼ eHt, for t ∼ 0, where H is the approximately constant and positive

Hubble parameter1. This rapid expansion, called inflation, spatially flattened and homogenized

the universe because it shrank the causal horizon (called the Hubble horizon) sufficiently for light

to traverse it in the available time. In other words, during a more typical era of evolution of the

universe (where p ≥ −ρ/3 ), the Hubble parameter H will grow more rapidly than the scale factor

a.

Using the FRW equations (2.23) and (2.24), one can immediately see precisely what kind

equation of state this exponential era of expansion requires. Indeed, demanding that the Hubble

parameter be positive in equation (2.24) and taking the curvature term in (2.23) to be negligible

during this era, one can see that ρ > 0 and ρ + 3p < 0 must be true during inflation. For these

specific reasons inflation crucially relies on being able to achieve a negative-pressure (i.e. tension)

equation of state, as we intuited in Section 1.2.

This requirement naturally leads to considering scalar fields as the dominant component of

stress-energy in the early universe. Using equation (2.35) it is easy to show that

ρ =
1

2
(φ̇)2 +

1

2
∂iφ∂iφ+ V (φ) (4.1)

p =
1

2
(φ̇)2 − 1

6
∂iφ∂iφ− V (φ) (4.2)

for a scalar field φ, where the index i runs only spatial values. From these formulae it is clear that

if the gradients of the scalar field are negligible compared to its potential V (φ), the approximate

relation p ≈ −ρ holds, or in other words a potential-dominated scalar field is a simple type of

matter which leads to the required, inflationary, equation of state. It is worth noting that if

p = −ρ identically the energy density ρ will not change at all with the expansion or contraction of

the universe2, and this case is referred to as the de Sitter model. The inflationary era as realized

by scalar fields is thus more precisely defined by the requirement that the scalar field change,

’roll’, very slowly down its potential, or in other words that the kinetic terms of the scalar field

be small compared to its potential terms. This is just the requirement that the energy density

remain roughly constant during the inflationary era, as applied to a scalar field potential driving

inflation. Treating the gradients of the scalar field as small compared to V (φ) is called the slow-roll

approximation, and often in the literature this is expressed in terms of the gradient of the potential

itself. Indeed, the basic condition that V >> (φ̇)2 for temporal gradients can be rewritten using

equation (2.21) (with n = 3, and using equations (4.1), (4.2) with no spatial gradients) as

εSR ≡
1

κ

(
∂φV

V

)2

<< 1, (4.3)

1For a rigorously constant Hubble parameter and (slicing where) exponential expansion occurs, this is a deSitter
model, which is very different than inflation per say.

2This is essentially because ρ̇ = 0 by equation (2.21).
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where κ ≡ 8πG/c4. In this chapter units are such that G = c = 1. One may take derivatives of this

condition to obtain further conditions but they shall not be needed in what follows. The slow-roll

condition (4.2) makes good intuitive sense since it simply requires the potential to be sufficiently

flat so that the scalar field may roll slowly enough for inflation to proceed. Generally the era of

slow-roll is followed by a so-called era of ’reaheating’, where gradients become important and the

field oscillates rapidly in a local or global minimum of the potential V (φ), but this era is not treated

in any detail here.

4.2.1 Long-wavelength perturbations in inflation

Now that we have a handle on the slow-roll condition in scalar-driven inflation which is required

to obtain a sufficient era of negative pressure, the quantum fluctuations in this scalar field can be

considered. The amplification of quantum noise during the transition from the inflationary era to

the ’matter dominated’ era thought to follow it can be adjusted to obtain just the right level of

fluctuations to describe much of the structure in our present universe. During the inflationary era

quantum fluctuations have their wavelengths hugely extended, however as long as these wavelengths

are shorter than the Hubble radius (which is the distance light can travel in one e-folding of

expansion of the universe) these quantum fluctuations are thought to be in their vacuum state.

This is a strong assumption and in general the choice of initial conditions for the fluctuations in

inflation is a very contentious issue3, however in this Chapter it will be taken as valid. Once the

wavelength of these fluctuations is larger than the Hubble radius, which is what I mean by long-

wavelength in this thesis, causality dictates their amplitude is frozen in time (their strength also

gradually becomes larger and larger during inflation and they generally are not in their vacuum state

at these superhorizon scales). The scalar field values which fluctuate to higher values generally take

a longer time to decay down to the reheating era mentioned above. Differences in decay time for

the slowly-rolling scalar field directly lead to classical density perturbations (roughly, δρ/ρ ∼ Hδt
for the density contrast) because different regions of space have inflation end at different times.

It is worth noting that the quantum fluctuations can in principle affect the overall evolution of

the inflationary era. Indeed, they can add an aspect of random-walk to the classical roll-down on

V (φ) such that, for example, if φ is too close to the minimum for a long enough inflationary period

then quantum fluctuations may push it up the potential. This allows further inflation and leads

to a self-sustaining process which is called stochastic, or chaotic, inflation (introduced by Linde in

[26], [27]).

For fluctuations in a spatially flat FRW model it is convenient to expand the spatial dependence

of the fluctuations in plane wave basis of the form ei
~k·~x, where the dot product uses the flat spatial

metric in comoving coordinates as in equation (2.7). The magnitude of the vector ~k divided by

the scale factor a, k/a, will be taken to be the comoving wavenumber of a single k-mode of a

given fluctuation. The long wavelength approximation will be that the comoving wavenumber is

always much smaller than the Hubble scale, H , in the sense that (k/aH)2 << 1 is negligible

compared to (k/aH). Together with the slowroll parameter εSR in equation (4.3) and the strength

3E.g., the fluctuations are in their ground state precisely when the scalar field driving inflation must be very far
from equilibrium, in a false vacuum?
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of the metric and matter fluctuations ε, this implies one in general has three approximations in any

analysis of longwavelength fluctuations in inflationary spacetimes: the slow-roll approximation, the

long-wavelength approximation, and the perturbative approximation of a slowly rolling spacetime.

A complete analysis of the scalar (density) perturbations during inflation involves tracking the

evolution of perturbations of the full, coupled, Einstein-scalar system, and culminates in studying

consequences of equation (2.70) of Chapter 2 for the linear case. However, the basic mechanism

for the origin of scalar perturbations and indeed their so-called ’scale-free’ nature and short/long

wavelength behaviour can be understood from the perspective of a test scalar field in a fixed,

background spacetime. To get a sense of the calculations to follow in Sections 4.3 to 4.8 and to

define this ’scale-free’ property of the fluctuations, this will now briefly be described. A bonus

will be to get a sense of what falsifiable predictions inflation really makes about the nature of the

fluctuations and their power spectrum.

Indeed, starting with a flat spatially isotropic metric in comoving coordinates, as in equation

(2.7), one may describe a Fourier mode of a free, massless, minimally coupled scalar field φ in the

above-described plane-wave basis via

φ(~x, t) =
∑

k

φk(t)e
i~k·~x, (4.4)

where the wavenumbers ki = ni2π/L, ni ∈ Z+ are quantized in a box of side L. Stress-energy

conservation, embodied by equation (2.21) for this case, implies the equation of motion for the

fourier coefficients

φ̈k + 3Hφ̇k +
k2

a2
φk = 0, (4.5)

where the dots represent derivatives with respect to comoving time t, H ≡ ȧ/a is the Hubble

parameter. Just as equation (2.70) implies, this equation of motion is identical to that of a simple

harmonic oscillator with a unit mass, a term what is commonly referred to as a ‘time-dependent

friction term‘ 3Hφ̇, and a spring constant k2/a2. It is worth emphasizing here that the phrase

‘friction term‘ is somewhat misleading, as the equation of motion (4.5) actually stems from a time

dependent, conservative, Lagrangian which in turn leads to a conserved stress-energy4. Neverthe-

less, one may speak of ‘underdamped‘ and ‘overdamped‘ regimes given a certain range of values

for the proper wavelength of a mode and the Hubble parameter. When the proper wavelength of

a mode, a/k, is much smaller than the Hubble radius, H−1, the mode will behave as an ordinary

oscillator with no damping. But, if the wavelength is much larger than the Hubble radius, the

mode will behave as an overdamped oscillator. Indeed, its amplitude will ‘freeze out‘ as φ̇k decays

rapidly to zero.

If we let the box in which we quantize φ become arbitrarily large, then the sum given by

equation (4.4) will go over to an integral that incroporates the density of states in k-space the

4This is easily seen by rescaling the scalar field to be φ̃ = a(t)3/2φ, so that equation (4.5) becomes

¨̃φ +

„

k2

a2 −
∂2
0a3/2

a3/2

«

φ̃ = 0, which trades a ‘friction‘ term for a ‘mass‘ term. I am indebted to W.G. Unruh for

emphasizing this.
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usual way from statistical mechanics. In this way we can go over to the quantum field theory of

the scalar field φ by adopting the standard continuum Fourier transform for each mode: φk =
1

(2π)3/2

∫
φ(x)exp(−i~k · ~x)d3x. Each mode acts as an independent harmonic oscillator and can be

described using the Lagrangian density defined in general by equation (2.83):

Lk =
a3

2

(

|φ̇k |2 −
k2

a2
|φk |2

)

, (4.6)

where the factor of a3 is just the comoving coordinate volume element
√

−|g|. Here, each k-mode

acts as an indepedent oscillator and we may take the ground state |0 > of an oscillator governed

by this Lagrangian as a Gaussian wavefunction in φk . Recalling how the argument goes for an

ordinary one dimensional simple harmonic oscillator5, it is not hard to see that the test field’s

dispersion must go as

< 0||φk|2|0 >≡ (δφk)
2 =

a

2a3k
, (4.7)

where the factors of a account for using the comoving wavenumber k/a and the normalizing with

the volume element
√

−|g| = a3. For proper wavelengths much larger than the Hubble radius the

overdamped oscillator will have a frozen amplitude and (δφk) will roughly be constant, while for

wavelengths much smaller than the Hubble radius the ground state will evolve adiabatically and

equation (4.7) will remain valid. Since the Hubble parameter (radius) is roughly constant compared

to the scale factor during inflation, the proper wavelength will rapidly exceed the Hubble radius

during inflation. This combination of assuming an adiabatic initial vacuum for the subhorizon

modes, and then stretching the comoving wavelength well beyond the Hubble scale, so that their

amplitudes freeze, is the heart and soul of the inflationary mechanism of generating fluctuations. It

is also useful to note that, since the Hubble radius grows much more rapidly than the scale factor

after inflation ends, the test scalar field can only go from being an overdamped oscillator to an

underdamped one in an inflationary era followed by a matter-dominated regime.

Given the above remarks, we know that the fluctuation amplitude of subhorizon modes born

in an adiabatic vacuum will freeze out at some value of the scale factor a∗ such that k/a∗ = H∗,

where H∗ is the value of the (approximately constant) Hubble parameter during inflation. The

value of the frozen out amplitude of fluctuations is thus, at some later time at which they are still

nevertheless superhorizon in scale, obtained by combining the definition of a∗ with equation (4.7),

to give

(δφk)
2 =

H2
∗

k3
, (4.8)

which corresponds to a so-called scale-free spectrum of fluctuations6 and which in turn is amplified

by a factor of order (a/a∗)2 compared to equation (4.7). This latter fact shows how these quantum

5For an oscillator with frequency ωk, position operator x and momentum operator p, calculate the dispersions
< δx2 >=< x2 > − < x >2= 1

2ωk
− 0 and < δp2 >=< p2 > − < p >2= ωk

2
− 0 to form < δx2 >< δp2 >= 1

4
.

6Bearing in mind that dk/k is used in the Fourier conventions, not k2dk, which would lead to a form manifestly
independent of k.
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fluctautions can be amplified to classical, large-scale, scales by an inflationary era. More specifically,

in order for the initial spectrum of φk to induce a corresponding spectrum of classical density

fluctuations, the scalar field must have a large and classical stress-energy term appearing on the

right hand side of the semiclassical Einstein equations. The cross terms (in the semiclassical

equations) between the fluctuations and the effective cosmological constant contribution due to

V (φ), give rise to cosmologically significant, scale-free, density perturbations.

It is useful to note that inflation does not directly address the initial conditions of these modes

because of its assertion that the subhorizon modes evolve adiabatically in their ground state, which

sounds prima facia reasonable7. Because the negative-pressure era stretches the modes’ wavelength

well-beyond the causal Hubble horizon it is not necessary to deal with initial conditions in an any

more formal way–one simply assumes that the modes were born in their ground state at some

point prior to or during inflation. Any noninflationary scenario must directly confront the initial

condition issues because superHubble modes must be present from the very beginning in order

to induce cosmological perturbations. One could in fact follow Hollands and Wald in [28] and

construct a noninflationary models which leads to the above scale-free spectrum of fluctuations.

The existence of their construction reinforces the notion that the essential mechanism for the

generation of cosmologically meaningful, scale-free, density perturbations operates with or without

an inflationary era8. Therefore, the principal predictions of inflation on the nature of cosmological

density fluctuations is their Gaussian nature and to a much lesser degree that their spectrum

is scale-free. Another key prediction about fluctuations due to inflation is, as Andreas Albrecht

refers to it in [30], their ’passivity’. This refers to the notion that perturbations evolve in an very

particular linear manner until gravitational collapse induces nonlinearities much later in the history

of the universe, or in other words the role of nonlinearities like backreaction during inflation is not

considered important. In this sense it is unsurprising that an initial Gaussian vacuum leads to

Gaussian fluctuations later on.

4.3 Motivation, Brief Review of Past Work

The fluctuations in the scalar inflaton field driving inflation will themselves induce metric fluctua-

tions because of the equations of motion. For quantum fluctuations, one way to treat the problem

is using the techniques outlined in Chapters 2 and 3, i.e. perturbation theory. As we just showed

in Section 4.2, to linear order one of the standard results of perturbation theory is that the power

spectrum of scalar (energy density) fluctuations is scale-free (see [4] for a comprehensive review),

which is approximately what is observed today9.

However, the cosmological constant and dark matter/energy problems10 only deepen with these

same observations. There has been renewed interest in the past few years in the effect of higher order

corrections to the linearized Einstein equations on both early and late-time physics in inflation.

Suggestions have been made that higher order corrections to linearized theory, on superhorizon

7But arguably problematic upon closer examination.
8Their methodology was extensively criticized in Linde et al in [29], in my view unsuceessfully.
9There are serious deviations from scale-freeness in ‘low `‘ (large scales) part of the observed power spectrum.

10We cannot understand why we observe a small positive cosmological constant nor the nature of dark matter,
the dominant components of our universe’s energy and matter census, with current theory.
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scales (i.e. larger than the Hubble radius), can take the form of a negative cosmological constant.

This could produce a dynamical relaxation mechanism for the bare cosmological constant (starting

from [31], to [32], [33] most recently, and many references therein). The measurability or physical

reality of these superhorizon backreaction effects has been a contentious issue (see e.g. [34], [35]

and reference therein), and many questions remain regarding the link between local subhorizon

physics and these superhorizon backreactions.

In this Chapter I focus on explicitly evaluating the second order corrections to the homogeneous

Einstein equations in perturbation theory. At second order in perturbation theory one might even

expect that since the effect of second order contributions are cumulative over all wavenumbers,

their relative amplitude may be become comparable to that of first order. Furthermore, if one

thinks about solving the perturbed Einstein constraint equations for the matter fluctuations and

putting these solutions back into the perturbed evolution equations, it is not hard to see that some

of the second order corrections could in fact be divided by a so-called slow-roll parameter. This

only adds to the worry that the second order terms could plausibly dominate the linear ones for a

‘slow enough‘ roll in the background. It is clear that in the limit as the slow-roll parameter goes to

zero, so that the background universe tends to a de Sitter universe, the first order corrections go to

zero and the second order fluctuations dominate in their effect on the gravitational field. At what

values of the slow-roll parameter do the second order perturbations dominate over the linear ones?

The most radical possibility is that the slow-roll conditions are precisely the conditions that the

second order perturbations dominate. Such questions appear to be behind some of the concerns

raised by L. Grischuk in [36] about the consistency of linearized perturbation theory in inflation.

The technical complications of sorting out the second order gauge issues and other nonlinear

effects such tensor perturbations seeding scalar perturbations are many, but rendered tractable

with the aid of packages such as GRTensor for Maple [37]. In Section 4.4 I calculate the cumulative

second order contributions to the homogeneous energy density and pressure. I do not address

questions of the ultraviolet (short wavelength) regularization of the fluctuations in this Chapter

but focus on the superhorizon fluctuations. Indeed, I pay special attention to the case where

one considers the cumulative effect of Hubble sized to nearly homogeneous contributions on the

homogeneous mode. Though this is admissible using the effective methods (as I describe below),

this feature would turn out to be a limitation in the arguments I present. I show explicitly how

one can calculate backreactions on inhomogeneous modes in the framework of this Chapter.

In past work effective approximation methods have been used to evaluate such contributions.

One popular method characterizes the backreactions in terms of an effective energy-momentum

tensor τab. In this method there are two contributions to τab: the quadratic matter energy momen-

tum tensor and the contribution of the first order gravity perturbations. Using early work by Brill,

Hartle and Isaacson (see [38]) among others, the Einstein equations are expanded to second order

in perturbation theory assuming the linearized equations hold (so that they drop out). Then the

remaining terms are spatially averaged with respect to a given background metric and the resulting

equations are interpreted as equations for a new homogeneous metric ḡab which include the effects
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of quadratic linear perturbations:

Gab(ḡab) = κ(T̄ab+ < τab >), (4.9)

where < τab > is the spatially averaged ‘backreaction‘ stress-energy defined by

τab = Tab[(δgcd)
2, (δφ)2]− 1

κ
Gab[(δgcd)

2]. (4.10)

Here, κ ≡ 8πG in units where c = 1, δn indicates the n-th order perturbation of the object it acts

on, as in Chapters 2 and 3.

It should be noted that, by construction, the zeroth order equations are not obeyed in this

formulation. In this effective scenario one is solving for a new isotropic background metric which

obeys equation (4.9), and this can in itself raise difficult questions of consistency if one is interested

in backreactions on inhomogeneous modes (but is ok if one looks at just the homogeneous mode).

This can be seen by considering the first variation of the Hamiltonian action for a gravitational

system, equations (2.88) and (2.89):

δH =

∫

(δNH̄⊥ + δNiH̄i + N̄δH⊥ + N̄iδHi)d3x, (4.11)

and assuming that the background constraints do not hold, i.e. H̄⊥ 6= 0, H̄i 6= 0. If one has

homogeneous variations then these linear terms will vanish anyway, whether or not the background

equations of motion are satisfied. This is so because one can do a by-parts integration in the first

and second terms above whose result will be boundary terms which can then be set to zero under

reasonable assumptions [39].

Furthermore, it should also be noted that in their effective approach the full second order

Einstein equations are not solved, nor are second order coordinate transformations considered. This

latter fact can be of considerable concern when interpreting the significance of higher order effects,

as Unruh showed in [34]. In this sense the effective approach outlined above does not appear, to

me, to be able to convincingly evaluate the higher-order corrections to Einstein’s equations, simply

because it never actually considers them in the context of higher-order perturbation theory. In

my opinion, the full impact of second order perturbation theory can only be assessed attendant

problems that come from solving the higher order equations within some second order gauge-fixing

and a direct confrontation of Fourier averaging issues at higher order11.

Nevertheless, following Brandenberger and Mukhanov in [41] and [4], this effective approach

can be used to evaluate the dominant long-wavelength contributions to τab. Defining the energy

density and pressure at second order by (using (+,−,−,−) as the signature) δ2ρ ≡< τ0
0 > and

δ2p ≡ −(1/3) < τ ii >, they find that these contributions have the effective equation of state

δ2p ≈ −δ2ρ, with δ2ρ < 0. This corresponds to the equation of state of a negative cosmological

constant. They also find that δ2ρ grows with time, partially because as inflation proceeds more

and more length scales exceed the Hubble scale and contribute to δ2ρ. These two results combined

11However one should note that for super Hubble fluctuations there exist methods like Starobinski’s effective
stochastic inflation methods, which although developed only for test scalar fields so far, have the promise of giving
the leading order logarithmic divergences order by order in perturbation theory. See Woodard in[40]
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suggest their main claim, which is that the backreactions effectively create a negative, and growing,

cosmological constant which can reduce the actual cosmological constant in the large. Locally one

might expect the situation to be different. The first order modes should in some sense, locally, look

like simple coordinate transformations of the homogeneous solutions, and their effect on higher

order metric and matter fluctuations to be again that of higher order coordinate transformations

[34]. However, as stated earlier, this thesis will not focus on these difficult issues of interpretation.

Instead, the focus is on evaluating the higher order contributions to the background equation of

state, and in particular calculating the quantity δ2ρ+δ2p and its dispersion. I follow a procedure of

consistently (though probably not convergently) expanding the Einstein equations to second order

and solving a specific subset of them assuming the zeroth and linear order equations hold. This

is done about a flat FRW spacetime in which the dominant gravitating matter is a slowly-rolling,

minimally coupled, scalar field φ̄, and we only study the effect of fluctuations on spatial scales

exceeding the Hubble radius. In order to define the second order energy density and isotropic

pressure, an invariant definition of δ2ρ and δ2p is given in terms of the eigenvalues of the stress

energy tensor. Due to the mixing of tensor and scalar waves, these fluctuations will not only arise

from second order scalar modes but also from quadratic combinations of scalar-scalar and tensor-

tensor modes at second order. I find that in general δ2p+ δ2ρ 6= 0 and δ2ρ < 0, but that δ2ρ+δ2p
δ2ρ

does become small. Perhaps surprisingly, I also find that the relative amplitude of the second order

dipsersion < (δ2ρ)2 > dominates over its linear counterpart < (δρ)2 > for a wide range of slow-roll

parameters in the background.

4.4 Long-wavelength second order perturbation theory

In Chapter 2 it was pointed out that the tensor, vector, and scalar metric modes all decouple12,

which justifies examining only one class of modes at a time, which make the linear calculations far

simpler to accomplish. Furthermore, depending on the initial conditions one takes for the linear

metric modes at the beginning of inflation (a contentious issue), the scalar modes are typically more

important than the gravitational modes at the end of inflation. Given this, the fact that scalar

modes directly lead to energy density fluctuations required for structure formation, and the fact

that for longwavelength perturbations gravity wave terms are typically suppressed in comparison,

’cosmological perturbations’ have become synonymous with scalar perturbations.

At second order, however, it is well known that the second order modes have products of linear

tensor, vector, and scalar modes as sources. For example, the effective stress-energy of linear tensor

fluctuations (gravity waves) can induce second order scalar fluctuations. In order to describe this

it becomes essential to include all three classes of modes (scalar, vector, and tensor) as sources for

the higher order gravitational radiation. For fluctuations about a spatially flat FRW background

in comoving coordinates (t, ~x) the perturbed metric is, according to equation (2.25),

ds2 = −(1 + εA(t, ~x) + ε2A(t, ~x))dt2 + 2(εBi(t, ~x) + ε2Bi(t, ~x))dtdxi

+a2(t)(δij + εhij(t, ~x) + ε2qij(t, ~x))dx
idxj , (4.12)

12This fact is extensively discussed in [42].
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where ε is the strength of the linear perturbation as before, i, j, k, ... denote purely spatial indices

in this Chapter, and a(t) is the usual scale factor from Section 2. The coordinate t is here taken

as the proper time of a comoving observer. Together with the matter perturbations of the scalar

matter φ̄, already defined by equation (2.37), one can define the matter perturbation via

φ(t, ~x) = φ̄(t) + εΦ(t, ~x) + ε2F(t, ~x). (4.13)

Thus the perturbations are (A,Bi, hij ,Φ) at linear order and (A,Bi, qij ,F) at second order. The

backreactions or higher corrections are suitably integrated quadratic combinations of terms from

the former set, and they source the equations for the longwavelength part of the latter set of

variables. In principle, the evolution of the fluctuations is determined by substituting the above

metric and matter perturbations into the Einstein equations (2.8) and solving these at second order

subject to the linearized and background equations, i.e. one solves

δ2Gab = κ
(
δ2Tab

)
, (4.14)

and also demands that the linearized and zeroth-order (background) field equations

δGab = κ (δTab) (4.15)

Ḡab = κ
(
T̄ab
)
, (4.16)

hold. Again, Tab =
{
φ;aφ;b − gab

(
1
2φ

;cφ;c + V (φ)
)}

is the stress-energy for a minimally coupled

scalar field defined by equation (2.35).

As in Section 4.2.1, the spatial dependence of the fluctuations is taken to be of the form e±ikix
i

,

and the reader is also reminded of the longwavelength approximation

(
k

aH

)2

� 1. (4.17)

Here, H is the Hubble parameter that corresponds to the scale factor expansion a(t) ∼ tα, α � 1

and I take the potential of the slowly-rolling background scalar field to be

V (φ) = Λ + βφ, (4.18)

for which the only non-trivial slow-roll condition is 1
κ (

V,φ
V )2 = κβ2

H4 � 1. One should note that

Ḣ = − κβ2

18H2 , and we write
√
α ∼ H√

−Ḣ
=
√

18H4

κβ2 so that the deSitter limit corresponds to α→∞.

Conservation of energy for a slowly-rolling scalar field in this potential, with initial value φ0, requires

that φ take the form

φ = φ0 −
βt

3H
, (4.19)

and only comoving times t such that 0 ≤ t� 3Hφ0

β are considered.

Therefore, as in Section 4.2.1, there are three small parameters in this problem: ε (the strength
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of the matter and metric fluctuations), κβ2

H4 (slow-roll parameter associated with our choice of

inflaton potential), and k
aH , the long-wavelength parameter. However, only two of these small

parameters are independent as the order of the metric and matter fluctuations is a direct product

of the physics of the slow-roll parameter, so the scale of ε is in some sense dynamically set. Unless

otherwise specified, all future references to the order of a quantity will refer to its order in ε.

The solutions to equations (4.14) and (4.15) will be invariant under under a class of diffeomor-

phisms which are themselves functions of ε. By expanding out the diffeomorphisms order by order

in ε, one can apply first order, second order, etc., coordinate transformations to the solutions of the

first order, second order, etc., solutions of (4.14) and (4.15). In particular, one can choose these

transformations to not only simplify the form of the solutions and the equations themselves, but

to also deduce what part of the metric and matter fluctuations is physical and what part is just a

coordinate effect.

4.4.1 Linear and second order coordinate transformations; gauge

fixing

Building on the work in Section 2.2.1, second order gauge transformations are relatively straight-

forward to define. Recall that at linear order, using equation (2.28) to define a general ε-dependent

coordinate transformation, the associated linearized coordinate transformation is given by (2.29).

At second order, one can similarly define the second-order coordinate transformation via

χa = lim
ε→0

∂

∂ε

[
∂x̃c(x, ε)

∂ε

∂Xa(x̃(x, ε), ε)

∂x̃c

]

. (4.20)

As in Section 2.2.1, since the metric gab is a tensor it will in general transform by

gab(x, ε) =
∂x̃c

∂xa
∂x̃d

∂xb
g̃cd(x̃(x, ε), ε), (4.21)

so it is not hard to show that

δ2gab = δ2g̃′ab + (£2
ζ + £χ)ḡab + 2£ζδg̃ab, (4.22)

Thus, the second order fluctuations δ2gab depend on ζa, i.e. they depend on the linearized coordi-

nate transformation ζa as well as the second order transformation χa. The fact that second order

quantities depend also the linearized gauge fixing (ζa) implies, for example, that the second order

stress energy δ2Tab in equation (4.15) which sources the backreactions will depend on the choice of

both ζa and χa (a gauge choice).

As shown in Chapter 2, in standard cosmological perturbation theory one usually makes a par-

ticular choice of ζa to simplify the interpretation of the fluctuations. For example, the longitudinal

gauge [4] makes the choice

ζ0 = B − aĖ, (4.23)

ζi = −∂iE. (4.24)
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It should be noted that this longitudinal gauge only fixes the scalar part of the metric into diagonal

form, and its simple form relies crucially on the form of the anisotropies of the perturbed stress

energy. However for our problem, since we obviously cannot diagonalize the entire linear order

metric because of the presence of TT gravity waves, we find it convenient to set a gauge choice

which amounts to setting

Bi,i = 0, (4.25)

∂j
(

hij −
δ`mh`m

3
δij

)

= 0, (4.26)

which fixes, to within trivial residual gauge freedoms, the linearized metric perturbation regardless

of the form of the perturbed stress energy and is sometimes known as the Poisson gauge [43]. Clearly

the longitudinal gauge for the scalar sector is a special case of (4.25) and (4.26), since it restricts only

the potentials B,E of the metric fluctuations B,i, E|ij . The primary physical advantage in using

this generalization of the longitudinal gauge is that one can unambiguously transform to any gauge

while easily keeping track of the residual freedoms, while the primary mathematical advantage is

that they lead to a compact form for the perturbed hamiltonian and momentum constraints. One

can always transform from this gauge to any other gauge since the transformations are algebraic in

nature as opposed to, say, the nonlocal integrals that take one to the so-called synchronous gauge13

(Bertschinger in [43] provides an excellent, more detailed, explanation).

4.5 Total energy density and pressure at second order

How do the classical metric and matter fluctuations at second order influence the background

equation of state, and in particular how does one assess the influence of the gravitational backre-

actions? In classical GR it is not possible to unambiguously assign an energy to a gravitational

system in the absence of some simplifying assumption (such as asymptotic flatness), and in fact

as we saw in equation (2.88) the total gravitational ADM Hamiltonian is equal to zero when the

universe is spatially compact. Fortunately, within finite order perturbation theory we can avoid

the conceptual and technical problems involved in defining local, quasi-local, or any other practical

definitions of gravitational energy-momentum because, by definition, we have a preferred decom-

position of the spacetime metric. This allows us to exclusively attribute ’energy’ to the ’dynamical

part’ (δgab, δ
2gab) of the metric as opposed to the ’background part’ (ḡab) simply because there

exists a ’background derivative’ (∇̄a) against which to measure any such ‘dynamics‘. Thus we

can define a ’relative gravitational stress energy’ τab of the fluctuations with respect to the curved

background, and in particular we can take combinations of τab and the stress energy Tab to study

the fluctuations in the pressure and energy density at second order.

A general formalism to define conserved quantities and conservation laws with respect to curved

background spacetimes has already been developed by Katz, Bicak, and Lynden Bell in [44]. The

13Synchronous gauge sets the shift and lapse perurbations to zero. This choice leaves a residual gauge freedom on
the spatial hypersurfaces in the form of two ghost modes.
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basic idea is to start from the Lagrangian

L(ε) =

√

−|g|(ε)
2κ

[
Cρµν(ε)C

σ
ρσ(ε)− Cρµσ(ε)Cσρν(ε)

]
(4.27)

− 1

2κ

(

gµν(ε)
√

−|g|(ε)− ḡµν
√

|ḡ|
)

R̄µν + LM ,

where 2Cabc(ε) ≡ 2(Γabc(ε)− Γ̄abc) = (∇̄bgca(ε) + ∇̄cgba(ε)− ∇̄agbc(ε)) is completley analagous to

equation (2.91) and LM is the ‘matter‘ Lagrangian. Recall that C̄abc = 0, so that in the background

L̄ = 0. The main result of [44] is that starting from L one can build vector densities Iµ which are

conserved in the sense that ∇̄µIµ = 0. The details are interesting but tedious, and I simply quote

the final result for the conserved vector density Iµ for completeness:

I
µ =

»

p

−|g|(ε)T µ
ν (ε) −

p

|ḡ|T̄µ
ν +

1

2

“

g
ρσ(ε)

p

−|g|(ε) − ḡ
ρσ
p

|ḡ|
”

R̄ρσδ
µ
ν +

p

−|g|(ε)tµν
–

ζ
ν (4.28)

+
p

−|g|(ε)
“

σ
µ[ρσ]

∂[ρζσ] + Zµ(ζν)
”

≡
h

p

−|g|(ε)T µ
ν (ε) −

p

|ḡ|T̄µ
ν +

p

−|g|(ε)τµ
ν

i

ζ
ν +

p

−|g|(ε)
“

σ
µ[ρσ]

∂[ρζσ] + Zµ(ζν)
”

,

where ζµ is the arbitrary, smooth, vector field and τab is the analogue of the Einstein pseudotensor

(defined in terms of Cabc instead of Γabc). Only the first term in equation (4.28), in the square

brackets, will interest me in what follows. Its interpretation is that of the relative stress energy of

the fluctuations with respect to a given curved background. For completeness only I mention that

the last group of terms can be interpreted in terms of the relative helicity of the perturbations with

respect to the background [44] and, again, I shall not consider these in this work. I denote the

gravitational parts of the relative stress energy by τab, which of course is defined with respect to our

preferred decomposition of the spacetime metric. In this sense it is not a tensor in general, however

since it is exclusively constructed as a function of the difference of perturbed and background

connections, its second order part δ2τµν is a tensor to second order in ε.

Given their definition for τµν , whose explicit definition is essentially the same as the Landau-

Lifschitz pesuedostress energy [45], it is now possible to look for observables to probe the details of

the effects of higher order fluctuations on the linearized theory. In the next section it is shown that

the eigenvalues of the total stress energy, i.e. τ νµ +T νµ , are excellent candidates for such observables.

It is worth emphasizing that it will turn out that the dependence of these eigenvalues on the precise

definition of τµν is not important, since their dominant contributions will be from terms in T µν .

4.5.1 Eigenvalues of the total stress energy

One often defines (the rotationally invariant but not boost invariant) energy density and isotropic

pressure of a perfect fluid by −ρ ≡ g00T00 and 3p ≡ giiTii. While this is relatively straightforward

to interpret and implement in linearized perturbation theory, at second order one gets complications

such as having to subtract off shear (offdiagonal) stresses∼ δpiδpj , i 6= j, from the diagonal isotropic

contributions ∼ (δpi)
2. From this and other points of view it turns out to be extremely useful to

consider the eigenvalues of the mixed-valence total stress energy of the fluctuations, i.e. to consider
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the eigenvalues of the tensor

T̄ ab + δT ab + δ2T ab + δ2τab, (4.29)

where the last term δ2τab is the second order part of the relative gravitational stress energy, τab, de-

scribed above. Since it is of mixed valence, it transforms from coordinates x to x̄ as (∂x/∂x̄)(∂x̄/∂x)

and therefore has gauge-covariant eigenvalues λi associated to timelike and spacelike eigenvectors,

which are calculated by solving the equation

det
(
T̄ ab + δT ab + δ2T ab + δ2τab − λiδab

)
= 0 (4.30)

It is worth emphasizing that gauge covariance is weaker than gauge invariance, since the former

only refers to invariance with respect to change of coordinate basis but does not also guarantee

invariance with respect to Lie dragging. In other words, the eigenvalues are not invariant under a

general reidentification of points in the background spacetime.

At zeroth order, since we are not in deSitter but in a slow-roll spacetime, the one timelike eigen-

value and three spacelike eigenvalues (associated with their respective eigenvectors) are different

and are in that sense ’sufficiently separated’. Although I am only interested in the average of the

pressure eigenvalues, this ’sufficient separation’ property is important since it guarantees that the

perturbations obey this property as well14. I define the energy density as minus the eigenvalue

of the timelike eigenvector and the cumulative isotropic pressure as the average of the distinct

eigenvalues associated with their respective spacelike eigenvectors. It is worth emphasizing again

that the eigenvectors at second order will in general point in different directions, but that all that

matters in these calculations is the averaged contribution obtained after quantum averaging over

k. After such averaging the terms like δρ(k)δρ(k′) collapse to the diagonal terms (δρ(k))2.

These eigenvalues can be expressed in terms of scalars formed from the stress tensor and powers

thereof. For example, to linear order one may find the averaged eigenvalues δρ and
∑

i δpi by

perturbing the expressions

T aa = −ρ+
∑

i

pi (4.31)

SabS
b
a =

3

4



ρ2 +
2ρ

3

∑

i

pi +
1

3



4
∑

i

(pi)
2 −

(
∑

`

p`

)2






 , (4.32)

where Sab ≡ Tab − Tmm
4 gab. To linear order, these relations are equivalent to

δ(T aa) = −δρ+
∑

i

δpi (4.33)

4

3
δ(SabS

b
a) = 2(ρ̄+ p̄)(δρ+

1

3

∑

i

δpi), (4.34)

14Were this not the case I would need to calculate the eigenvectors as well to solve the degenerate problem.



CHAPTER 4. SUPERHUBBLE BACKREACTIONS IN SLOW-ROLL INFLATION 57

where ρ̄ + p̄ = β2

9H2 . Substituting the explicit expressions in terms of the metric and matter

fluctuations for the left hand side, one finally obtains the desired expressions for the energy density

and cumulative isotropic pressure. To higher order this procedure becomes more complicated since,

as mentioned above, pressure contributions like (
∑

i pi)
2 contain both diagonal contributions like

∑

i p
2
i and offdiagonal shear contributions like

∑

i6=j δpiδpj . However the basic strategy is similar

and in any case equivalent to solving the above determinant using scalars such as the trace, ‘double

trace‘, and determinant. I sketch this out below.

For the second order case, the starting point is

δ2(T aa + τaa) = −δ2ρ+
∑

ı

δ2pi (4.35)

δ2(
4

3
SabS

b
a) = (δρ)2 +

(
∑

i

δpi

)2

+
2

3
δρ
∑

i

δpi −
8

3

∑

i6=j
δpiδpj (4.36)

+2(ρ̄+ p̄)(δ2ρ+
1

3

∑

i

δ2pi),

where Sab ≡ (Tab + τab) − Tmm+τmm
4 gab. The appearance of terms like

∑

i 6=j δpiδpj and related

cross-terms complicates the isolation of the desired eigenvalues
∑

i δ
2pi. In order to eliminate such

terms we consider the second order perturbation of the cube of the trace-free part of the total stress

energy. Combined with equations (4.35) and (4.36), this will give us another equation and with

it the possibilty of cancelling these shear terms in terms of some function of metric and matter

fluctuations. The general expression for the cube is

−8

3
S

a
bS

c
aS

b
c = ρ

3 −
X

i

p
3
i − ρ

X

i

p
2
i +

X

`6=m

p`p
2
m + ρ

2
X

i

pi + 2ρ
X

i6=j

pipj − 2p1p2p3 (4.37)

which to second order is

δ2
(

−8

3
SabS

c
aS

b
c

)

= (ρ̄+ p̄)



3(δρ)2 −
(
∑

i

δpi

)2

+ 2δρ
∑

i

δpi + 4
∑

i6=j
δpiδpj



 (4.38)

+3 (ρ̄+ p̄)
2

(

δ2ρ+
1

3

∑

i

δ2pi

)

,

and which in turn has the right form to solve for the shear terms we are desiring to eliminate from

expression (4.31). Substituting in the expression of δ2(− 8
3S

a
bS

c
aS

b
c), equation (4.38), in terms of

metric and matter fluctuations and solving for the four averaged eigenvalues δρ, δ2ρ,
∑

i δpi,
∑

i δ
2pi

in terms of the mertic fluctuations, I finally get

4(ρ̄+ p̄)(δ2ρ+ 1
3

∑

i δ
2pi) +

[
1
3 (
∑

i δpi)
2
+ 3(δρ2) + 2δρ

∑

i δpi

]

= δ2ϑ+ 2
3(ρ̄+p̄)δ

2Θ

−δ2ρ+
∑

i δ
2pi = δ2T

2(ρ̄+ p̄)(δρ+ 1
3

∑

i δpi) = δϑ

−δρ+
∑

i δpi = δT







,

(4.39)
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where θ ≡ 4
3S

a
bS

b
a,Θ ≡ − 8

3S
a
bS

c
aS

b
c, T = gab(Tab+ τab). The simultaneous solutions to these two

sets of coupled equations are the (averaged) eigenvalues one would find directly from the matrix

represented by the total stress-energy, expression (4.29). They are

δp ≡ 1
3

∑

i δpi = δT
4 + 1

8(ρ̄+p̄)δθ

δp+ δρ = 1
2(ρ̄+p̄)δθ

δ2p ≡ 1
3

∑

i δ
2pi = 1

ρ̄+p̄

[
δ2θ
16 + δ2Θ

24(ρ̄+p̄) −
3(δθ)2

64(ρ̄+p̄)2

]

+ δ2T
4

δ2ρ+ δ2p = 1
ρ̄+p̄

[
δ2θ
4 + δ2Θ

6(ρ̄+p̄) −
3(δθ)2

16(ρ̄+p̄)2

]







(4.40)

It is worth pointing out that the definitions of these eigenvalues do not make any additional as-

sumptions about being defined in a comoving frame of reference, which in general is not consistent

with our gauge fixing (it is only consistent with dust, i.e. no pressures). The fluid velocies are

certainly not zero and in fact represented by the timelike eigenvector associated with ρ.

4.5.1.1 Linear contributions to the energy density and pressure

At linear order the two values δρ,
∑

i δpi of the total stress energy δT ab, comprised of only the stress

energy of matter, can easily be found. Assuming the longitudinal gauge-fixing, we find

δp = − β
3H (∂t − 3H)Φ− β2

18H2A

δρ+ δp = 2βΦ

}

, (4.41)

To linear order, only scalar modes can induce energy density and pressure fluctuations. In the

longitudinal gauge fixing specified by equations (4.23),(4.24), the (constrained) equation of motion

for the spatial diagonal metric perturbation ψ in the long-wavelength limit, assuming slow-roll, is

simply

(∂2
t +H∂t)ψ(t) = 0, (4.42)

whose nondecaying solution can be taken to be a nonzero constant ( ≡ ψ ). This is to be distin-

guished from the pure deSitter case where this constant is precisely zero, since there are no physical

linear scalar modes in pure dS 15. The corresponding matter perturbation Φ is easily found via

the constraint equations (namely Φ = (3H2/β)ψ ). Using this and the constraint equations from

(4.15) to express the result in terms of ψ, we find the dominant contributions to δp and δρ are

δp ≈ −3α2

κt2
ψ
α→∞

= −3H2

κ
ψ (4.43)

δρ+ δp ≈ ψH2

9κ
(54εLW − (6Ht− 1)εSR) , (4.44)

15One can set up a scalar field with intial velocity on a flat potential, which will rapidly decelerate due to Hubble
friction and drive the spacetime to dS. During this deceleration, which will violate slow-roll, there will of course be
scalar gravitational perturbations but the physical (noncoordinate) part of these fluctuations will smoothly tend to
zero as φ̇ → 0. In pure de Sitter the statement that the only nongauge excitations of the metric are TT is true on
all physical length scales, as shown in the next chapter.
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where
(
k
aH

)2 ≡ εLW ,
κβ2

H4 ≡ εSR. Although the right hand of the latter equation is in some sense

small, it is not zero. Therefore the linearized contribution to the equation of state, though highly

suppressed, will still depend on the details of the small parameters. This point may perhaps be

more obvious if one considers how the time evolution equation for the scalar field fluctuations (

during slow-roll ) is modified by the inclusion of the metric fluctuations, namely

Φ̈ + 3H

0

@1 − 1

9( κ(φ0−φ)
∂φln(V (φ))

− 9 εLW
εSR

)

1

A Φ̇ + 3H2
εLW

„

1 − 2

27

εSR

εLW

«

Φ = 0, 0 ≤ t� 3Hφ0

β
.(4.45)

This equation is the perturbed analogue of the conservation equation (2.21). It shows how the

gravitational fluctuations, at the linearized level, effectively induce a negative effective mass for the

fluctuating scalar field as well as modify the effective Hubble parameter - all in a way which depends

on what values we take for εSR, εLW . Since the longitudinal gauge (or equivalently, a longitudinal

choice of gauge invariant variables) admits no residual linearized coordinate tranformations, these

fluctuations cannot be associated with coordinate modes and are hence physical.

It is also important to note that the right hand side of (4.43) contributes at a given, fixed,

wavenumber k to the linear fluctuations δρ, δp. At higher order we generically expect that contri-

butions to the nearly homogeneous second order modes of δ2ρ and δ2p will be cumulative over a

broad range of k of the linear modes. It is this enhanced, cumulative, contribution to the second

order modes that can make the nonlinear contributions to the equation of state nontrivial. We

turn to this now.

4.5.1.2 Second order energy density and pressure perturbations at fixed k

Considering for a moment the situation at second order with fixed k, the partially gauge fixed

eigenvalues of the total stress-energy are, for the generic case with no gauge-fixing,

δ2p = − β

3H
(∂t + 3H)F +

β2

18H2
A+

1

2
(∂tΦ)2 − 12H2

32κ
ψ2 − 3H2

32κ
C2

+
3k2

2a2
Φ2 +

βΦ

3Ha2
kiB

i +
β2

18H2

(

−BiB
i

a2
+A2

)

+
β

3H
A∂tΦ (4.46)

δ2ρ = −δ2p+ 2βF − 93H2

4κ
ψ2 +

93H2

κ
C2, (4.47)

where C2 is the squared amplitude of the linear tensor fluctautions. As in the linear case, the

matter fluctuations F are related to the metric fluctuations via the second order constraints from

(4.14). The behaviour of the second order scalar perturbations will be influenced by not only the

constant scalar modes at linear order, but also the linear tensor-tensor terms. One would thus

expect that the scalar modes at second order will become time dependent. In fact, if we set a

gauge according to equations (4.25) and (4.26) in Section 4.4.1( so that at linear and second order
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the scalar sectors of the metric are diagonal) it can be shown this implies

t → t+
(

B − aĖ
)

+

[

B − a(2)Ė + 3E(3B − 10aĖ)k2 + 4(a2Ë +HĖ)(2aĖ −B) + 2aĖ(A− 5

2
aḂ)

+B(aḂ − 2A)− 2aEψ̇
]

(4.48)

xi → xi + ∂i
{

−E +

[

−(2)E − 33

2
k2E2 − 2ψE +

9

2
a2Ė2 − 1

2
B2 − 4aĖB

]}

(4.49)

then we obtain, using the spatial second order scalar field equations in this new coordinate system,

A = −Q+
2

3

[
(h+)2 + h+h− + (h−)2

]

︸ ︷︷ ︸

TT-TT sector

+ ψ2 − 2κΦ2

︸ ︷︷ ︸

Scalar-Scalar sector

, (4.50)

B = 0, (4.51)

(2)E = 0, (4.52)

where qij ≡ Qδij + (∂i∂i − δij
∆̄
3 )(2)E and h+, h− ∈ < denote the two TT independent degrees

of freedom of hij . Note that the second-order lapse A contains contributions from the TT-TT

gravitational wave contributions at linear order. In effect, this gauge choice is the longitudinal

gauge at second order in the scalar sector. It can easily be shown that it admits no nontrivial

residual scalar coordinate freedoms to second order. Within this gauge, under the slow-roll and

longwavelength approximations and using the constraints to express everything in terms of the

metric fluctuations16, the equations of motion for Q are

(∂2
t +H∂t)Q(t) = H2

[

24Ht− 162
k2

a2H2

(
H4

κβ2

)]

ψ2 +

[
70k2

3a2
− 2κβ2t

9H

]

C2, (4.53)

where C2 ≡
(
(h+)2 + h+h− + (h−)2

)
∈ <. The growing solution for Q(t) is, for a fixed k mode of

ψ, C, and assuming that a ∼ a0t
α with α >> 1, is

Q(t) ≈
{

24α2 ln(t)− 81k2α2

κβ2

(
t−2α

a2
0

)}

ψ2 +
35k2

3α2

(
t−2α

a2
0

)

C2 +D, (4.54)

where D is a constant of integration deduced by the initial conditions of Q, implicitly set to zero

by analogy with the linearized sector. This shows that the effect of a given linearized mode at some

k on the nearly homgeneous mode of Q(t) is to make it time-dependent, as expected.

When δ2p and δ2ρ are computed in this exhaustive coordinate system, using the second and

16See Appendix A for more details on the constraints and how they are used.
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linear order constraints, I obtain the following result for the dominant longwavelength contributions:

δ2p ≈ −3H(t)

κ
(H(t) + ∂t)Q(t)− 54H(t)6ψ2

κ2β2
− 3H2C2

16κ
(4.55)

δ2p+ δ2ρ ≈ +
216ψ2H(t)4k2

a2κ2β2
+

45H2C2

4κ
(4.56)

At first glance, it is immediately apparent that if we set C2 = 0,Q(t) = 0 (as Brandenberger et al

do in [41] and references therein) then we obtain δ2ρ < 0 but that δ2p+ δ2ρ is not in general zero

because of terms that involve ratios of small parameters:

δ2ρ ≈ −54
α6ψ2

κ2t6β2
(4.57)

δ2p+ δ2ρ ≈ +216
k2α4ψ2

a2
0t

2αt4κ2β2
, (4.58)

However, I do find that, given C2 = 0,Q(t) = 0, quadratic scalar-scalar backreaction contributions

generally do mimic that of a negative cosmological constant since (δ2p + δ2ρ)/δ2ρ ∼ (k/aH)2,

which is set to zero in their analysis. Nevertheless, for sufficiently slow-roll it seems worrisome that

for Hubble-scale size fluctuations the second order contributions δ2p and δ2ρ can be comparable

to δρ and δp at a given k, since as they stand equations (4.57) and (4.58) show that the second

order contributions carry ’extra factors’ of slow-roll enhancement compared to equations (4.43) and

(4.44).

However, I would like to emphasize that it is clearly inconsistent to set Q(t) to zero in our

approach since it is also of second order and in fact contains terms proportional to ψ2. Such

a tactic also violates the second order field equations, which take into account that the metric

fluctuation Q(t) at a given scale will receive contributions from all of the fourier linear modes under

consideration (in our case, as we explain below, from the horizon to an approximately homogeneous

cutoff). Furthermore since the purely second order contributions to the energy density and pressure

at these superhorizon scales are not constants but can evolve in comoving time, the contributions

may change significantly during the slow-roll era to the end of inflation.

In the following section I will examine the cumulative effect of the quadratic combinations of

linear modes, averaged over superhubble scales, onto a given scale of the purely second order modes.

For simplicity I will initially focus on the effect on the second order homogeneous mode alone. I

strongly emphasize that the main gauge-fixing of the paper, as described by relations (4.25) and

(4.26), is not well-defined in the strictly homogeneous limit k = 0. An appropriate gauge transfor-

mation must be made to sensibly take the homogeneous limit and make these manipulations, and

we discuss this in the next section.

4.5.1.3 IR (super-Hubble) contributions from the backreactions

We now consider the cumulative contributions to the energy density and pressure at second order

due to the superhorizon modes. Considering only super Hubble fluctuations we know from Section

4.2 that the dominant linear modes are independent of time since the background equation of



CHAPTER 4. SUPERHUBBLE BACKREACTIONS IN SLOW-ROLL INFLATION 62

state, during slow-roll, is approximately time-independent. In terms of the Fourier-decomposed

ψk, the quantum fluctuations (which we take to be Gaussian) during this era depend on k in

such a way that the fluctuations per decade are a constant, which is just a fancy way of saying

that something like equation (4.8) will hold. Although strictly speaking cosmological fluctuations

are quantized in terms of a reduced variable such as e.g. the Mukhanov-Sasaki (MS) variable

ν = a(Φ − β
3H2ψ) (as described in [4]), one can always use the linearized constraints to simply

relate (in the longwavelength limit) ν and ψ up to time-dependent factors. Indeed, the spatial

two-point correlation function of ψ is (after an angular integration)

< 0|ψ̂(t, ~x)ψ̂(t, ~x+ ~r)|0 >≡< ψ2 >=

∫ aH

kmin

dk

k

sin(kr)

kr

[
k3

4π2
|ψk(t)|2 ˙̄φ2

]

, (4.59)

where ψ̂(t, ~x) is the quantum operator associated with ψ, expanded in the classical basis of plane

waves. The Fourier transform of the two-point function is known as the power spectrum, and

completely characterizes Gaussian fluctuations in the sense that all higher correlation functions

can be expressed in terms of it. Here, |0 > is the vacuum chosen so that the modes of the reduced

MS variable νk obey νk(t0) ∼ k−1/2, ν̇k ∼ ik1/2 at some initial time t0, which in turns implies

a set of more complicated conditions on ψk which are not illuminating at this stage ( see [4] for

more details ). The metric fluctuations < ψ2 > at the horizon scale are related to the density

contrast fluctuations < (δρ/ρ̄)2 > by equations (4.37) and (4.38), and one can easily show that

< (δρ)2 >= 36(H4/κ2) < ψ2 >. Using all of this, it is relatively straightforward to show that

k3|ψk|2 =
1

4

H4

(2π ˙̄φ)2
=

1

4

9κ

εSR

(
H

2π

)2

, (4.60)

( see [46] for more details ). I take this relation to hold up to some almost homogeneous scale, say

k = kmin << aH , or in other words the infrared divergence of the linearized fluctuations is cut

off at some scale k = kmin, so that for k ∼ 0, |ψk|2 ∼ 0. The factors of 4 on the right hand side

come from using equations (4.42) and (4.43) to relate the fluctuations in the density contrast to the

fluctuations in ψ. Again, this is equivalent to the usual statement made about the power spectrum

in terms of the reduced Mukhanov-Sasaki variable ν (namely that k3|νk|2 ∼ H2

εSRm2
pl

, for mpl Planck

mass). It is worthwhile to notice that the corresponding result for the tensor amplitudes will not

be enhanced by a slow-roll factor, so we will ignore them in what follows.

Using equation (4.60) we can average over the quadratic combinations of linear fluctuations

to solve the constrained equation of motion for the diagonal second order homogeneous metric

fluctuation Q0(t), equation (4.48). Indeed, keeping only the dominant terms,

(∂2
t +H∂t)Q0(t) = 4π

∫ aH

kmin

(2)S(k)k2dk, (4.61)

where (2)S(k) = H2
[

24Ht− 162 k2

a2H2

(
H4

κβ2

)]

|ψk|2 and kmin << aH . Carrying out the integral

over k and solving equation (4.55), it is relatively straightforward to show that the dominant
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solution takes the form

Q0(t) ≈ κH2α

4πε2SR

(
272

10
− 6N

)

− 36NκH2

4πε2SR
ln(

aH

kmin
), (4.62)

where N =
∫
Hdt = α ln(t) is the number of e-foldings, and α = Ht >> 1 as described in Section

4.3. Using this result and performing similar integrations for the remaining terms in equations

(4.54) and (4.55), we finally obtain expressions for the contributions to the homogeneous mode of

δ2ρ and δ2p

δ2ρIR ≈ −3H

κ
(H + ∂0)Q0(t)−

∫ aH

kmin

54H6

κ2β2
4π|ψk|2k2dk

≈ H2

κ

(
κH2

4πε2SR

)[

−3α(
272

10
− 6N) + 36(N − 27

2
) ln(

aH

kmin
)

]

(4.63)

δ2pIR + δ2ρIR ≈
∫ aH

kmin

216H4

a(t)2κ2β2εSR
(4πk4|ψk|2)dk

≈ 2π
216H4

a2κ2β2εSR
(aH)2

(
9κH2

16π2

)

, (4.64)

We can immediately compare the magnitude of the leading homogeneous backreaction term in,

say, δ2ρIR/ρ̄, to the root mean square of the density contrast

√

< (δρ/ρ̄)
2
> during inflation by

using equation (4.63). One can demand a consistency condition for linearized theory, namely

that the second order contributions be subdominant compared to that of the linearized sector, i.e.

δ2ρIR <

√

< (δρ)2 >. If we use the expressions (4.60), (4.63) and (4.64) above, this demand is

crudely equivalent to the condition that, for N
>∼ 70,

εSR > (4κH2)1/4N3/4, (4.65)

i.e. the usual slow-roll condition will in general be violated if (κH2)1/5N2/5 > 1. Thus inequality

(4.65) suggests that the breakdown of the linearized approximation, in the strict sense of back-

reactions having a relatively larger amplitude, occurs when one assumes what may well be the

slow-roll condition for the background spacetime. Furthermore it is apparent that, although the

right hand side of (4.64) is not zero, the form of these dominant contributions is approximately

that of a cosmological constant since (δ2p+ δ2ρ)/δ2ρ ∼ −1/ ln(kminaH ) ∼ 0.

As I alluded to above, in the current gauge fixing I have chosen the homogeneous limit of the

fluctuations is not well defined since, by equation (4.60) and the linear order equation ψ = −A,

the lapse A will diverge as k → 0. However, the results are valid even if one makes a gauge

transformation which renders the superhorizon fluctuations well defined in the homogeneous limit.

Indeed, after making such a gauge transformation, then the homogeneous limit is taken and the

total lapse goes to the value 1 while the offdiagonal terms go to 0, the central feature of ‘slow-

roll‘ enhancement remains and the above arguments still apply. Let us consider how this works

explicitly by looking at the linear case. Choosing the infinitesimal gauge transformations to be

ζa = (T (t, k), kL(t, k), kL(t, k), kL(t, k)), we first note that Tk(t) must be, by equation (4.60) and
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the fact that δg′00 = δg00 − 2Ṫ , so that

Tk(t) = −3 lna

4π

√
κ

k3εSR
(4.66)

ensures that |Ak| → 0 for k → 0. Given this divergent gauge transformation of the comoving time,

we can ask for what Lk(t) we can can ensure the rest of the perturbations that appear in the metric

will be well-defined for k → 0. Since

£ζ ḡ0i = −T,i + a2L̇,i, (4.67)

in position space, then choosing Lk(t) = −
∫

ln a
k3/2

3
4a2π

√
κ
εSR

dt will render the shift B induced by

equation (4.67) to zero. The off-diagonal terms E induced in turn by this choice of L will be well

posed in the homogeneous limit since k2E is what appears in the metric, and this will decay as√
k. However, the diagonal spatial metric terms will in general receive a contribution of 2Ha2T ,

which will get large as k → 0. Since I implicitly use an IR cutoff of kmin, beyond which equation

(4.60) will not hold and may in fact be replaced by a relation which does not diverge with k, these

large contributions can be considered in some sense regulated17. I note in passing that kmin may

be related to the spatial Hubble scale at the start of inflation.

To second order the argument is very similar, only more tedious. Given the above choice for

the linear gauge-fixing as k → 0, we must pick a second order χa = ((2)T (t, k), 0, 0, 0) such that

the second order shift and offdiagonal spatial terms go to zero in the limit k → 0. Since

δ2g̃′0i = δ2g0i + δg00kiT + δgiik
iL̇+ δg

(i6=j)
ij kjL̇+ δgi0(Ṫ − 2k2L) + T∂0δg0i − k(2)T + (2)S

where (2)S ≡ a2kL̇(Ṫ − 12k2L)− kT (4Ṫ − 4aȧL̇− 6k2L− a2L̈), one can show that the choice

(2)T =
1

k

[
(2)S +AkT + 3ψkL̇

]

(4.68)

will yield δ2g̃′0i = 0. The offdiagonal, second order, spatial terms induced by the above transfor-

mation are

δ2g̃′ij
i6=j
= 2k2T 2 − 4ak2(2ȧL+ aL̇)T + 18a2k4L2, (4.69)

which at worst diverge as k−1. Since only the expression k2((2)E) appears in the metric, these

offdiagonal terms in the metric smoothly go to zero in the homogeneous limit. Once again the

spatial diagonal contributions to Q will grow large as k → 0.

Now we can finally address the total effect of all these transformations on the quantities of

interest, δ2ρ, δ2p. To second order, for example, δ2ρ will be Lie-dragged along ζa and χa according

17Of course, the functional form of the divergences may change with regulation, but the physics (the relative
amplitudes of δ2ρ, δ2p compared to δρ, δp) should not.
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to the tranformation

δ2ρ̃′ = δ2ρ+ (£2
ζ + £χ)ρ̄+ 2£ζδρ (4.70)

= δ2ρ+ 2(T∂0δρ− 3k2Lδρ) + (2)T ˙̄ρ+
(

T 2 ¨̄ρ+ T Ṫ ˙̄ρ− ˙̄ρk2LT
)

and similarly for the averaged pressures δ2p. Choosing the above expressions for T, L, (2)T , we

can see that the total effect on δ2ρ and δ2p will be to introduce terms that diverge like k but

are suppressed by factors of β. Such terms will be subdominant compared to the terms already

present in the original gauge, or in other words, the gauge transformation which renders the metric

diagonal in the homogeneous limit does not undo the dominant contributions to the energy density

and pressure at second order.

4.5.2 Comment on backreaction on inhomogeneous second order

modes

An important loophole in the above analysis resides in the fact that I compare the horizon scale

(frozen) amplitudes of the linearized fluctuations to that of the homogeneous sector of the second

order fluctuations. It is far from clear that this is an acceptable comparison to make, not least

because we are directly cutting off the divergence of the linearized fluctuations by imposing an IR

cutoff at k = kmin << aH and then comparing the amplitude of the second order fluctuations with

that of the linearized fluctuations well beyond the cutoff. A valid criticism of this result is thus

that it would be natural for the second order perturbations to dominate at the homogeneous scale

simply because we have cut off the linearized fluctuations long before comparing their amplitude to

that at second order, or in other words the spatial dependence induced by evaluating the (quantum

averaged) second order amplitude at some kmin < k = k̃ << aH may alter the conclusions of

inequality (4.65). See Figure 1. Furthermore, since in cosmology one does not typically compare

quantum averages18 but rather dispersions, we must actually compare the dispersions ρ, p at first

and second order.

Therefore, we need to compare the quantity

√

<
(
δ2ρIR
ρ̄

)2

> at some scale k̃ such that kmin
<∼

k̃ << aH to the horizon-scale amplitude of the linearized fluctuations

√

<
(
δρ
ρ̄

)2
∣
∣
∣
∣
k=aH

>, and see

if the the amplitude of the second order modes may still dominate over that of the linear modes

assuming slow-roll. Since the second order quantity will contain functions that are the square of

the square of the k-mode it is necessary to compute these quantities in a thorough manner. The

computation of the fluctuations of the operator δ2ρIR which are inherent in the expressions for the

dominant terms of <
(
δ2ρIR
ρ̄

)2

> is actually fairly involved, and in the next series of relatively

technical sections I first derive the expressions for the inhomogeneous case (k 6= 0) and then take

the homogeneous limit (k = 0).

En route to computing the required quantities, we consider the two and four point functions of

18The quantum average of the linearized energy density fluctuations < δρ > is just zero, which is not very
interesting. However < δρ2 >6= 0.
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Figure 4.1: All linearized modes in the shaded region, spanning from k = aH to k = kmin << aH
in spatial scale, are taken to seed second order modes at a particular value of k. The thick black
boundary indicates the Hubble scale, where the amplitudes of the linearized fluctuations freeze
out during slow-roll. We compare the amplitudes of the linearized fluctuations at the thick black
boundary to that of the second order fluctuations at k = k̃ and k = 0 (and ignore the influence of
suitably renormalized subhorizon (k > aH) modes at second order) during slow-roll.

the operator ψ. The case of the 2-point function, as treated broadly in Section 4.5.1.3 is relatively

simple to consider. Expanding ψk in terms of the creation and annihilation operators a, a† one can

write

ψk = ω~kak + ω∗
~k′
a†k′ , (4.71)

where ωk is equal to ( by analogy to the familiar Minkowski result ωk ∼
(
eikx√

2k

)

)

ωk =

√

1

a3

√
a

2k
eik/aH

(

1 +
iaH

k

)

The first term is a normalization term that goes as 1/
√
V since a3 corresponds to the volume

measure of a comoving observer. This solution to equation (4.42) (with the spatial gradient term

restored) is valid to within a couple of Hubble times on either side of the horizon exit, and during

this time the variation of H is negligible. Therefore it makes sense that, up to some phase factor

that varies slowly on the Hubble timescale, the expression of ωk has this simple form compared to

the flat space result.

Defining the 2-point function as

< ψ2 >≡<
∫

Ωk′

ψ(k′−k)ψk′d
3~k′ >
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we find that

< ψ2 > = <

∫

Ωk′

(ak′−kω(~k′−~k) + a†k′−kω
∗
(~k′−~k))(ak′ω~k′ + ω∗

~k′
a†k′)d

3~k′ > (4.72)

= <

∫

Ωk′

ak′−ka
†
k′ω(~k′−~k)ω

∗
~k′
d3~k′ >

= δ(−k) <
∫

Ωk′

ω(~k′−~k)ω
∗
~k′
d3~k′ >,

where Ωk′ indicates the superHubble range of integration for |~k′| ≡ k′, namely k′ ∈ [kmin +

k, aH ], kmin << aH . In other words, the quantum average of the 2-point function is only non-

trivial for homogeneous contributions, as suggested by the Poincare invariance of the linearized

fluctuations. In the following we will assume that the spectrum of modes is discrete by impos-

ing periodic boundary conditions on the spatially flat slicing of the background. In this manner

the delta functions that appear in the commutation relations of ladder operators simply become

Kronecker deltas and the volume normalizations are implicitly carried by the above definition of

ωk.

For the four-point function the situation is different. More specifically, we wish to compute the

‘square of the two-point function‘, i.e. we do not want technically want the four-point function

but rather the fluctuations in the operator ψ2. Indeed, denoting these fluctuations by < ψ4 > we

define (in thte continuum limit)

< ψ4 > ≡ <

∫

Ωk′

∫

Ωk′′

ψ(k′−k)ψk′ψ(k′′−k)ψk′′d
3~k′d3 ~k′′ >,

one may verify that

< ψ4 > =

(

<

∫

Ωk′

ψ(k′−k)ψk′d
3~k′ >

)2

(4.73)

+ <

∫

Ωk′

∫

Ωk′′

ψ(k′−k)ψ(k′′−k)d
3~k′d3 ~k′′ ><

∫

Ωk′

∫

Ωk′′

ψk′ψk′′d
3~k′d3 ~k′′ >

+ <

∫

Ωk′

∫

Ωk′′

ψ(k′−k)ψk′′d
3~k′d3 ~k′′ ><

∫

Ωk′

∫

Ωk′′

ψ(k′′−k)ψk′d
3~k′d3 ~k′′ >,

where similarly Ωk′′ indicates the superHubble range of integration for k′′, namely k′′ ∈ [kmin +

k, aH ]. Assuming that k 6= 0 we find that, using equation (4.72),

< ψ4 > = <

∫

Ωk′

∫

Ωk′′

ak′a
†
k′′ω~k′ω

∗
~k′′
d3~k′d3 ~k′′ ><

∫

Ωk′

∫

Ωk′′

ak′−ka
†
k′′−kω(~k′−~k)ω

∗
(~k′′−~k)d

3~k′d3 ~k′′ >

+ <

∫

Ωk′

∫

Ωk′′

ak′−ka
†
k′′ω(~k′−~k)ω

∗
~k′′
d3~k′d3 ~k′′ ><

∫

Ωk′

∫

Ωk′′

ak′′−ka
†
k′ω(~k′′−~k)ω

∗
~k′
d3~k′d3 ~k′′ >,
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which straightforwardly simplifies to

< ψ4 > =

(
∫

Ωk′′

|ω(~k′′−~k)|2d3 ~k′′

)[

1

4

9κ

εSR

(
H

2π

)2

4π ln(
aH

kmin
) +

∫

Ωk′

|ω(~k′−~k)|2d3~k′

]

(4.74)

using equation (4.60) for k > kmin. It turns out that we shall also require the expressions <

ψ(k′−k)ψk′ψ(k′′−k)ψk′′k
′2 > and < ψ(k′−k)ψk′ψ(k′′−k)ψk′′k

′′2k′2 > in what follows, so, using the

above, we find (for k 6= 0)

< ψ(k′−k)ψk′ψ(k′′−k)ψk′′k
′2 > =

(
∫

Ωk′

k′
2|ω(~k′−~k)|2d3~k′

)(
∫

Ωk′′

|ω(~k′′−~k)|2d3 ~k′′

)

+

(
∫

Ωk′

|ω(~k′−~k)|2d3~k′

)(
∫

Ωk′′

k′′
2|ω(~k′′−~k)|2d3 ~k′′

)

+

(
∫

Ωk′

k′
2|ω~k′ |2d3~k′

)(
∫

Ωk′′

|ω(~k′′−~k)|2d3 ~k′′

)

+

(
∫

Ωk′

|ω~k′ |2d3~k′

)(
∫

Ωk′′

k′′
2|ω(~k′′−~k)|2d3 ~k′′

)

(4.75)

and

< ψ(k′−k)ψk′ψ(k′′−k)ψk′′k
′′2k′

2
> =

(
∫

Ωk′

k′
2|ω(~k′−~k)|2d3~k′

)(
∫

Ωk′′

k′′
2|ω~k′′ |2d3 ~k′′

)

+

(
∫

Ωk′

k′
4|ω(~k′−~k)|2d3~k′

)(
∫

Ωk′′

|ω~k′′ |2d3 ~k′′

)

+

(
∫

Ωk′

|ω(~k′−~k)|2d3~k′

)(
∫

Ωk′′

k′′
4|ω~k′′ |2d3 ~k′′

)

+

(
∫

Ωk′

k′
2|ω(~k′−~k)|2d3~k′

)(
∫

Ωk′′

k′′
2|ω(~k′′−~k)|2d3 ~k′′

)

+

(
∫

Ωk′

k′
4|ω(~k′−~k)|2d3~k′

)(
∫

Ωk′′

|ω(~k′′−~k)|2d3 ~k′′

)

+

(
∫

Ωk′

|ω(~k′−~k)|2d3~k′

)(
∫

Ωk′′

k′′
4|ω(~k′′−~k)|2d3 ~k′′

)

(4.76)

Once again taking equation (4.60) to give the amplitude of the linearized quantum fluctuations

at horizon crossing and assuming this frozen amplitude for k′, k′′ << aH (up until k′, k′′ = kmin,



CHAPTER 4. SUPERHUBBLE BACKREACTIONS IN SLOW-ROLL INFLATION 69

where we cut it off) we complete the calculation, using

∫

Ωk′

|ω(~k′−~k)|2d3~k′ =

∫

Ωk′





∫ π

0

∫ 2π

0

1
(
k2 + k′2 − 2kk′ cos(θ)

)3/2
dφ sin(θ)dθ



 k′
2
dk′

=
1

4

9κ

εSR

(
H

2π

)2

4π

(
1

2
(ln(k′ − k) + ln(k′ + k))

)∣
∣
∣
∣

aH

kmin+k

≈ 1

4

9κ

εSR

(
H

2π

)2

4π

(

ln
aH

kmin
− 1

2
ln(1 + 2

k

kmin
)

)

, (4.77)

and similarly

∫

Ωk′

k′
2|ω(~k′−~k)|2d3~k′ =

1

4

9κ

εSR

(
H

2π

)2

2π
(

k′
2

+ k2(ln(k′ − k) + ln(k′ + k))
)∣
∣
∣

aH

kmin+k
(4.78)

≈ 1

4

9κ

εSR

(
H

2π

)2

2π

(

(aH)2 + 2k2

(

ln
aH

kmin
− 1

2
ln(1 + 2

k

kmin
)

))

,

along with (remembering again that k << aH)

∫

Ωk′

k′
4|ω(~k′−~k)|2d3~k′ =

1

4

9κ

εSR

(
H

2π

)2

π
(

k′
4

+ 2k′
2
k2 + 2k4(ln(k′ − k) + ln(k′ + k))

)∣
∣
∣

aH

kmin+k

≈ 1

4

9κ

εSR

(
H

2π

)2

π

(

(aH)4 + 4k4

(

ln
aH

kmin
− 1

2
ln(1 + 2

k

kmin
)

))

(4.79)

to obtain finally (using the fact that the k′, k′′ ranges of integration are identical)

< ψ(k′−k)ψk′ψ(k′′−k)ψk′′ > ≈ η

„

2(ln(σ))2 − 3

2
ln(σ) ln(γ) +

1

4
(ln(γ))2

«

(4.80)

< ψ(k′−k)ψk′ψ(k′′−k)ψk′′k
′2
> ≈ η(aH)2

 "

1 + 2

„

k

aH

«2

ln

„

σ√
γ

«

#

ln

„

σ2

2
√
γ

«

(4.81)

+
1

2
ln

„

σ√
γ

««

< ψ(k′−k)ψk′ψ(k′′−k)ψk′′k
′2
k
′′2
> ≈ η(aH)4

"

„

1

2
+

1

4
(ln(σ) + 3 ln

σ√
γ

)

«

+

„

k

aH

«2„
3

2
ln

σ√
γ

«

+

„

k

aH

«4
 

3

„

ln
σ√
γ

«2

+ lnσ ln
σ√
γ

!#

(4.82)

In the above, we define the dimensionless factors σ, γ, η as

σ ≡ aH

kmin
(4.83)

γ ≡ 1 +
2k

kmin
(4.84)

η ≡
(

9κπ

εSR

)2(
H

2π

)4

, (4.85)
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and once again we assume kmin << aH . We retain powers of k/aH for now simply for generality.

The long-wavelength approximation will kill off these terms later on in the calculation.

Finally, one can take the homogeneous limit (k → 0) of expressions (4.80)-(4.82), bearing in

mind that the squares of the two-point functions now contribute as shown by equation (4.72).

When we take the homogeneous limit of the above equations we find

< ψ4 >k=0 ≈ 3η (lnσ)
2

(4.86)

lim
k→0

< ψ(k′−k)ψk′ψ(k′′−k)ψk′′k
′2 > ≈ 3η(aH)2 lnσ (4.87)

lim
k→0

< ψ(k′−k)ψk′ψ(k′′−k)ψk′′k
′2k′′

2
> ≈ 3

2
η(aH)4

(
1

2
+ lnσ

)

(4.88)

which provides a coarse but useful check on the algebra to this stage. Now that the explcit

fluctuations of < ψ2 > have been computed we can move on to look at the other terms that occur

in < (δ2ρIR)2 >.

4.5.3 Second order equations of motion and correlation functions at

second order

In order to compute the full quantity δ2ρ(k)δ2ρ†(k) we shall formally encounter two-point functions

not only involving ψk, but also those involving the second order fluctuations Qk, e.g.

<

∫

Ωk′

LQk′−kLQk′d3~k′ >, (4.89)

where L ≡ (∂0 +H). Of course, by solving the second order equations of motion these sorts of

expressions can be reduced to four-point functions involving only ψk. We now show how this

reduction is accomplished.

Using equation (4.61) and the fact that Ḣ = −H2 εSR
18 , one can easily show via by-parts inte-

gration19 that

LQk =

∫ t ∫

Ωk′

(2)S(t′, k′; k)d3~k′dt′ +
1

18

∫ t ∫

Ωk′

εSRH(t′)2Q(t′, k′; k)dt′d3~k′, (4.90)

i.e. we compute the first integral of the reduced second order equation of motion. A tedious

integration reveals that the leading terms of the latter integral over Q are suppressed by a factor

of εSR/α compared to those of the first term. Therefore we ignore the latter terms and write

LQk ≈
∫ t ∫

Ωk′

(2)S(t′, k′; k)d3~k′dt′ (4.91)

19In operating on expressions involving H,a, etc., we always first assume the time dependence of a(t) =
a0tα, H(t) = α/t before the operation, and only after the operation take the limit of α >> 1, α/t → H ∈ <.
So, for example,

R

Hdt = α ln(t) 6= Ht before taking the limit α >> 1.
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which immediately leads us to the expression, again using equation (4.61),

< LQk > = <

Z t Z

Ωk′

H(t′)2
 

24H(t′)t′ − 162
k′

2

a(t′)2H(t′)2
H(t′)4

κβ2

!

ψ(k′−k)ψk′d
3 ~k′dt

′
> (4.92)

Equation (4.92) allows us to evaluate the relevant quantities which will appear in the expression for

δ2ρ(k)δ2ρ(k), such as (4.89) and <
∫

Ωk′

∫

Ωk′′
LQ(t′, k′; k)ψ(k′′−k)ψk′′d

3~k′d3 ~k′′ >. Notice that LQ
has units inverse seconds, as makes sense since the metric fluctuations are defined as dimensionless.

Using our earlier results, we find that

<

∫

Ωk′

LQk′−kLQk′d3~k′ > = <

∫ t

H2

(

24Ht′ − 162
k′2

a2H2

H4

κβ2

)
∫

Ωk′

ψ(k′−k)ψk′d
3~k′dt′ (4.93)

×
∫ t

H2

(

24Ht′′ − 162
k′′2

a2H2

H4

κβ2

)
∫

Ωk′′

ψ(k′′−k)ψk′′d
3 ~k′′dt′′ >

and

<

∫

Ωk′

∫

Ωk′′

LQ(t′, k′; k)ψ(k′′−k)ψk′′d
3~k′d3 ~k′′ >=<

[
∫ t

H2

(

24Ht′ − 162
k′2

a2H2

H4

κβ2

)

∫

Ωk′

ψ(k′−k)ψk′d
3~k′dt′

]

×
∫

Ωk′′

ψ(k′′−k)ψk′′d
3 ~k′′ >, (4.94)

where the appropriate time dependences of a(t) ∼ a0t
α, H(t) ∼ α/t are assumed above (as properly

shown in equation (4.92)). Expanding the above expressions (assuming once again that the ranges

of integration for k′, k′′ are the same, as above), we obtain

<

Z

Ωk′

LQk′−kLQk′d
3~k′ > =

Z t Z t

H(t′)3H(t′′)3(24)2t′t′′ < ψ
4
> dt

′
dt

′′ (4.95)

−
Z t Z t

H(t′)4H(t′′)3(24t′)

„

162

a(t′)2κβ2

«

< ψ
4
k
′2
> dt

′
dt

′′

−
Z t Z t

H(t′′)4H(t′)3(24t′′)

„

162

a(t′′)2κβ2

«

< ψ
4
k
′′2
> dt

′
dt

′′

+

Z t Z t

(162)2H(t′)4H(t′′)4
„

1

a(t′)2a(t′′)2κ2β4

«

< ψ
4
k
′2
k
′′2
> dt

′
dt

′′

and similarly

<

∫

Ωk′

∫

Ωk′′

LQ(t′, k′; k)ψ(k′′−k)ψk′′d
3~k′d3 ~k′′ > = 24

∫ t

H2(Ht′) < ψ4 > dt′ (4.96)

−162

∫ t

H2 1

a2H2

H4

κβ2
< ψ4k′

2
> dt′,

where we define < ψ4 >≡< ψ(k′−k)ψk′ψ(k′′−k)ψk′′ >,< ψ4k′2 >≡< ψ(k′−k)ψk′ψ(k′′−k)ψk′′k
′2 >

and < ψ4k′′2k′′2 >≡< ψ(k′−k)ψk′ψ(k′′−k)ψk′′k
′2k′′2 > all integrated over k′, k′′, as in the above

sections.



CHAPTER 4. SUPERHUBBLE BACKREACTIONS IN SLOW-ROLL INFLATION 72

Inserting expressions (4.80) through (4.82) (and using (4.77) and (4.79) to perform the temporal
product integrations in (4.95) [which amount to symmetrization in t′, t′′] ) into (4.95) and (4.96)
we obtain (for k 6= 0)

<

Z

Ω
k′

LQ
k′−kLQ

k′d
3 ~k′ >=

Z t Z t
H(t′)3H(t′′)3(24)2t′t′′ η̃

„

2(ln(σ̃))2 −
3

2
ln(σ̃) ln(γ) +

1

4
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«

dt′dt′′
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t
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′
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4
H(t
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3
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4
H(t

′′
)
4
 

1

a(t′)2a(t′′)2κ2β4

!

η̃(ãH)
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(ln(σ̃) + 3 ln

σ̃

√
γ

)

!

+

 

k

ãH
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+ ln σ̃ ln
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dt
′
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′′
(4.97)

and

<

Z

Ω
k′

Z

Ω
k′′

LQ(t
′
, k

′
; k)ψ

(k′′−k)ψk′′d
3 ~k′d3 ~k′′ >= 24

Z t
H

2
(Ht

′
)η

„

2(ln(σ))
2 −

3

2
ln(σ) ln(γ) +

1

4
(ln(γ))

2
«

dt
′

−162
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2 1
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κβ2
η(aH)
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@
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ln
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@
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2
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γ

1
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1

2
ln

 

σ

√
γ

!

1

A dt
′
, (4.98)

where we remind the reader that σ, γ, η are defined in definitions (4.83)-(4.85) and the˜ symbol

denotes symmetrization in t′, t′′. One can once again verify that the dimensions of all of the terms

in equations (4.97) and (4.98) are inverse seconds squared and inverse seconds respectively, as

required.

Once again we can immediately take the homogeneous limit directly from the above equations

(again remembering to add in the contributions from the squares of the averages of the two point

functions, as before), or by using the relations (4.86)-(4.88) directly in (4.97) and (4.98). For

example, the result for limk→0 <
∫

Ωk′

∫

Ωk′′
LQ(t′, k′; k)ψ(k′′−k)ψk′′d

3~k′d3 ~k′′ > is, putting in the

explicit time dependence of the background,

lim
k→0

<

Z

Ωk′

Z

Ωk′′

LQ(t′, k′; k)ψ(k′′−k)ψk′′d
3 ~k′d

3 ~k′′ > =

"

3(24)
(9κπ)2

(2π)4
α15

κ2β4

Z t dt′

t′14

„

ln
a0t

′αα

t′kmin

«2

−3(162)
(9κπ)2

(2π)4
α18

κβ2κ2β4

Z t dt′

t′18
ln
a0t

′αα

t′kmin

–

(4.99)

and similarly for limk→0 <
∫

Ωk′
LQk′−kLQk′d3~k′ >. The key issue is now one of simplifying

(4.97)-(4.98) to extract their dominant parts (those ’most enhanced’ by factors of the slow-roll

parameter). It should be noted that this is complicated by the fact that the dependence on the

slow-roll parameter is not just carried through factors of V ′ ∼ β, but also through α, which in the

Section 4.3 we defined to be proportional to 1/
√
εSR. Therefore we must, to be safe, carry out the

time integrals before we make the approximation that α >> 1, εSR << 1, α/t→ H ∈ < epsecially

since, just as differentiation in comoving time of the scale factor generally introduces factors of the

slow-roll parameter in the numerator of a given expression, integration introduces factors in the

denominator. This is the reason it is not immediately obvious the second term in equation (4.90)

is subdominant to the first term.
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We begin in the simpler case of the homogeneous limit. In that case, one can for example show

that the dominant terms for the following integrals are (for α >> 1):

∫ t dt′

t′14

(

ln
a0t

′αα

t′kmin

)2

≈ − 2α2

2197t13
− 2α

2197t13
(13 lnσ − 2) (4.100)

∫ t dt′

t′18

(

ln
a0t

′αα

t′kmin

)

≈ − α

289t17
+

1

289t17
(−17 lnσ + 1) (4.101)

and similarly for the other integrals required. Using these sorts of integrals in equations (B11) for

example, one can show that

lim
k→0

<

Z

Ωk′

Z

Ωk′′

LQ(t′, k′; k)ψ(k′′−k)ψk′′d
3 ~k′d

3 ~k′′ > = −3(162)
(9κπ)2

(2π)4
H5

289εSR
3

ˆ

−α2 + α(−17 ln(σ))
˜

,

(4.102)

and similarly for limk→0 <
∫

Ωk′
LQk′−kLQk′d3~k′ >.

For the full inhomogeneous problem we can make excellent use of the long-wavelength approx-
imation to rewrite equations (4.97) and (4.98) as

<

Z

Ω
k′
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k′−k LQ
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3 ~k′ >=

Z t Z t
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(4.104)

It turns out the dominant terms in these integrals are, for α >> 1 and εSR << 1,

<

Z

Ωk′

LQk′−kLQk′d
3 ~k′ > ≈ − 531441κ2H6

360448π2εSR
4

[192α + 7040 ln(σ) − 2112 ln(γ)]

(4.105)

<

Z

Ωk′

Z

Ωk′′

LQ(t′, k′; k)ψ(k′′−k)ψk′′d
3 ~k′d

3 ~k′′ > ≈ κ2H5

4624π2εSR
3

ˆ

32805α2 − 6561α(−85 ln(σ) + 51 ln(γ))
˜

,

(4.106)

where we note that k dependence comes in solely from the ln(γ) terms and that the dimensions

of equations (4.105) and (4.106) are respectively inverse seconds squared and inverse seconds, as

required.

We are now finally in a position to collect all of these results, namely, equations (4.105)-(4.106)

and (4.73) (and (4.80)-(4.82), (4.90)), to fully evaluate the quantity

√

<
(
δ2ρIR
ρ̄

)2

> at some scale k̃
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such that kmin < k̃ << aH (and also at k̃ = 0). The goal, once again, is to compare the magnitude

of this term to the horizon-scale amplitude of the linearized fluctuations

√

<
(
δρ
ρ̄

)2
∣
∣
∣
∣
k=aH

>.

Using all of these above results, one may write the averaged square of the dominant contributions

to the second order IR pressure contribution (or energy density, etc.) as

< δ2pIR(k)δ2p†IR(k) > ≈ <

∫

Ωk′

∫

Ωk′′

(
54H2

κεSR

)2

ψ(k′−k)ψk′ψ(k′′−k)ψk′′d
3~k′d3 ~k′′ >

+ <

∫

Ωk′

(
3H

κ

)2

LQk′−kLQk′d3~k′ >

+ <

∫

Ωk′

∫

Ωk′′

(
6H

κ

54H2

κεSR

)

LQ(t′, k′; k)ψ(k′′−k)ψk′′d
3~k′d3 ~k′′ >(4.107)

Putting in the results from all of the above appendices we find that the dominant terms are of the

form

< δ2pIR(k)δ2p†IR(k) > ≈
(
H2

κ

)2
κ2H4

ε4SRπ
2

(
A1α

2 + α (B1 ln(γ) + C1 ln(σ))
)
, (4.108)

where

A1 ≡ 2657205

1156π2
(4.109)

B1 ≡ −1594323

68π2
(4.110)

C1 ≡ 2657205

68π2
(4.111)

It is important to note that the details of this calculation confirm that the naive guess ventured in

the Section 4.3 holds: there are solutions of the diffeomorphism constraints of general relativity, at

second order in perturbation theory about a slowly rolling background, which introduce a factor

of 1/εSR into any expression of δ2ρIR and δ2pIR, and these factors survive through quantum

averaging. A second order gauge transformation cannot eliminate the presence of such slow-roll

enhanced terms.

Thus, finally, comparing the amplitudes of the second order fluctuations at kmin < k = k̃ <<

aH to the amplitudes linearized fluctuations at the horizon scale, k = aH , we see that

√
√
√
√<

(
δp

p̄

)2
∣
∣
∣
∣
∣
k=aH

> >

√

<

(
δ2pIR
p̄

)2

>

∣
∣
∣
∣
∣
∣
k=k̃

is equivalent to demanding that

Ã2
√
κH√

εSRπ
>

κH2

εSR2π2

√

A1
N

εSR
+

√

N

εSR
(B1 ln(γ) + C1 ln(σ)), (4.112)
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where α2 = N/εSR, Ã2 = 9
16 . We can see that the spatial dependence is subdominant in the sense

that it is multiplied by a lower power of α: in other words, the homogeneous fluctuations (mean)

are not, in the slow-roll limit, altered by the finite corrections which occur when one evaluated at

the finite spatial scale of k = k̃ << aH . We also note that (4.112) is positive definite, as it should

be, since k << aH . Thus, we find that

εSR >
2

3
(κH2)

1
4 (A1N)

1
4 (4.113)

is the consistency condition for linearized theory at second order. Given that N ∼ 70, A1 ∼ 200,

(4.113) implies e.g. that for κH2 ∼ 1 ↔ H2 ∼ mplanck
2 the slow-roll condition must be violated.

We see that the amplitude of the second order flucuations in our quantity δ2ρIR dominates the

corresponding linearized amplitude if the background spacetime is rolling slowly enough and κH2

is large enough, as it is in many models. Note also the appearance of the number of e-foldings

N , which indicates, as previously shown, that this effect is a cumulative effect which depends on

the growth of the phase space of superhorizon modes. It is worth emphasizing that bound (4.113)

provides a quantitatively stronger restriction than a similar bound given by Abramo, Mukhanov,

and Brandenberger in equations (106)-(108) of [47]. This is so because

• bound (4.113) is already strongly saturated (violates the slow-roll condition) at the backre-

action scales given by [47];

• bound (4.113) is stronger than what would equivalently be found in the effective approach

used in [47] because here one evaluates the relative amplitudes of the first and second order

fluctuations at an inhomogeneous scale which is well before any IR cutoff. Since the effective

method cannot address backreactions on inhomogeneous modes, as discussed in Section 4.3,

it is perhaps not surprising that the bounds obtained are different.

The violation of this inequality (4.113) in any models of inflation casts doubt on the viability of

the linearized approximation to those slowly rolling spacetimes, simply because nonlinear effects

dominate any linear effects. However, as I imply in the caption to Figure 1 above, this calculation

would ultimately contain formally divergent subhorizon contributions to δ2ρ, δ2p and it is this real

phsyical effect of the coupling between subhorizon (UV) modes with superHubble (IR) modes that

will reveal the observable importance of backreaction effects for local observers.

4.6 Summary and Conclusion

To summarize, I study the perturbations of the inflationary slow-roll spacetime which are at second

order in the metric and matter fluctuations. I follow a procedure of consistently (though probably

not convergently) expanding the Einstein equations to second order and solving them assuming the

zeroth and linear order equations hold. In order to isolate the physical degrees of freedom in the

second order fluctuations, a longitudinal gauge-fixing procedure is used at second order. Namely,

I specify two independent infinitesimal, inhomogeneous, coordinate transformations (gauges), one

at linear order and one at second order, which admit no residual coordinate freedoms. Within this
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coordinate system we evaluate the fluctuations of two independent background scalars formed from

the stress energy and from them define the fluctuations, to second order, of the isotropic energy

density δ2ρ and pressure δ2p. These fluctuations will not only arise from second order scalar

modes but also from quadratic combinations of scalar-scalar and tensor-tensor modes at second

order. Whereas the nondecaying linear scalar and tensor modes are constants at these scales (the

vector modes die away), the nondecaying second order modes are time dependent and this leads

to time-dependent δ2ρ and δ2p which depend sensitively on the initial conditions of the second-

order modes. Futhermore, given that we have three effective small parameters in this problem (a

slow-roll parameter, the strength of the metric and matter fluctuations, and the longwavelength

approximation (H2/λ2 << 1), we find that our δ2ρ and δ2p depend sensitively on the hierarchy of

small parameters one assumes in the sense that ambiguous terms like (k2/H2a2)(H4/κβ2) appear

in the mode expansion of δ2ρ, δ2p. For the (incomplete) case of just scalar-scalar backreactions and

no genuinely second order metric or matter fluctuations, we find that δ2ρ < 0 but that δ2p+δ2ρ 6= 0

in general. We find that the second order contributions to the energy density and pressure can,

with the assumption of slow-roll, dominate over the second order linear contributions to the energy

density and isotropic pressure given a broad range of initial conditions.

I conclude that when one truly goes to second order and solves the Einstein equations for the

higher order classical fluctuations, they do approximately lead to a cosmological constant type of

contribution in this gauge. Furthermore, it seems that these higher order corrections dominate

the linear terms if slow-roll holds in the background, suggesting the breakdown of the linearized

approximation. Some previous calculations of higer order superhorizon effects (of which we are

aware) have used a procedure which effectively takes the expectation value of the gauge-fixed

metric before forming some sort of ‘invariant‘ measure of the expansion with which to probe ’local’

backreaction, i.e. gauge fixing before taking the expectation value. Such a procedure suffers

from higher order gauge ambiguities, and at least for a model with massless, minimally coupled

scalar with quartic self-interaction (no gravity) one can first form a desired ’invariant’ and then

take expectation values and gauge fix this result (see for example [35], and also [32] ). Further

investigations along this line will almost certainly prove useful, and one pay-off seems to be new

ideas for observables in backreactions, such as recently described in [48]. In any event, perhaps

some use can be made of the point of view advanced in this thesis, which is that the eigenvalues of

the mixed valence total stress energy of to second order in IR fluctuations can give useful insights

into backreactions without the additional complication of disentagling the physics from the gauge

properties of the tensor < δ2Tµν >.

I would also like to note an ancillary result which is a consequences of the above work. Namely,

in second order in perturbation theory about pure de-Sitter (no-roll), the scalar sector is nontrivial.

This fact can be of possible use in the literature, where it is sometimes a confusing issue. This fact

can also be seen by e.g. examining the second order gauge fixing (4.48)-(4.49) in the main paper

or the reduced equation of motion for Q, equation (4.61), which shows that the TT sector will

mix with and source a nontrivial scalar sector at second order when εSR → 0. It is perhaps worth

emphasizing that the extra metric functions one can fix in flat, vacuum, spacetime and special

spacetimes like de Sitter are generic, but obey field equations. Though they correspond to residual
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degrees of freedom specified only on an initial value surface, they are completely determined by

equations of motion they also satisfy. Therefore any residual gauge fixing makes crucial use of the

equations of motion to set additional terms to zero via a gauge transformation. This is implicitly

shown in the formal gauge-fixing considerations of Chapter 5.

Finally, as indicated in Section 4.3, the procedure used here does not say anything about what

an observer would measure as the averaged cosmological constant in his own obserable patch of

the universe. In other words, the suitably renormalized subhorizon contributions to δ2p and δ2ρ

will allow a probe of the possibly crucial physics of the coupling of subhorizon and superhorizon

modes in inflation and possibly shed some light on what we even mean by local modifications to

a cosmological constant. Certainly the proof of the appearance of nonanalytic terms such as N
εSR

in the second order expansions of perturbation theory in slow-roll spacetimes is only a small step

in this direction. The reader is left to judge the significance of the suggestive calculations in this

Chapter in this light.
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CHAPTER 5

BACKREACTIONS IN DE SITTER

5.1 Introduction

The final project of this thesis deals with backreactions in de Sitter space. In Section 5.2 I set the

context of the calculation up by briefly extending the comments below equation (4.2) to discuss

some of the properties of deSitter spacetimes, following closely the excellent discussion in [49]. This

is done first in a geometric way, by reviewing the symmetries and briefly indicating why I pick a

particular slicing, and then by examaining the equations of motion for a massive, free particle in

de Sitter. In Section 5.3 I motivate the backreaction problem in pure de Sitter and contrast it with

the same problem in inflationary slow-roll spacetimes as discussed in Chapter 4. The equations of

motion are derived for the backreactions, which are expressed in terms of various approximations

which are also defined. Also, I go through the procedure of classical gauge-fixing and show that

there are no quantum anomalies which arise in the quantum case (heavily relying on recent results

of Hollands and Wald in ([50], [51]). In Section 5.4 the quantum analogues of the LS conditions

considered in Chapters 2 and 3 are formulated for this case, and are proven to have no quantum

anomalies. In Section 5.5 I discuss the constraints that the LS conditions impose on the physical

states (namely, de Sitter invariance) of the quantized gravitational perturbations and outline ways

in which to satisfy them. Section 5.6 summarizes the Chapter. The main results are the imposition

of strict de Sitter invariance on all the physical states (not just the vacuum) and a sketch of how

to construct de Sitter invariant states.

5.2 de Sitter space

We know from elementary particle physics that physical processes are invariant to great accuracy

under the Poincare group (the Lorentz group of Special Relativity plus spatial translations). How-

ever, one of the key ideas that apparently led Einstein to general relativity also asserts that the

very existence of local inertial frames which are related by Lorentz transformations is due to the

large scale distribution of matter in the universe. This idea is known as Mach’s Principle, and is

in many ways encapsulated by Einstein’s field equations (2.8). One cosmological consequence of

Mach’s principle is that it prevents one from imagining the universe rotating as a whole, since it

has nothing to rotate with respect to1. Large scale observations suggest strongly that the matter

distribution is isotropic on cosmological scales, and application of Mach’s holistic principle suggests

that local Poincare invariance is a logical result. However, we also know from recent observations

that the universe is not globally flat and is in fact expanding. If we also assume uniformity in time

1Whereas in Newtonian physics one could imagine some global rotation with respect to a rigid axis.
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(in addition to spatial isotropy), then it turns out that Einstein’s equations (2.8) have two classes of

solutions discovered by and named after the Dutch astronomer Wilhelm de Sitter. In both classes

the de Sitter solutions describe an expanding universe where the wordlines of celestial objects are

geodesics whose radial velocity is exactly proportional to their radial distance away from any point

in the space, and as intimated below equation (4.2) the energy density of the matter and space

does not change at all with this expansion. In the language of Chapter 4 (specifically, equations

(4.1) and (4.2)) this implies that if we think of the matter sourcing this expansion as a scalar field,

then it has no gradients and can only have a constant potential, or in other words the only possible

stress energy is proportional to the metric times a (cosmological) constant Λ. In this Chapter I

will only study the case with a positive Λ, which is just called the de Sitter spacetime. The case

with negative Λ is called the anti de Sitter spacetime.

The de Sitter spacetimes are invariant under a ten-parameter group called the de Sitter group,

often labelled SO(4,1) in the de Sitter case and SO(3,2) in the anti de Sitter case. In the limit

of zero curvature SO(4,1) reduces (or more properly, ’contracts’) to the Poincare group, just as

the Galilei group is the contraction of the Poincare group in the limit of an infinite speed of

light. The replacement of the Poincare group in de Sitter spacetimes means e.g. that the regular

translation group is not valid in de Sitter, implying a loss of the usual laws of momentum and energy

conservation. These laws will be replaced by similar laws corresponding to the notion of translation

in de Sitter, just as as the finiteness of the speed of light introduces Lorentz contraction/dilation

factors in the usual laws of Newton. Furthermore, the centre of the de Sitter group (its so-called

Casimir invariants) will provide additional important information on what it precisely means to be

invariant under the de Sitter group. Generically we may intuit that the new laws will mix time and

space in some manner, and this expectation is borne out below. We start by using the fact that the

de Sitter solutions are maximally symmetric, which technically means they are conformally flat (i.e.

conformal to Minkowski spacetime). Maximal symmetry can be shown in much the same way the

spatially isotropic spacetimes were investigated in Section 2.1, the principal difference being that

the full, four dimensional Riemann curvature tensor Rabcd will now be proportional to the quantity

gc[agb]d since temporal isotropy is also required. The conformal part of this quantity, which is by

definition the traceless part, is zero by simple simultaneous contraction of the first and third and

second and fourth indices. In fact, the condition of conformal flatness and maximal symmetry is

equivalent to demanding Rab − 1
4Rgab = 0, which means the Riemann tensor is determined by

the Ricci scalar (R = 4Λ ) alone. In that sense one may regard the stress energy content of the

maximally symmetric spacetimes as that or a perfect fluid with equation of state p = −R/4κ = −ρ.
The metrics of maximally symmetric, conformally flat, spacetimes can be be cast by definition

into the form

ds2 = Φ2ηµνdx
µdxν , (5.1)

where ηµν = diag(−1, 1, 1, 1) is the Minkowski metric in global inertial coordinates and Φ is the

so-called conformal factor. One can further define two Lorentz invariants: dτ 2 = −dxµdxµ and
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σ2 ≡ xµxµ, in terms of which the conformal factor may be written conveniently as

Φ(σ2) =

(

1 +
σ2

4R2

)−1

, (5.2)

R being the radius of curvature of the de Sitter spacetime (dS) (so that R→∞ implies flatness, i.e.

Φ → 1). Now, owing to maximal symmetry, dS as defined by the metric (5.1) can be completely

embedded in a flat five dimensional Minkowskian space with coordinates ζi such that

ζaζ
a = −ζ0ζ0 + ζ1ζ

1 + ζ2ζ
2 + ζ3ζ

3 + ζ4ζ
4 = R2 ≡ 3

Λ
, (5.3)

where latin indices range from 0 to 4. We can find out how xµ and ζa are related by demanding

equation (5.3) hold. Indeed, supposing we set (using equation (5.2))

ζµ = Φxµ (5.4)

ζ4 = B, B ∈ <, (5.5)

then we arrive at the condition that (using g44 = +1)

B2 = R2Φ2

(

1− σ2

4R2

)2

, (5.6)

meaning one can write equations (5.4) and (5.5) as

ζµ = Φxµ (5.7)

ζ4 = ±RΦ

(

1− σ2

4R2

)

(5.8)

One may invert these relations to find

xµ =
2ζµ

1 + ζ4
R

(5.9)

σ2

4R2
=

1− ζ4
R

1 + ζ4
R

, (5.10)

which simply represent the four dimensional coordinates xµ as sterographic projections from the five

dimensional embedding surface onto the de Sitter space. Selecting the ζ4 coordinate to represent

a spacelike dimension and insisting that the ratio ζ4
R is real specializes to the case of postive Λ,

which is what I exclusively discuss in this thesis.

The generators of the de Sitter group are thus the generators of ‘rotations‘ (the Lorentz group)

of the five dimensional embedding surface. One may write these rotations as orthogonal, five

dimensional, matrices Rab such that

ζ ′
a

= Rab ζ
b, (5.11)
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i.e. RabR
c
a = δcb where the δ function is a five dimensional Kronecker identity matrix. This implies

ζ ′aζ ′a = ζaζa, and furthermore the six dimensional subgroup under which

ζ ′
µ
ζ ′µ = ζµζµ (5.12)

also induces the Lorentz transformations under which σ2 = σ′2, where Greek indices run over four

dimensions. However, the key point here is that the remaining four transformations, which mix the

spacelike ζ4 and the one timelike and three spacelike ζµ induce nonlinear ‘boost‘ transformations

of the sterographic coordinates xµ. These turn into four simple translations in the limit of R→∞,

and in this way the de Sitter group ’contracts’ to the Poincare group in the limit of zero curvature.

This subtle point is best seen by calculating the limit of zero curvature for the so-called ‘centre‘

of the de Sitter group, i.e. the quantities which are invariant under de Sitter transformations. To

this end it is useful to try to find an explicitly de Sitter invariant quantity which reduces to the

standard interval between two points x and x′ of the Poincare group. Namely, we wish to generalize

z(x, x′) ≡ (xµ − x′µ)((xµ − x′µ) (5.13)

for the case of the de Sitter group. It is not hard to guess by the above comments that

Z(x, x′) ≡ (ζa − ζ ′a)(ζa − ζ ′
a
) (5.14)

=
3

Λ
+

3

Λ
− 2ζ ′

a
ζa

is a good candidate, where in the second line I have used equation (5.3) to deduce that Z is only

a function of the cross-term ζ ′aζa. Using equation (5.7), it is then easy to see that

Z(x, x′) = Φ(σ2)Φ(σ′2)z(x, x′) =
z(x, x′)

(1 + σ2

4R2 )(1 + σ′2

4R2 )
(5.15)

is the de Sitter invariant we desire. An important notion throughout this chapter will be one of

whether or not a given function is de Sitter invariant, and using the above I will call any quantity

which is a function of Z alone de Sitter invariant.

5.2.1 Classical dynamics in de Sitter spacetime

To get a better handle on the key differences between de Sitter spacetimes and flat spacetimes,

consider the dynamics of a massive test particle in de Sitter. The classical equations of motion are

derived from extremizing the proper time along the worldline of the particle, i.e.

δ

∫

ds = 0 = δ

∫

Φdτ (5.16)

which will be extremized if the Euler-Lagrange equations

d

dτ

(

Φ
dxµ
dτ

)

= ∂µΦ (5.17)
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hold. Letting pµ ≡ mΦ
dxµ
dτ , where m is the mass of the particle, we may rewrite equations of

motion (5.17) as

pµ,τ = −mΦ2xµ
2R2

(5.18)

Now, as I indicated in the Introduction to this Chapter it is reasonable to intuit that space and

time will be unified in a certain sense that generalizes the concept in flat spacetime that a free

particle has a constant linear and angular momentum. In de Sitter this statement translates to a

free particle having a constant ‘angular momentum 10-vector‘ [49]. By analogy with flat spacetime,

one may define this angular momentum to be

`ab ≡ m(ζaζb,s − ζbζa,s), (5.19)

and further let

πµ =
`4µ
R

(5.20)

Using equations (5.7) and (5.8) one can show (recalling again that pµ ≡ mΦ
dxµ
dτ )

`µν = m

[

Φxµ

(

Φ
d

Φdτ

)

xν − Φxν

(

Φ
d

Φdτ

)

xµ

]

= xµpν − xνpµ (5.21)

and, in complete detail,

πµ =
m

R

[(

RΦ(1− σ2

4R2
)

)(

Φ
d

Φdτ

)

xµ − Φxµ

(

Φ
d

Φdτ

)(

RΦ(1− σ2

4R2
)

)]

=

(

Φ(1− σ2

4R2
)

)

pµ −
mΦ

R
xµR

(

Φ
d

Φdτ

)(

RΦ(1− σ2

4R2
)

)

=

(

Φ(1− σ2

4R2
)

)

pµ −mΦxµ

[

−(xν),τ
xν
2R2

]

=

(

Φ(1− σ2

4R2
)

)

pµ +
pνxνxµ

2R2
(5.22)

Now, since `µνxν = xµpνxν − xνpµxν , then one can reexpress the last term in (5.22) in terms of

the angular momentum tensor in four dimensions `µν . Indeed, one finds

πµ =

(

Φ(1− σ2

4R2
)

)

pµ +
1

2R2

[
` νµ xν + σ2pµ

]

=
pµ
Φ

+
`µνx

ν

2R2
(5.23)

and furthermore it is obvious that limR→∞ πµ = pµ. For finite R however we see that energy

and momentum conservation are not defined using pµ alone as they were for flat spacetime, but
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rather the combination of terms in πµ above. So, substituting pµ = pµ(πµ, `µν) into the equation

of motion (5.18) we see that a free particle in de Sitter can be described by a constant angular

momentum 10-vector, i.e.

`ab = α, α ∈ < (5.24)

A consequence of this is that a linear momentum can be transformed in to an angular momentum

by a simple displacement and vice-versa, which should be contrasted with the translation invariance

of pµ in flat spacetime. Similarly energy (and momentum) as defined just under equation (5.17)

is not conserved with respect to de Sitter transformations, only energy and momentum defined by

equation (5.23) are. Perhaps unsurprisingly, the energy defined by (5.23) is not positive-definite.

5.2.2 Casimir invariants for de Sitter

As indicated by equation (5.11), the generators of the de Sitter group are the 10 dimensional,

antisymmetric, rotation generators Jab. By analogy to the Lorentz rotations and boosts in regular

four-dimensional Minkowski space, their algebra must be of the form

[Jab, Jcd] = +i[ηadJbc − ηacJbd + ηbcJad − ηbdJac], (5.25)

where again latin indices span the full five dimensions and ηab = diag(−1, 1, 1, 1, 1) is the flat 5d

Minkowski metric. Breaking up these relations in a ‘4 + 1‘ format, they become

[Jαβ , Jγδ] = +i[ηαδJβγ − ηαγJβδ + ηβγJαδ − ηβδJαγ ] (5.26)

along with the two relations

[J4λ, Jµν ] = i(ηλµJ4ν − ηλνJ4µ) (5.27)

and

[J4λ, J4ν ] = −iη44Jλν (5.28)

Setting Πα ≡ J4α

R and demanding that it reduce to the energy momentum operators Pµ in flat

spacetime, i.e. that the operator relations limR→∞ Πµ = Pµ hold, we can express the last two

commutation relations above as

[Πα, Jβγ ] = i
R

R
(ηαβΠγ − ηαγΠβ) = i(ηαβΠγ − ηαγΠβ) (5.29)

and

[Πα,Πβ ] = − i

R2
η44Jαβ = − i

R2
Jαβ (5.30)
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It is apparent that in the limit of zero curvature (R → ∞) the Poincare relations are recovered,

and in this sense the Poincare group is a contraction of the de Sitter group.

However, this is even clearer is we look at the centre of the de Sitter group, i.e. compute

its Casimir invariants. The form of these special elements can be directly determined by simply

applying what we know about the flat spacetime case in 4d. Indeed, as with the Poincare group,

one expects one of the Casimir invariants will be of the form

C1 = α(R)JabJ
ab = M2

dS, (5.31)

i.e. it will give us the de Sitter invariant rest mass in analogy with the Poincare rest mass invariant.

Expanding out equation (5.31) using the definition of I find

C1 = α(R)
[
J5µJ

5µ + JµνJ
µν
]

= α(R)
[
R2ΠµΠµ + JµνJ

µν
]

(5.32)

= α(R)R2

[
Pµ
Φ

+
xνLµν
2R2

] [
P µ

Φ
+
xνL

µν

2R2

]

+ α(R)JµνJ
µν

= α(R)R2

[
P µPµ
Φ2

+
xνLµνL

µβxβ
2R2

]

+ α(R)JµνJ
µν , (5.33)

where α(R) is some arbitrary function of the curvature, Pµ ∼ ∂µ, and2 Lµν ∼ x[µPν]. However,

in order to recover the flat space result of C1 ∼ P µPµ one must require that this function go as

α(R) = γ/R2, γ ∈ <. Putting this in I find that, after some trivial factoring,

C1 =
γ

Φ2
PµP

µ +
γ

R2

[

δµαδνβ +
δµαxβxν

2R2

]

LµνLαβ (5.34)

Since P µPµ = −m2Φ2 by the above arguments, this implies that γ = −1 if we want the right flat

spacetime limit. Putting this in we finally obtain the first Casimir invariant for de Sitter group as

C1 = M2
dS = m2

Poincaré −
1

R2

(

δµαδνβ +
δµαxβxν

2R2

)

`µν`αβ

= m2
Poincaré −

Λ

3

(

δµαδνβ + Λ
δµαxβxν

6

)

`µν`αβ, (5.35)

where in the second line the definition 3/R2 ≡ Λ from equation (5.2) has been used. It is clear

that for finite curvature one sees the Poincare rest mass is modified by angular momentum terms

involving the particle in four dimensions.

The form of the second invariant, which I only briefly mention here, can also be gussed by

analogy with the Poincare invariant, i.e. we guess the form of the ‘generalized Pauli-Lebanski‘

Casimir invariant via

Ca ≡ α

R
εabcdeJ

bcJde, (5.36)

2I am glossing over the fact that these are now operators, this will be covered in greater detail later on in this
Chapter.
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where α ∈ < and ε is the totally antisymmetric levi-civita symbol in 5 dimensions. The reason a
1
R dependence appears in the prefactor is to anticipate one of the J ’s assuming a 4 index, and thus

having a term like J4µ/R which is just the generalized momentum term we saw earlier. In any

case one could not put this in and then figure out later that it is necessary to get the right zero

curvature limit. Nevertheless, computing this with the prefactor included one obtains

C4 =
α

R
ε4µνλσJ

µνJλσ (5.37)

The only other term that is possible given the antisymmetry of the products is

Cµ =
α

R
ε4µαβγJ

4αJβγ

= α
(
ε5µαβγΠ

αJβγ
)
, (5.38)

which means the second Casimir invariant must have the form

CaC
a = CµC

µ + C4C4 (5.39)

Its physical interpretation is that of the spin magnitude for massive particles in de Sitter, just as

the Pauli-Lebanski pesudovector does for the Poincare group. Since C1 ∼ J2 it is clearly also a

function of Z alone and is therefore a de Sitter invariant quantity.

Now that we have computed the de Sitter invariant analogue of the Poincare rest mass (Casimir

invariant) and seen that it is purely a function of the de Sitter invariant Z of equation (5.14) it is

clearer how to think of de Sitter invariance in general. It is also now clearer, on account of equation

(5.11), how to view elements of the de Sitter group: namely, an element of the de Sitter group is a

mapping of one orthonormal basis in five-dimensional Minkowski spacetime to another orthonormal

basis. In the next section I discuss how to conveniently represent the most general element and

find the group volume, and I also briefly justify why I choose a particular set of coordinates to

cover de Sitter spacetime.

5.2.3 Slicing

One can think of the hyperboloid defined by equation (5.4) in the five-dimensional embedding space

in terms of a metric, namely

ds2 = −dζ2
0 + dζ2

1 + dζ2
2 + dζ2

3 + dζ2
4 (5.40)

One may introduce coordinates on this surface in any number of ways. One popular choice is to

implicitly define the coordinates via

t = R ln (ζ0+ζ4)
R

x = Rζ1
ζ0+ζ4

y = Rζ2
ζ0+ζ4

z = Rζ3
ζ0+ζ4

,







(5.41)
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ζa
a

T

ζ

a

t = − infinity

..

Figure 5.1: The flat slicing only covers half of de Sitter (left figure). The thickly coloured timelike
geodesic does not cross the t = constant surfaces of the given flat patch at all. Only two flat patches
(plus technically a third one on their mutual boundary at t = ±∞) can cover the entirety of de
Sitter spacetime. The closed slicing (right figure) uses three spheres, pictured by circles at constant
0 ≤ χ ≤ π, to foliate all of de Sitter. The geodesic deviation vector, labelled ζa, obeys ζ̈a = Λζa.

on the hyperboloid, in terms of which the metric (5.40) becomes

ds2 = −dt2 + e
t
R δijdx

idxj (5.42)

This is the flat slicing of de Sitter: the surfaces of t = constant are flat three-spaces. As shown in

Figure 5.2, this flat slicing only covers half of the de Sitter spacetime. In fact, the thickly coloured

worldline of a timelike observer in this Figure does not intersect even one flat slice as she travels

from the asymptotic past of de Sitter to another asymptotic future region. In this Chapter I find it

problematic to discuss large scale effects which may force one to consider events outside one of the

flat patches envisioned above. Issues which stem from this choice and in turn give rise to a view

on the importance (or even attainability) of de Sitter invariance itself may in fact be problematic,

as emphasized by Woodard in [52], however in this Chapter I will proceed anyway having noted

this. In this spirit, I choose the coordinates

ζ0 = R sinh( tR )

ζ4 = R cosh( tR ) cos(χ)

ζ1 = R cosh( tR ) sin(χ) cos(θ)

ζ2 = R cosh( tR ) sin(χ) sin(θ) cos(φ)

ζ3 = R cosh( tR ) sin(χ) sin(θ) sin(φ)







, (5.43)
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in which the metric (5.40) now has the form

ds2 = −dt2 +R2 cosh2(
t

R
)
(
dχ2 + sin2 χ(dθ2 + sin2 θdφ2)

)
(5.44)

This metric is singular for χ = 0, π and θ = 0, π however these singularities are just the usual

polar coordinate singularities. Indeed, this coordinate system covers all of the de Sitter spacetime

given −∞ < t < ∞, 0 ≤ χ ≤ π, 0 ≤ θ ≤ π, and 0 ≤ φ ≤ 2π, and a surface of constant time

t is shown in Figure 5.2 above as a circle in the ’neck’ region. These spatial sections are three

spheres S3 of constant positive curvature, i.e. the slicing shows the natural topology of de Sitter

spacetime in the sense that it is naturally of the form <×S3. This choice will be called the closed

slicing of de Sitter. Implementing closed slicing also has the advantage of emphasizing the essential

point that the timelike geodesics are constantly radially accelerating away from each other at a

rate proportional to their separation3 in a continuous fashion from χ = 0 to χ = π , without any

of the discontinuities which would occur at t = ±∞ in the flat slicing.

I note that in the closed slicing it is easy to see why there are 10 parameters in the de Sitter

group because the 10 isometries of de Sitter come from the 6 spatial symmetries of the three

spheres plus four boosts for four dimensions. Furthermore, the spatial projections (as defined by

the above coordinates, the t = constant parts) of the four boosts are actually conformal isometries

(Killing vectors) of de Sitter spacetime proper, with conformal factor equal to the (constant) Hubble

parameter. Indeed, a general element of the SO(4,1) dS group can be constructed as a product of

rotations about the three angles φ, θ, χ and a boost β.

More precisely, let eµ[0] be the time-like and future directed member of the standard orthonormal

basis eµ[A] for 5d Minkowski spacetime (where A goes from 0 to 4), and take the eµ[i] be spacelike.

Then a general element M of SO(4,1) is the product of an element which fixes eµ[0] with an element

that brings eµ[0] into a generic position in the future light cone. Indeed, one may write M as the

product

M = Rφ ×Rθ ×Rχ ×Bβ

=

0

B

B

B

B

B

B

@

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 cos(φ) − sin(φ)

0 0 0 sin(φ) cos(φ)

1

C

C

C

C

C

C

A

×

0

B

B

B

B

B

B

@

1 0 0 0 0

0 1 0 0 0

0 0 cos(θ) − sin(θ) 0

0 0 sin(θ) cos(θ) 0

0 0 0 0 1

1

C

C

C

C

C

C

A

(5.45)

×

0

B

B

B

B

B

B

@

1 0 0 0 0

0 cos(χ) − sin(χ) 0 0

0 sin(χ) cos(χ) 0 0

0 0 0 1 0

0 0 0 0 1

1

C

C

C

C

C

C

A

×

0

B

B

B

B

B

B

@

cosh(β) sinh(β) 0 0 0

sinh(β) cosh(β) 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1

C

C

C

C

C

C

A

×
 

1

O

!

,

where O is a 4× 4 real, orthogonal matrix and the empty spaces in the entries are understood to

3This is easy to prove: Since Rabcd ∼ gc[agb]d, then the relative acceleration of one geodesic from another along

the tangent vector T a is simply T e∇e(T c∇cζa) ≡ ζ̈a = −ΛζaT dTd + ΛTcT aζc = Λζa, as claimed in Figure 5.2,
using ζaTa = 0, T aTa = −1.
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be zeroes (see Gursey in [49] for more details and justification, as well as Higuchi in [53]). Thus,

for example the image of ẽµ[1] under this transformation is

ẽµ[1] = eµ[0] sinh(β) + eµ[1] cos(χ) cosh(β) + eµ[2] cos(θ) sin(χ) cosh(β) (5.46)

+eµ[3] cos(φ) sin(θ) sin(χ) cosh(β) + eµ[4] sin(φ) sin(θ) sin(χ) cosh(β),

which clearly shows the ‘mixing‘ of space and time in a general de Sitter transformation. Further-

more, using expression (5.45) for M it is possible to determine the ‘line element‘ of the dS group (

see Higuchi in [53]) and from that the group volume element. Using Maple it is straightforward to

prove that the group volume element, which will be used in the following sections, is

dV = sinh(β)3 sin(χ)2 sin(θ)dβdχdθdφ (5.47)

Formally, the dS group volume V =
∫∞
−∞ dβ

∫ π

0 dχ
∫ π

0 dθ
∫ 2π

0 dφ is infinite.

With all of these properties of dS in hand, I move on to discuss the backreaction problem in

the next section.

5.3 Backreactions

In Chapter 4 I compared the effect of a particular class of backreactions, namely super Hubble

backreations, to that of linearized fluctuations by comparing the dispersions < (δ2ρIR)2 > and

< (δρ)2 >. As mentioned in Section 4.3, I did not address questions of the subhorizon fluctuations.

Furthermore, the main result of Chapter 4 was that for small-enough, but finite, values of the slow-

roll parameter the second order super Hubble fluctuations could dominate the linear ones in their

effect on the gravitational field. Given this, it is interesting to consider both the role of subhorizon

fluctuations and superhorizon fluctuations in when the slow-roll parameter is exactly zero. In this

situation, as mentioned above, the scalar field driving inflation becomes trivial and its potential

becomes proportional to the positive cosmological constant of de Sitter space. Furthermore, a

natural approximation of the backreaction problem occurs in the pure de Sitter (i.e. εSR = 0 )

case. Indeed, consider the kinetic terms of the Klein-Gordon stress energy equation (2.35), which

one may write schematically as

T ∼ φ̇2
B

︸︷︷︸

negligible by slow-roll

+ (φ̇B)(∇δφ)
︸ ︷︷ ︸

Linear quantum correction

+ (∇δφ)(∇δφ) + ...
︸ ︷︷ ︸

Nonlinear quantum corrections

.

As φ̇B → 0, which is the same as εSR → 0, the ‘nonlinear corrections‘ will start to become

important until φ̇B is precisely zero, when they will be the only corrections. In this chapter I study

the situation where φ̇B = 0 identically, which is de Sitter spacetime. The goal is to solve equation

(5.48) for both subhorizon fluctuations, where treatment of their UV divergences becomes essential,

and also for superhorizon fluctuations. To further the latter goal, the scalar field fluctuations will be

assumed to be massless, which also has the advantage of not setting another scale in the problem.

The ultimate goal is to better probe the physics of the limit of εSR → 0, which appears to be
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mathematically singular or at least problematic in the sense of Chapter 4 (Grishchuk seems to

have been the first to articulate this in [36]), by studying a simple example of backreactions at

εSR = 0.

Taking the ‘right hand side‘ of the field equations to be to composed of products of quantum

fluctuations I can set up the field equations of to ask what the leading order effect will be on the

gravitational field. More concretely, I write down the Einstein equations

Gab(gab) = κTab(gab, φ), (5.48)

where once again κ ≡ 8π in units where G = c = 1. The leading order gravitational and scalar

field perturbations may be defined via

gab = ḡab + ε2δ2gab (5.49)

φ = φ̄+ εδφ, (5.50)

so the equations of motion that describe the backreaction of the scalar field fluctuations on the

background metric are the perturbed Einstein equations

Lab[δ2gab]
︸ ︷︷ ︸

Linearized gravity

= κQab[(δφ)(δφ)]
︸ ︷︷ ︸

Nonlinear source

, (5.51)

where Lab is a linear second order hyperbolic operator and Qab is an operator of mixed character

acting on the quadratic collection of matter fluctuations. Equation (5.48) as it stands is missing

a term on the left hand side which corresponds to purely gravitational wave interactions, i.e.

tensor fluctuations. For now I will neglect these terms4, which makes this analysis incomplete but

tractable. Also, equation (5.48) as it stands is formally divergent in the sense that its right hand

side is a product of quantum distributions. In this brief section I will ignore this and treat δφ as

classical, however in Section 5.3.2 these divergences will be treated.

Perturbing the Einstein equations of motion about a de Sitter background using equations (5.46)

and (5.47) to define the perturbations, I obtain the equations of motion easily by a straightforward

application of equations (2.91) and (2.92) and R̄ab = Λgab. Since only the last two terms of

equations (2.92) can contribute to first order, the algebra is straightforward for δRab and results in

δRac = −∇̄aδCbbc + ∇̄bδCbac

= −∇̄a(
1

2
∇̄cδg) + ∇̄b

(
1

2
ḡbm

(
∇̄aδgmc + ∇̄cδgma − ∇̄mδgac

)
)

= −1

2

¯
2 δgac −

1

2
∇̄a∇̄cδg +

1

2
∇̄m

[
∇̄aδgmc + ∇̄cδgma

]
, (5.52)

where
¯
2≡ ∇̄a∇̄a. Using the simple form of the Riemann curvature one can commute through

4That there are only TT-TT like terms missing from the left hand side is emphasized at the end of Chapter 4
and later on in this Chapter, where it is proven in detail that there are no scalar or vector modes to linear order in
de Sitter.
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derivatives with relations like

∇̄m∇̄aδgmc = ∇̄n∇̄aḡmnδgmc

= −4Λ

3
ḡcaδg +

4Λ

3
δgac + ∇̄a∇̄mδgmc (5.53)

Combining these results and their simple consequences it is easy to show that

δ

(

Rac −
R

2
gac + Λgac

)

= δRac − ḡac
δR

2
− 1

2
δgac(R̄) + Λδgac

= −1

2

¯
2 δgac +

Λ

3
(4− 6 + 3)δgac +

Λ

3
ḡacδg

(

−1 +
3

2

)

+
{

− ḡac
2

(

− ¯
2 δg + ∇̄`∇̄mδgm`

)}

+

{

−1

2
∇̄a∇̄cδg +

1

2

(
∇̄a∇̄mδgmc + ∇̄c∇̄mδgma

)
}

, (5.54)

which then straightforwardly leads to the left hand side of equation (5.48)

Lab[δ2gab] = (
¯
2 +

2Λ

3
)δ2gac + (

Λḡac
3
− ∇̄a∇̄c+

¯
2 ḡac)δ

2g − ḡac∇̄`∇̄mδ2g`m

+2∇̄(a∇̄mδ2gc)m, (5.55)

where δ2g ≡ ḡabδ2gab is the trace5 of δ2g. The right hand side is simple enough to derive by

inspection of equation (2.35), bearing in mind that that when εSR = 0, V (φ) = const ∼ Λ:

κQab[(δφ)(δφ)] = 2κ(∇̄aδφ∇̄cδφ−
ḡac
2
∇̄mδφ∇̄mδφ), (5.56)

As before, the solutions δ2gab, δφ of equations (5.51) will be invariant under a group of gauge

transformations. We can again strategically choose the gauge condition to simplify either the

interpretation of the fluctuations or the amount of work required in getting to the solutions. In

the next section I outline what my gauge choice is to simplify equations (5.51) themselves. It

is worth noting immediately, however, that because of the de Sitter background, the scalar field

perturbations will be gauge-invariant to first order because the background scalar field is a constant.

5.3.1 Gauge-fixing the classical equations of motion

Given the formality of the following arguments it will be useful to have a clear idea of the exact

goal of this section. The idea is to simplify the form of equations (5.51) so that their solutions

have a clear physical meaning. I show in this section that it is possible to transform to a system of

coordinates wherein the divergence of the metric perturbation ∇̄aδ2gab obeys a simple condition

which renders the trace of the field equations free of any matter terms. However, this choice still

leaves some residual coordinate freedom which one can use. I show that I can use this residual

5The notation is slightly confusing here. Even though equation (5.51) explicitly refers to the linearization of the
Einstein tensor, for example, so does equation (5.52). I label the linear fluctuation in the metric δ2gab in order to
show that this linear fluctuation is at second order in ε. This is self-consistent when the matter term goes as ε2.
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freedom to furthermore set the trace of the metric fluctuation ḡabδ2gab = 0 as well as the ’shift’

δ2g0i to zero. The imposition of these additional conditions, while consistent in the case of this

particular calculation about a maximally symmetric background, is not possible in general. The

benefit of going through this procedure is a clear view of the physical degrees of freedom of the

fluctuations, which is important for quantization.

Indeed, starting from equations (5.51) it is convenient to fix the linearized fluctuations (lin-

earized gauge sector) such that the four conditions

∇̄mδ2g̃`m −
∇̄`
2

(δ2g̃) =
κ

2
∇̄`(δφ)2 (5.57)

hold. The tilde denotes that these particular conditions have been fixed. The main advantage of

this choice is that equations (5.51) assume the simple form

(∇̄c∇̄c −
2Λ

3
)δ2g̃ab +

2Λ

3
ḡabδ

2g̃ = −2κδφ∇̄a∇̄bδφ, (5.58)

in this gauge. As discussed extensively in Chapters 2-4, the perturbed metric may be transformed

by picking a specific form for ξaT in the law δ2g̃ab = δ2gab + £ξ(T )
ḡab. Setting the conditions (5.57)

is thus equivalent to solving for ξβ(T ) from the equations

(∇̄b∇̄b + Λ)ξ(T )
a = −∇̄bδgab −

1

2
∇̄a(∇̄bξb(T )) +

κ

2
∇̄a(δφ)2 +

∇̄a
2
δ2g. (5.59)

Once a solution with particular initial conditions is obtained for ξ
(T )
a , one can furthermore demand

tracelessness by observing that the trace of equations (5.51) in the gauge (5.54) is

(
¯
2 +2Λ)δ2g̃ = 0 (5.60)

via the condition of masslessness for the δφ matter fluctuation6. This motivates constructing an

object δ2g̃′ab ≡ δ2g̃ab+ 1
2Λ∇̄a∇̄bδ2g̃, which is formally traceless by the field equation (5.60). It is not

hard to show that ∇̄aδ2g̃′ab = κ
2 ∇̄a(δφ)2, and also that 1

2Λ∇̄a∇̄bδ2g̃ satisfies the full field equations

(5.58) in the transverse gauge of described by equation (5.57). It is therefore consistent to demand

tracelessness in addition to transversality in this case.

The demand for tracelessness δ2g̃aa can be understood in terms of ξ
(T )
` , via the linearized trans-

formation law δg̃ab = δgab + £ξ(T )
ḡab, to imply

2∇̄`ξ(T )
` = −δ2g̃, (5.61)

which must be imposed in addition to conditions equations (5.59). I will call simultaneous solutions

to equations (5.61) and (5.59) ξ
(Tr)
` . Choosing this traceless, transverse, linear gauge fixing, i.e.

6It is important to note here that I am not claiming that the stress energy of a massless minimally coupled scalar
field has no trace. Rather, the metric on the left hand side has nicely absorbed these terms given the gauge choice
of equation (5.57).
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setting ξ` = ξ
(Tr)
` , casts the equations (5.58) in the simple form

(∇̄c∇̄c −
2Λ

3
)δ2g̃ab = −2κδφ∇̄a∇̄bδφ (5.62)

However, the procedure of gauge fixing is not done because there are obvious residual coordinate

freedoms left in the homogeneous solutions of the new, traceless, analogue to condition (5.59). I.e.,

any solution ξ
(Tr)
` can be modified by the addition of some harmonic function of the operator

(∇̄b∇̄b + Λ), and this harmonic function is known as a residual gauge transformation ξ
(R)
α . It

represents the corresponding residual gauge freedom consistent with equations (5.61) and (5.59).

I now show that one can pick this harmonic function such that δ2g0i = 0, i.e. such that the shift

perturbations are zero. The residual gauge functions ξ
(R)
α by definition obey the ‘homogenous‘

equation

(
¯
2 +Λ)ξ(R)

a = 0, (5.63)

which by a well-posedness theorem for wave equations in globally hyperbolic spacetimes (see Wald

in [3]), has a well-posed initial value formulation on Σt. This means that if I give equation (5.63)

arbitrary smooth initial data (ξ
(R)
a , na∇̄aξ(R)

a ) on a hypersurface Σt of the closed slicing, where na

is a normal to Σt, then there exists a unique solution7 of (5.63). The solution is also causal in

the sense that if I vary the initial data it can only affect the solution in the domain of dependence

of that variation. Therefore one must provide equation (5.63) with smooth initial data which will

allow one to set δg′ = 0, δg′0i = 0 while preserving the main gauge conditions (5.58). It can also

be shown that these choices are preserved through their evolution, however in the following I only

explictly demonstrate the procedure for formulating the initial value problem.

5.3.1.1 Fixing the residual degrees of freedom

Setting the shift δ2g′0i = 0, I find

−δ2g0i = ∇̄iξ(R)
0 + ∇̄0ξ

(R)
i , (5.64)

and similarly setting δ2g′ = 0, I obtain

−δ2g = 2∇̄aξa(R) = 2
(

∇̄0ξ
0
(R) + ∇̄iξi(R)

)

(5.65)

Equations (5.63) are four second order equations for the four components of ξa(R), so I need eight

initial conditions to fully specify any vector ξa(R). Equations (5.64) and (5.65) are four of them. I

get the other four by specifying the ‘time derivatives‘ of δg and δg0i as determined directly from

7Note the crucial fact that [∇̄a, (
¯
2 +Λ)]ξa

(R)
= +Λ∇̄aξa

(R)
, which implies that (

¯
2 +2Λ)∇̄aξa

(R)
= 0 hold iff

(
¯
2 +Λ)ξa

(R)
= 0, i.e. the residual coordinate transformations cannot undo transverse tracelessness. This is an

accident of the maximally symmetric background, and doesn’t hold in general.
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conditions (5.57) and (5.59). Thus,

∇̄0δ
2g = 2

(
∇̄0δ2g00 + ∇̄iδ2g0i − κδφ∇̄0δφ

)
(5.66)

∇̄0δ2g0i =
1

2
∇̄i(δ2g̃ + κ(δφ)2)− ∇̄jδ2gji, (5.67)

while conditions (5.58) with δ2g′ = 0, δ2g′0i = 0 imply

∇̄aδ2g′a0 = ∇̄iδ2g′i0 + ∇̄0δ2g′00 =
κ∇0

2
(δφ)2 → ∇̄0δ2g′00 =

κ∇0

2
(δφ)2 (5.68)

∇̄aδ2g′aj = ∇̄iδ2g′ij + ∇̄0δ2g′0j =
κ∇j
2

(δφ)2 → ∇̄iδ2g′ij =
κ∇j

2
(δφ)2, (5.69)

which one may more explcitly rewrite, using ∇̄0δ2g′00 = κ∇0

2 (δφ)2 = ∇̄0
[

δ2g00 + 2∇̄0ξ
(R)
0

]

and

∇̄iδ2g′ij =
κ∇j

2 (δφ)2 = ∇̄i
[

δ2gij + ∇̄iξ(R)
j + ∇̄jξ(R)

i

]

, to the form

∇̄0δ2g00 = 2∇̄i∇̄iξ(R)
0 − Λξ

(R)
0 +

κ∇0

2
(δφ)2, (5.70)

∇̄iδ2gij = −∇̄i∇̄jξ(R)
i − ∇̄i∇̄iξ(R)

j +
κ∇j

2
(δφ)2. (5.71)

In equation (5.71) I have used (5.63) to eliminate higher time derivatives of ξa(R). Putting it all

together I finally obtain the four additional conditions needed to supplement the four equations

(5.64) and (5.65), namely

∇̄0δ
2g = 2

[κ

2
∇̄0(δφ)2 − 2(∆̄ + Λ)ζ

(R)
0 − κ

2
∇̄0(δ̃φ)2

]

+ 2∇̄i(∇̄0ζ
(R)
i + ∇̄iζ(R)

0 )

= −2
[

(2∇̄j∇̄j + 2Λ)ξ
(R)
0 + ∇̄i∇̄0ξ

(R)
i

]

(5.72)

∇̄0δ
2g0i =

(

−∇̄i∇̄0ξ
0
(R) + (∇̄j∇̄j + Λ)ξ

(R)
i +

κ

2
∇̄i(δ̃φ)2 − κ

2
∇̄i(δφ)2

)

(5.73)

In summary, the set of equations

δ2g = −2
(

∇̄0ξ
0
(R) + ∇̄iξi(R)

)

∇̄0δ
2g = −2

[

(2∇̄j∇̄j + 2Λ)ξ
(R)
0 − ∇̄i∇̄0ξ

(R)
i

]

δ2g0i = −∇̄iξ(R)
0 − ∇̄0ξ

(R)
i

∇̄0δ
2g0i =

(

−∇̄i∇̄0ξ
0
(R) + (∇̄j∇̄j + Λ)ξ

(R)
i

)







are eight initial value equations8 for the four components of the vector ξa(R) and its four time

derivatives ∇̄0ξ
a
(R) at some initial slice Σt such that if ξa(R) is the generator of a linear gauge

transformation, then δg′ = 0, δg′0i = 0, and ∇̄aδg′ab = κ∇b
2 (δφ)2. If I define ξa(R) as the solution

of equation (5.63) with these initial values, as determined by the above set of equations, then it

turns out such a gauge transformation can be made throughout all of spacetime. This is so since

I am guaranteed a solution to equation (5.63) with this data by Theorem 10.1.2 in Wald [3], and

8Which do not involve δφ at all, as required by its gauge-invariance to first order.
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furthermore these conditions are preserved through evolution. Further coordinate conditions are

not possible.

Given this entire procedure of classical gauge-fixing, it is possible to count the number of physical

degrees of freedom that are left in the physical modes of the gravitational field and scalar field to

linear order. Indeed, there is one scalar mode associated with δφ, one scalar mode associated with

the lapse fluctuation δ2g̃′00, and two polarization degrees of freedom associated with the TT part of

δ2g̃′ij . The two scalar fluctuations are related to each other via the Einstein constraint equations.

Thus in this gauge fixing there are three degrees of freedom in the perturbation problem to first

order, which in this notation is second order in ε.

However, for the case of quantum fluctuations expressions such as the “Wick monomials” (δφ)2

and δφ∇̄a∇̄bδφ are formally infinite. One typically approaches this problem via some technique

of renormalization, which basically is some kind of ‘subtraction‘ mechanism which is applied to

get rid of the formal infinities. It may well be that the renormalization scheme introduces some

ambiguities which do not allow all of the conditions required above to hold. Until recently the

general procedure for how to handle renormalization ambiguities in general curved spacetimes was

not well-understood, and in the next section I briefly describe how I use some of the recent advances

in this understanding to justify, among other things, the above classical gauge fixing in the quantum

case.

5.3.2 Potential quantum anomalies in the gauge-fixing

The theory of a linear quantum field in flat spacetime is well-formulated, and apart from some crit-

ical differences stemming from the absence of a preferred vacuum state/ global inertial coordinates,

so is the same theory on a curved spacetime9[54]. However, nonlinear interacting fields even in

Minkowski spacetime generally have to be regulated in some way and indeed the renormalization

ambiguities which arise in such a procedure are well specified as renormalized coupling constants

which appear order by order in perturbation theory. Until recently, a much larger renormalization

ambiguity appeared in the curved spacetime case because instead of coupling constants there ap-

peared coupling functions, whose dependence on the spacetime point is wholly arbitrary. In a series

of recent advances Hollands and Wald showed (in [55], [51], [56], and [50] ) that the imposition of

certain key requirements (namely, ‘locality‘ and ‘covariance‘) can reduce the renormalization am-

biguity in curved spacetime to that of Minkowski spacetime together with that of some additional

parameters associated with the couplings of the quantum field to curvature.

Among the many other things they proved was how to handle quantum anomalies in curved

spacetime if one insisted on ‘locality‘ and ‘covariance‘. These ‘anomalies‘ arise as one of the most

amazing aspects of quantum field theory, which is that certain relations involving the field equations

which are true in the classical theory cannot be satisfied in the quantum theory. A familar example

is the trace anomaly for the stress-energy of a conformally invariant field. Another example, which

9Technically, a ’globally hyperbolic’ spacetime. This term (from PDE theory) simply means that the spacetime
is predictable in the sense that there exists a Cauchy hypersurface through which every causal worldline must pass.
This precludes closed timelike curves, anti-telephones, etc.
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they prove, is that for a massless, free quantum field δφ satisfying the linear equation of motion

¯
2 δφ = 0 (5.74)

it is not in general possible to also satisfy the nonlinear conditions

δφ
¯
2 δφ = 0 (5.75)

(∇̄bδφ)
¯
2 δφ = 0 (5.76)

In other words they show that attempts to impose additional, seemingly reasonable, conditions in

addition to the equation of motion (5.74) directly leads one to ‘anomalies‘ if one also insists on

maintaining the conditions of locality and covariance10. More specifically, they established a set

of conditions involving local curvature scalars which one would have to satisfy in order to avoid

these sorts of anomalies, and they showed that for general spacetimes these conditions cannot be

satisfied.

For our purposes, it is important to note that equations (5.74) - (5.76) represent the masslessness

condition on the fluctuation δφ, the tracelessness condition on δ2g̃ab via equation (5.60), and

stress-energy conservation for Klein-Gordon Tab respectively. In other words, if it is true that it

is not possible to impose equations (5.74) - (5.76) simultaneously, then one must abandon either

stress-energy conservation, tracelessness, or the equation of motion. Insisting on stress-energy

conservation and the equation of motion leaves one no choice but to drop the tracelessness condition.

However, turns out that the Hollands and Wald (HW) anomaly requirement does not hold for

perturbation theory about the maximally symmetric de Sitter spacetime because, e.g., all covariant

derivatives of the curvature are zero. In other words, the conditions they derived which forbid the

simultaneous satisfaction of the auxilliary conditions (5.75) and (5.76) with the equation of motion

may are actually satisfied in de Sitter.

Indeed, if we simply assume a renormalization prescription which satisfies locality and covariance

in the sense of HW, then our Klein-Gordon stress-energy may be written exclusively in terms of

the ‘Wick monomials‘ Ψ ≡ (δφ)2, Ψab ≡ δφ∇̄a∇̄bδφ (see HW in [56], section 3.2):

Tab =
1

2
∇̄a∇̄bΨ−Ψab −

ḡab
4

¯
2 Ψ, (5.77)

10Roughly, these terms mean that the field φ is constructed in a manner independent of globally defined structures
(like a preferred vacuum state) and non-covariant structures like a preferred coordinate system. This is to be
distinguished from the ‘locality‘ of fields which commute for spacelike separations.
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which, using the fact that ḡ`a[∇̄`, ∇̄b]∇̄aΨ = R̄`b∇̄`Ψ, implies that11

T aa =
1

2

¯
2 Ψ−Ψa

a−
¯
2 Ψ, (5.78)

Ψa
a = δφ

¯
2 δφ, (5.79)

∇̄aTab =
1

2
R`b∇̄`Ψ +

1

4
∇̄b

¯
2 Ψ− ∇̄aΨab = ∇̄bδφ

¯
2 δφ (5.80)

which are essentially equations (5.75) and (5.76). It turns out that one can calculate these quantities

using a so-called Hadamard normal ordering prescription (see [56] and reference [17] therein for

details) and I simply quote the result:

δφ
¯
2 δφ = Q, (5.81)

∇̄bδφ
¯
2 δφ =

1

3
∇̄aQ, (5.82)

where Q is a nonvanishing local curvature scalar. The main point is that if one wants to ensure

that the left hand sides of equations (5.80) and (5.81) vanish, then one must redefine Ψ and Ψab

in a manner consistent with ‘locality‘ and ‘covariance‘. As HW have proven in [51], the freedom

one has in doing this is actually fairly restrictive and amounts to the transformations

Ψ → Ψ + C (5.83)

Ψab → Ψab + Cab, (5.84)

where C is any scalar constructed out of the metric, curvature, and derivatives of the curvature with

dimension [length]−2 and Cab is any symmetric tensor that is similarly constructed, with dimension

[length]−4. Therefore, if we try to use the available freedom given by equations (5.83) and (5.84)

to make the left hand sides of equations (5.81) and (5.82) vanish, we obtain the conditions, using

equations (5.78) and (5.80),

1

2
R`b∇̄`(Ψ + C) +

1

4
∇̄b

¯
2 (Ψ + C)− ∇̄a(Ψab + Cab) = 0 (5.85)

(Caa + Ψa
a) = 0 (5.86)

which are equivalent to12

1

2
R`b∇̄`C +

1

4
∇̄b

¯
2 C − ∇̄aCab = −1

3
∇̄bQ (5.87)

Caa = −Q. (5.88)

Now, as we noted in the introduction of this Chapter, in the maximally symmetric de Sitter

11I am here freely using the Leibniz condition, i.e. asserting that ∇̄aΨ = 2δφ∇̄aδφ. This condition forms part of
the locality and covariance requirements of HW, so that in a direct sense the question of whether or not anomalies
exist is also a question of whether or not the Leibniz condition can be imposed along with the equation of motion
¯
2 δφ = 0.

12I note that these equations are different than equations (75) and (76) of HW in [56].
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spacetime the curvature is completely determined by the Ricci scalar, which is a constant (= 4Λ).

Using the formalism of HW this implies that the most general form of C can be C = αR, α ∈ <,

since R is the only natural quantity with dimensions [length]−2 for a massless, minimally coupled,

scalar field. Putting this form in for C we obtain the equations

−∇̄aCab = −1

3
∇̄bQ (5.89)

Caa = −Q, (5.90)

which is simple enough to guess the solution Cab = ngabQ+ βgabR
2, n, β ∈ <. Putting this in, it

is simple to obtain the conditions13

n =
1

3
(5.91)

Q = −12

7
βR2 (5.92)

In [51] and references therein it is shown that Q can only be a function of curvature invariants and

their derivatives, which for maximally symmetric spacetimes reduces to a linear combination of R2

terms. Therefore it is always possible to pick a particular real value of β to satisfy equation (5.92).

Equation (5.91) shows that picking n = 1
3 satisfies equation (5.89) as well, so that in total we can

satisfy (5.85) and (5.86) simultaneously in the maximally symmetric de Sitter spacetime.

The simultaneous satisfaction of equations (5.85) and (5.86) ensures that we can impose the

conditions ∇̄bδφ
¯
2 δφ = 0 and δφ

¯
2 δφ = 0 in addition to the equation of motion

¯
2 δφ while also

insisting that the quantum field δφ is local and covariant in the sense of HW. Since the former two

conditions are equivalent to stress-energy conservation and the tracelessness condition of Section

5.3.1. (as crucially utilized by equation (5.60)) respectively, then the above demonstrates that there

exist no quantum anomalies with respect to those conditions and the equation of motion
¯
2 δφ = 0

using the formalism developed by HW. This is equivalent to the claim that there are no quantum

anomalies in our gauge fixing.

5.4 Quantization and the LS conditions

Given the gauge conditions for the quantum fluctuations do not have anomalies, one can now tackle

the question of what further effect the LS conditions which arise in de Sitter may have. Recalling

the structure of the (nonlinar) LS conditions as laid out in Chapter 2-4, their formulation requires

a Hamiltonian formalism. This can complicate the analysis of any anomalies which may arise out

of the LS conditions, however in the following analysis this concern is allayed by transforming

re-expressing the canonical variables into terms which are components of covariant objects and

beyond this the issue is not treated in detail, though it in general is a concern.

Although implicit in the above discussion of anomalies, the quantum nature of the fluctuations

δ2gab and δφ has not been developed in detail yet. I do this now, with an eye towards formulating

13Note that the parameter α does not appear and hence is left undetermined by the conditions (5.91) and (5.92).
This implies that an additional condition can consistently be made, as discussed in the next section.
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the linearization stability conditions (LS) discussed in Chapters 2 - 3. I know in advance that

these latter LS conditions will be relevant because as discussed in Section 5.2.3 I have chosen a

compact slicing of de Sitter (in the sense that the S3 hypersurfaces Σt are compact), which has ten

isometries (six rotations and four boosts). Therefore there are ten LS conditions associated with

these background symmetries.

5.4.1 Smeared quantum constraints

Assuming the Hamiltonian formulation of Sections 2.3.1 onwards and using the slicing described

by equations (5.43), we characterize the gravitational field in terms of some initial three-geometry

hij , and its conjugate momentum πij , of a compact spacelike surface Σt = S3. Linearizing these

quantities using the notation of Chapter 2 and 3 and promoting them to Hermitian operators, their

commutation relations are given by

[δ2hab(x), δ
2πcd(x′)] = i

√

|h̄|
[
δcaδ

d
b + δdaδ

c
b

]
δ(χ′ − χ)δ(θ′ − θ)δ(φ′ − φ)

≡ i
√

|h̄|
[
δcaδ

d
b + δdaδ

c
b

]
δ3(x− x′), (5.93)

and similarly for the matter fluctuations δφ, δπφ as described in Section 2.3.1.1. The classical

metric fluctuations are not free on S3, of course, but satisfy the Hamiltonian and momentum

constraints order by order in ε. Bearing in mind that I have defined the leading order gravitational

fluctuations to occur at second order in ε, the second order Hamiltonian and momentum constraints

are respectively (cf. equations (2.78-2.82) )

δ2H⊥ = δ2
{√

|h|
(

Gabcdπ
abπcd − (3)R

)

− 2κρ
}

,

= − 1

4
√

|h̄|
δ2h

(
2π̄`mπ̄`m − π̄2

)
+

1

2|h̄|
[
δ2hadh̄bc + h̄adδ

2hbc + δ2hach̄bd + δ2hbdh̄ac

−δ2habh̄cd − δ2hcdh̄ab
]
π̄abπ̄cd + 2

√

|h̄|Ḡabcdπ̄cdδ2πab

+
√

|h̄|
(

(3)Ḡabδ2hab −
√

|h̄|(D̄mD̄a − h̄ma∆̄)δ2hma

)

−2κ

[√

|h̄|
2

V (φ̄)δ2h+
(δπφ)

2

2
√

|h̄|
+

√

|h̄|1
2
h̄ijδφ,iδφ,j

]

= 0 (5.94)

and

δ2Hi = −2Djδ
2πij − κJ i (5.95)

= −2Djδ
2πij − κδπφ∂iδφ = 0.

Following the development around equation (2.110), I will write these constraints as smeared over

a general vector field Xa = (X⊥, X i), whose normal and tangential components (with respect to
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Σt) are X⊥, X i respectively14. I.e., I project the above constraints along Xa via

P (X ; ε) =

∫

Σt

{
X⊥H⊥(ε) +XiHi(ε)

}
d3x (5.96)

Turning back to quantum considerations, one lets the operators δ2hab, δ
2πab act on vectors |Ψ >

of some Hilbert space. According to the standard Dirac quantization procedure, these vectors are

in general said to define physical states whenever they belong to a subset of the Hilbert space

defined by

P (X ; ε)|Ψ(ε) > = 0. (5.97)

These smeared relations are operator equations which have to be regularized via suitable renor-

malization procedure order by order, starting from ε2. However, it will be extremely useful to push

the classical analysis somewhat farther to gain better insight into the structure of equation (5.97)

at second order in ε.

5.4.2 The classical smeared, non-vacuum, constraints; LS conditions

As remarked above, the lowest order, nontrivial approximation of equation (5.97) is at ε2, and

classically it can be calculated by writing down

δ2P (X) =

∫

Σt

(

X⊥

−−−−−−→(
δ2H⊥
δ2u`

)

(δ2u`) +Xi

−−−−−−→(
δ2Hi
δ2u`

)

(δ2u`)

)

d3x

−2κ

∫

Σt

(

X⊥

−−−−−−−→(
δ2ρ

δuiδuj

)

(δuiδuj) +X`

−−−−−−−→(
δ2J`

δuiδuj

)

(δuiδuj)

)

d3x, (5.98)

where the
−→
() terms represent matrices of classical differential operators acting on the phase space

variables at order ε2, i.e. δ2ua = (δ2hab, δ
2πab) and δui = (δφ, δπφ) following the notation of

Chapter 2. One may cast δ2P (X) in a different form via a by-parts integration (the so-called

‘adjoint form‘), which reveals

δ2P (X) =

∫

Σt

(

X⊥

←−−−−−−(
δ2H⊥
δ2u`

)

(δ2u`) +Xi

←−−−−−−(
δ2Hi
δ2u`

)

(δ2u`)

)

d3x

−2κ

∫

Σt

(

X⊥

←−−−−−−−(
δ2ρ

δuiδuj

)

(δuiδuj) +
1

2
X`

←−−−−−−−(
δ2J`

δuiδuj

)

(δuiδuj)

)

d3x

+

∮

∂Σt

d2σm

(−−−→
δ2Bm(G) +

−−−→
δ2Bm(matter)

)

F (δ2u`, δui;X
a), (5.99)

where F is some function of the phase space variables and Xa. I.e., the ‘direction‘ of the operators

has now reversed at the cost of introducing the last term, which is a surface term equal whose total

contributions δ2B are identically zero since S3 has no boundary. After some tedious calculations

14I will also refer to the spatial projection of Xa as ~X.
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it is possible to prove that the only non-zero combinations of terms are (cf. equations (2.105) -

(2.106))

[
δ2hab

]
−−−−−−→(
δ2Ha
δ2hab

)

(Xa) = δ2hab

[√

|h̄|( ˆ̄Lab + M̄ab)X⊥ −£ ~X π̄
ab

]

, (5.100)

[
δ2πab

]
−−−−−−→(
δ2Ha
δ2πab

)

(Xa) = δ2πab
[

2
√

|h̄|Ḡabcdπ̄cdX⊥ + £ ~X h̄ab

]

, (5.101)

[
(δφ)2

]
−−−−−−→(
δ2ρ

(δφ)2

)

(X⊥) = −(δφ)2
[
1

2

√

|h̄|∆̄X⊥

]

, (5.102)

[
(δπφ)

2
]
−−−−−−−→(

δ2ρ

(δπφ)2

)

(X⊥) =
(δπφ)

2

√

|h̄|
X⊥, (5.103)

[(δπφδφ)]

−−−−−−−−−→(
δ2J i

(δπφ)(δφ)

)

(Xi) = δπφ£ ~Xδφ, (5.104)

where the index a above ranges over 0− 3, £ ~Xfab is the usual Lie derivative of a tensor fab along

the spatial vector ~X, and ∆̄ ≡ D̄iD̄i. Furthermore, I have used the definitions

M̄ab ≡ 1

|h̄|

[

2π̄acπ̄
cb − π̄π̄ab − h̄ab

2
|h̄|Ḡ`mncπ̄`mπ̄nc + |h̄|(3)Ḡab

]

,

ˆ̄Lab ≡ −
(
D̄aD̄b − h̄ab∆̄

)
, (5.105)

above.

Equations (5.99)-(5.105) admit an interpretation which, although somewhat technical to arrive

at, is simple. Indeed, without the presence of the second order matter which is represented by the ρ

and J i terms, the only remaining terms essentially describe a linearized gravitational perturbation

at order ε2. In this case, one may easily show that the form of δ2P (X) represents the fact that the

vacuum constraints generate a diffeomorphism of order ε2 along the vector Xa, since they form a

first class set of constraints. As discussed in Section 2.2.2., a first class set of constraints φi = 0

by definition satisfies the Poisson bracket identity {φa, φb} = Cab φa, C
a
b constants, i.e. first class

states have mutually vanishing brackets15. One may verify that the (adjoint) vaccum constraints

are first class by noting that

{δ2H⊥(V ), δ2H⊥(M)} =

∫

Σt

δ2H⊥(V )

δ2hab

δ2H⊥(M)

δ2πab
− δ2H⊥(M)

δ2hab

δ2H⊥(V )

δ2πab
d3x

=

∫

Σt

[

(

√

|h̄| ˆ̄LabM)
1

√

|h̄|
(2π̄ab − π̄h̄ab)V

−(
√

|h̄| ˆ̄LabV )
1

√

|h̄|
(2π̄ab − π̄h̄ab)M

]

d3x, (5.106)

15Actually, even if only det [{φa, φb}] = 0, then a nontrivial solution of χa [{φa, φb}] = 0 exists, and χaφa is then
clearly of first class.
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which, together with the fact

∫

Σt

[
−(D̄aD̄bV )(2π̄ab − π̄h̄ab)M

]
d3x =

∫

Σt

[
MD̄bV D̄a(2π̄ab − π̄h̄ab)

+(2π̄ab − π̄h̄ab)(D̄bV )(D̄aM)
]
d3x (5.107)

implies (since only terms locking V and M in derivatives can possibly survive the overall antisym-

metry of the Poisson bracket)

{δ2H⊥(V ), δ2H⊥(M)} =

∫

Σt

(MD̄bV − V D̄bM)2D̄aπ̄abd
3x (5.108)

= Riδ2Hi, (5.109)

where Ri ≡ MD̄iV − V D̄iM . In other words, the bracket of the Hamiltonian constraint δ2H⊥ is

proportional to a momentum constraint. Similarly, one may prove that the momentum constraints

satisfy

{δ2HiV i, δ2HjM j} = δ2Hk£~VM
k, (5.110)

i.e. the momentum constraints close on themselves16. The total constraint set therefore closes on

itself, i.e. is of first class.

The fact that the vacuum constraints are first-class guarantees, by the so-called Dirac conjecture

(which is discussed by Henneaux and Teitelboim in [57]), that one can write their projection along

Xa in the suggestive form

δ2P (X)
vacuum

=

∫

Σt

d3x
[
(£X ḡab) δ

2πab −
(
£X π̄

ab
)
δ2hab

]
. (5.111)

One can verify this in a long and tedious calculation which has already been performed by Moncrief

in [19]. Given the form of equation (5.111), it is easy to see that if Xa happens to be a Killing vector

then the linearized gravitational terms at second order will automatically drop out of equation (5.99)

and leave only the quadratic matter terms17 I have thusfar ignored. These remainder terms will

then form the ten LS conditions given that we choose Xa to be Killing vectors of the de Sitter

background. Indeed, the LS conditions are, using equations (5.102)-(5.104) and (5.99),

−2κ

∫

Σt

{(

−(δφ)2
1

2

√

|h̄|∆̄ +
(δπφ)

2

√

|h̄|

)

X⊥ +
1

2
δπφ£ ~Xδφ

}

d3x = 0, (5.112)

and they clearly form a nontrivial constraint on the solutions to the main classical field equation

(5.62). The LS conditions are gauge-invariant and conserved from hypersurface to hypersurface by

the arguments given at the end of Chapter 2, in 2.3.2.1, and furthermore there are ten of them for

each of the Killing isometries of the de Sitter background.

16As they do in the full theory, which isn’t suprising since they are linear in πab.
17Simply because £X ḡab = 0 and £X π̄ab = 0. However, the fact that they drop out enforces linearized gauge-

invariance on the quantum level.
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One may further simplify the LS conditions (5.112) by making free use of integrations by-parts

over densities, the slicing conditions (5.43), and the fact that Xa is a Killing vector of de Sitter

spacetime. Indeed, recalling equation (2.86) in the context of our slicing (which implies zero shift

and lapse of 1), it is easy to see that

δπφ =
√

|h̄|∇̄0δφ, (5.113)

which when combined with an integration by-parts in this slicing leads to

∫

Σt

δπφ£Xδφd
3x = −

∫

Σt

√

|h̄|
[

ΨiaX
i − 1

2
(∇̄aΨ)∇̄0X

0

]

n̄ad3x, (5.114)

where I have defined

Ψab ≡ δφ∇̄a∇̄bδφ

Ψ ≡ (δφ)2

Here, n̄a is a unit normal to Σt = S3. In a similar way one can prove that

∫

Σt

(δπφ)
2

√

|h̄|
X⊥d

3x = −
∫

Σt

√

|h̄|
[

ΨabX0 +
1

2
∇̄aΨ∇̄bX0

]

n̄an̄bd3x. (5.115)

Finally, in simplifying the term whose integrand goes as (δφ)2∆̄X⊥, it is useful to observe that

∇̄a
[
2∇̄(aXb)

]
= −ḡamR̄`ambX` + ∇̄b∇̄aXa + ∇̄a∇̄aXb, (5.116)

which implies that ∇̄a∇̄aXb = −R̄`bX` = −ΛXb for Xa satisfying Killing’s equation. Given these

facts, one may finally show that the LS conditions (5.112) take the form

−2κ

∫

Σt

d3x
√

|h̄|
(

Ψabn̄
an̄bX⊥ −

Λ

2
ΨX⊥ +

1

2
ΨiaX

in̄a − 1

4
(∇̄aΨ)(∇̄iX i)n̄a

)

∗
= 0,(5.117)

where Killing’s equation has been freely used. It is important to emphasize that this form of the

LS conditions, compared to equations (5.112), is less general in the sense that one can still have

a compact slicing of de Sitter without demanding that the background metric is diagonal–that is

why I have labelled equation (5.117) with an overstar, even though it is consistent with all of the

assmptions I have made so far.

The primary utility of equation (5.117) is, as the reader has probably guessed by the notation,

that it naturally leads to the question of whether or not quantum anomalies exist with respect to

it, the conditions (5.85) and (5.86), and the linear equation of motion for δφ. I treat this in the

next section.
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5.4.3 Quantum anomalies in the LS conditions

If anomalies exist in equation (5.117) then their primary mathematical effect would be to add a

source term to its right hand side, which would transform the LS conditions into mere identities.

These identities would yield no new information, just as integrating the second order ADM equa-

tions of motion for perturbations in Minkowski spacetime (sliced with non-compact hypersurfaces)

would simply give flux identities. Therefore it is important to check whether or not anomalies

really do exist for our special case of de Sitter18, although a-priori there are considerable grounds

for optimism in the case of de Sitter since there is still a free parameter in the HW scheme of 5.3.2.

(as indicated in Footnote 14).

Returning to the HW formalism, I once again regard the quantity δφ as a quantum operator and

seek to redefine the quantities Ψ and Ψab in a manner consistent with the HW axioms which define

Ψ,Ψab to be local and covariant (once again, see [51] for a proof of uniqueness of Ψ,Ψab up to local

curvature terms of the right dimension). This re-definition was already defined in equations (5.83)

and (5.84), and for the case of the quantum analogue of equation (5.117) it amounts to writing

−2κ

∫

Σt

d3x
√

|h̄|
(

(Ψab + Cab)n̄
an̄bX⊥ −

Λ

2
(Ψ + C)X⊥ +

1

2
(Ψia + Cia)X

in̄a

−1

4
(∇̄a(Ψ + C))(∇̄iX i)n̄a

)

= 0. (5.118)

One may go through the procedure of ‘Hadamard normal ordering‘ as Moretti does in [58] and,

just as equations (5.81) and (5.82) arise, I find that in de Sitter space

−2κ

Z

Σt

d
3
x

q

|h̄|
„

Ψabn̄
a
n̄

b
X⊥ − Λ

2
ΨX⊥ +

1

2
ΨiaX

i
n̄

a − 1

4
(∇̄aΨ)(∇̄iX

i)n̄a

«

∝ QVS3 , (5.119)

i.e. the left hand side of must be proportional to a nonvanishing curvature scalar times the finite

volume of the three-sphere VS3 . This nonvanishing curvature scalar must in turn be proportional

to any other nonvanishing curvature scalar Q in de Sitter space, owing to maximal symmetry.

Therefore, we may finally write the conditions, analagous to equations (5.85) and (5.86), for using

the freedom to redefine Ψ,Ψab to unambiguously satisfy equation (5.118):

2κ

Z

Σt

d
3
x

q

|h̄|
„

Cabn̄
a
n̄

b
X⊥ − Λ

2
CX⊥ +

1

2
CiaX

i
n̄

a − 1

4
(∇̄aC)(∇̄iX

i)n̄a

«

= kQVS3 , (5.120)

where k ∈ <. Putting in the particular forms of Cab and C computed in Section 5.3.2 and freely

making use of by-parts integrations, I obtain a condition involving the numbers n, β and α which

is equivalent to

−(n+ k)Q+ R̄2
[

−β − α

8

]

= 0 (5.121)

The numbers n and β were already fixed by equations (5.91) and (5.92) in requiring that the

auxilliary conditions ∇̄bδφ
¯
2 δφ = 0 (conservation of stress-energy) and δφ

¯
2 δφ = 0 (tracelessness)

18Of course, they will exist in general. Even the gauge-choice will have anomalies, as can be inferred from Section
5.3.2.
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hold in addition to
¯
2 δφ = 0 (the linearized equation of motion). However, the coefficient α in

C = αR was left free because of the simplicity the equations took in the de Sitter background,

i.e. the C terms did not appear in equations (5.89) and (5.90). Since it does appear in equation

(5.121), one may always pick a value of α to satisfy equation (5.121). Therefore, I conclude that the

LS conditions (5.117) do not exhibit any quantum anomalies given my coordinate conditions, the

equations of motion, and the requirements of locality and covariance in the sense of HW. Therefore,

they form a nontrivial operator constraint on the quantum states |Ψ > which the operators δφ and

δπφ act on. I emphasize that this is the same conclusion that Higuchi reached using completely

different methods in [53], however his calculation involved only vacuum gravitational wave (TT)

fluctuations and did not consider regularization issues or quantum anomalies as such. However,

it is clear that he anticipated the result that even if matter fields were coupled to gravity in a

de Sitter background, such as in the scenario presented in this Chapter, one would also obtain a

constraint in the quantum case.

It should also be emphasized that the nontrivial nonlinear constraints on |Ψ > which arise from

the LS conditions are over and above the linearized gauge-invariance imposed by the fact that

∫

Σt

d3x
[
(£X ḡab) δ

2πab −
(
£X π̄

ab
)
δ2hab

]
|Ψ > = 0, (5.122)

which was proven in the development around equation (5.111). The task of the next section will be

to see exactly what kind of additional constraints the LS conditions (5.117) impose on the states

|Ψ >.

5.4.4 Quantum LS conditions and de Sitter invariance of |Ψ >

Higuchi in [53] has already shown that the quadratic LS conditions for gravitational fluctuations

in vacuum de Sitter demand that all the physical (i.e., gauge-invariant) states in linearized gravity

be de Sitter invariant. He did so via an analysis that showed how the de Sitter group transforma-

tions of the classical mode functions related with those of the creation and annihilation operators

in the quantum theory. In this way he showed that the operators δ2P (X) generated de Sitter

transformations.

However, it turns out that one may also prove this de Sitter invariance condition for our par-

ticular backreaction problem in a much more concise manner. One may appeal to the facts proven

at the end of Chapter 2, namely equations (2.117) and (2.118) (and the analagous equations for

the timelike LS conditions). These relations show that on the classical level

n̄a∇̄aδ2P (X) = 0, (5.123)

δ2P (X)−
(

˜δ2P (X)
)

= 0, (5.124)

where
(

˜δ2P (X)
)

are the LS conditions with their canonical variables transformed along some

vector ζa, i.e. δ2πij → δ2πij + £ζ π̄
ij , etc. In other words, the LS conditions are gauge-invariant

and preserved from slice to slice. Furthermore one may show in a straightforward calculation



CHAPTER 5. BACKREACTIONS IN DE SITTER 105

resembling that of equation (5.109) that the Poisson bracket of two LS conditions satisfies

{δ2P (Xa), δ
2P (Xb)} = Acabδ

2P (Xc), (5.125)

where the Acab are some trivial structure functions19. However, the fact that the Poisson bracket of

two LS conditions returns a third to within some structure constants, combined with the fact that

the LS conditions are separately conserved (and gauge-invariant), means that they are the so-called

Hamiltonian generators of the associated symmetry transformations (see Moncrief in [59] and also

Taub in reference therein) Xa. In other words, their Poisson bracket algebra must be isomorphic

to that of the symmetry group represented by Xa, which I have taken to be Killing vectors of de

Sitter. Therefore, the constants Acab are related to the Lie algebra of the Killing fields via

[Xa, Xb] = AcabXc, (5.126)

and the constraints δ2P (Xa) must be the generators of de Sitter transformations. This is easy

to verify in practice because one may easily derive the Killing vectors of de Sitter spacetime and

therefore find the constants Acab. Indeed, the Killing vectors are, in the given coordinate basis,

X i
(1) = ∂φ

X i
(2) = − cos(φ)∂θ + cot(θ) sin(φ)∂φ

X i
(3) = − sin(φ)∂θ − cot(θ) cos(φ)∂φ

X i
(4) = cos(φ) sin(θ)∂χ + cot(χ) cos(θ) cos(φ)∂θ − cot(χ) sin(φ) csc(θ)∂φ

X i
(5) = sin(φ) sin(θ)∂χ + cot(χ) cos(θ) sin(φ)∂θ + cot(χ) cos(φ) csc(θ)∂φ

X i
(6) = cos(θ)∂χ − cot(σ) sin(θ)∂θ







(5.127)

for the spatial rotations, and

Ba(1) = cos(χ)∂t + a(t)ȧ(t) sin(χ)∂χ

Ba(2) = sin(χ) cos(θ)∂t − a(t)ȧ(t) cos(χ) cos(θ)∂χ + a(t)ȧ(t) sin(χ) sin(θ)∂θ

Ba(3) = sin(χ) sin(θ) sin(φ)∂t − a(t)ȧ(t) cos(χ) sin(θ) sin(φ)∂χ − a(t)ȧ(t) sin(χ) cos(θ) sin(φ)∂θ

−a(t)ȧ(t) sin(χ) sin(θ) cos(φ)∂φ

Ba(4) = sin(χ) sin(θ) cos(φ)∂t − a(t)ȧ(t) cos(χ) sin(θ) cos(φ)∂χ − a(t)ȧ(t) sin(χ) cos(θ) cos(φ)∂θ

+a(t)ȧ(t) sin(χ) sin(θ) sin(φ)∂φ







(5.128)

for the four boost Killing vectors20. Thus, for example,

[X i
(1), X

i
(2)] = −X i

(3), (5.129)

and one may repeat this procedure to calculate the constants the Acab. In fact, this procedure is

often the easiest to use to find all of the linearly independent Killing vectors if only two or more

are known.

19Therefore the LS conditions form a Lie algebra.
20The spatial projection of the boost vectors are actually conformal Killing vectors on S3, with conformal factor

equal to aȧ.
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Returning to the quantum LS conditions, the equivalent condition to (5.125) which one must

demand is

[δ2P (Xa), δ
2P (Xa)] = iAcabδ

2P (Xc), (5.130)

and given that we have proven that there are no quantum anomalies which arise in the LS conditions

it is possible to find a ‘normal ordering‘ such that this relationship is true. This implies that we

may identify the LS conditions δ2P (X)|Ψ >= 0 as equivalent to the demand that the physical

states |Ψ > must be invariant under the de Sitter group SO(4,1).

5.5 The LS conditions and de Sitter invariant states

An immediate conclusion one can draw from the de Sitter invariance requirement

δ2P (X)|Ψ > = 0 (5.131)

is that it applies to the entire spectrum of states |Ψ >. In particular, it does not just apply to the

vacuum state. This should be contrasted with the limit in which the cosmological constant Λ goes

to zero, where one would expect to recover physics in Minkowski spacetime. In the case of flat

spacetime, only the vacuum state is invariant under the Poincare group whereas any excited states

break this symmetry. It would seem therefore that any dynamics in de Sitter spacetime are highly

restricted by this requirement of de Sitter invariant states, and furthermore Higuchi in [53] shows

that for the case of vacuum gravitational (TT) fluctuations the only normalizable de Sitter invariant

state is the vaccum. One cannot do much with just one allowed state, the vacuum, and it is even

harder to see how the flat spacetime limit occurs in this context. Moncrief, Higuchi, and others

have described this dearth of dynamics as the ’apparent rigidity’ of de Sitter spacetime, which may

be thought of as the crude ‘remnants‘ of general diffeomorphism invariance of an underlying theory

of quantum gravity21.

It is useful to be somewhat more specific about the vacuum in de Sitter, which is considerably

richer than in flat spacetime even for a massive, minimally coupled scalar field. In particular,

for this case, there is an infinite family of vacua which are de Sitter invariant which are usually

parametrized by one complex parameter α, and which can have interesting short-distance (UV)

and long-distance (IR) behaviour. However, only one unique state is thought to reduce to the

Poincare invariant vacuum of Minkowski spacetime in the limit of Λ→ 0 and in particular for the

two-point function in the vacuum to be of the ’Hadamard’ form (i.e. to have the same singularity

structure as in Minkowski). This is known as the Bunch-Davies (or ’Euclidean’) vacuum.

For our massless, minimally coupled case, however, the situation is somewhat more peculiar.

For example, in the inflationary context it is usually derived that the mean squared fluctuations of

21In this sense one could imagine a tower of LS conditions or similar constraints bearing on higher and higher
orders of perturbation theory, in turn demanding ’finer’ and ’finer’ invariances. de Sitter invariance is after all a
rather crude, ’bulk motion’ invariance.
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δφ gow linearly in time with inflation, i.e

< δφ2 > ≈ H3

4π2
t. (5.132)

However, this expression manifestly violates de Sitter invariance since it is not a function of the

geodesic distance Z defined by equation (5.15), and is instead a function of comoving time alone.

Indeed, if one insisted on a de Sitter invariant two-point function then one would quickly find that

it is infrared divergent in the massless, minimally coupled limit. One can easily see why this is by

recalling the second order matter Lagrangian action for our case, from equation (2.83),

(2)SM = −1

2

∫
√

|ḡ|
[
ḡabδφ,aδφ,b

]
d4x, (5.133)

and observing that it is invariant under the transformation δφ → δφ + constant. This is simply a

zero mode, and the two point function is ill defined because all values of the spatially constant part

of δφ are equally probable in a de Sitter invariant state, just as for an eigenstate of the momentum

in the quantum mechanics of a free particle. In fact this observation underlies the claim that

Allen proves in [60], which is that there exists no de Sitter invariant vacuum state for the massless,

minimally coupled field. For this reason it is often assumed that the symmetry group of the vacuum

is smaller, for example that of the O(4) subgroup of SO(4,1) which are the spatial rotations on

S3. In that case the two-point function has no infrared divergences anymore22. In other words,

one may sacrifice invariance with respect to boosts in order to obtain a sensical expression for the

two-point function.

However, in our particular case we have also allowed the gravitational field to fluctuate to leading

order in response to the second order, quantum, scalar field fluctuations. As I have shown above,

this inevitably leads to a relation like (5.131) which imposes a further invariance requirement on all

the physical states of the metric and matter fluctuations. Thus, in the context of equation (5.131)

and the discussion leading to it, we know that assuming anything less than full de Sitter invariance

would imply violating some LS conditions, which may be problematic. In order to avoid this, one

may try to at least formally construct fully de Sitter invariant states for massless fields and grapple

with the issue of trying to make nontrivial dynamics with them. It is important to stress that if

one does not allow the gravitational field to fluctuate, as in the semiclassical approximation, this

issue of imposing de Sitter invariance does not arise at all. I also once again refer the reader to

Woodard in [52] for extensive and much more in-depth commentary on the whole issue of whether

or not one really wants, or can even attain, de Sitter invariance in related considerations.

To get a sense of how to construct de Sitter invariant states, one may start by quantizing the

massive minimally coupled field in de Sitter

(
¯
2 −m2)δφ = 0 (5.134)

as discussed underneath equation (5.93). Expanding δφ in terms of the orthonormal spherical

22And in fact equation (5.132) is derived by assuming O(4) invariance only.
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harmonics on S3, YL`m one has

δφ =
∑

L`m

χL`mYL`m, (5.135)

one recalls that ∆̄YL`m = −L(L + 2)YL`m for L ∈ Z+. Putting this expansion into the action

(5.133) (with a matter term m2δφ2 added) one obtains, using by-parts integration to convert the

gradient terms and the orthonormality of the spherical harmonics,

(2)S =
1

2

∑

L`m

∫
1

(H sin η)2
[
(χ̇L`m)2 − ω2

L(η)χ2
L`m

]
dη, (5.136)

where

ω2
L(η) ≡ L(L+ 2) +

m2

(H sin η)2
. (5.137)

I have also defined (for convenience) and used above a ‘conformal time‘ quantity η ≡ t
a(t) where

a(t) is the scale factor of the metric given by equation (5.44)23. The classical equation of motion

is therefore

χ̈L`m − 2 cot(η)χ̇L`m + ω(η)2χL`m = 0, (5.138)

where the dots indicate derivatives with respect to conformal time, and from the action one can

define the canonical momenta

∂(2)L

∂χ̇L`m
≡ πL`m =

χ̇L`m
(H sin(η))2

. (5.139)

Just as indicated under equation (5.93) we promote these quantities to operators, whose commu-

tation relations are

[χL`m, πL`m] = iδLL′δ``′δmm′ , (5.140)

which are time dependent in the Heisenberg picture. Expanding them in terms of time independent

annihilation and creation operators aL`m and a†L`m, we write

χL`m = uL`maL`m + u∗L`ma
†
L`m (5.141)

πL`m =
1

(H sin η)2

[

u̇L`maL`m + U̇∗
L`ma

†
L`m

]

, (5.142)

where the uL`m are solutions of (5.134) which are normalized according to the usual Wronskian

condition uL`mu̇
∗
L`m − u∗L`mu̇L`m = i(H sin η)2.

The vacuum state |0 > is the state for which aL`m = 0, ∀L, `,m. Its precise definition in a

23The metric as expressed in terms of this conformal time is given by ds2 = 1
(H sin η)2

(−dη2 + dχ2 + sin2 χ(dθ2 +

sin2 dφ2)).
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curved spacetime is of course ambiguous, however we can follow the flat spacetime case closely and

demand that it be invariant under the de Sitter group. As I have said above, we wish only to focus

on the Bunch-Davies vacuum, for which the mode functions may be verified to be (see Birrel and

Davies in [61] for details)

uL`m = AL(sin η)(3/2)
[

P λν (−cos(η)− 2i

π
Qλν (−cosη))

]

, (5.143)

where P and Q above are Legendre polynomials, λ ≡
√

9
4 − m2

H2 and ν ≡ L + 1
2 , and AL =

√
π2Heiπλ2

√
Γ(L−λ+3/2)
Γ(L+λ+3/2) . It is clear that this state is de Sitter invariant since one may calculate

the symmetric two-point function (or, the ’Wightman’ function), which is given by

W (x, x′) ≡ < 0|δφ(x)δφ(x′) + δφ(x′)δφ(x)|0 >

=
∑

L`m

[uL`m(η)u∗L`m(η′)YL`m(χ, θ, φ)Y ∗
L`m(χ′, θ′, φ′) (5.144)

uL`m(η′)u∗L`m(η)YL`m(χ′, θ′, φ′)Y ∗
L`m(χ, θ, φ)] , (5.145)

using Maple and expression (5.143) along with the spherical harmonics. The answer, which gener-

alizes (5.132) to the case of a de Sitter invariant vacuum, is

W =
H2

(4π)2
Γ(

3

2
+ λ)Γ(

3

2
− λ)F (

3

2
+ λ,

3

2
− λ; 1 + Z

2
) = W (Z), (5.146)

where Z is defined in equation (5.15) as H2ζa(x)ζa(x
′) and F is the hypergeometric function24. It

is clear that this expression has a problem for m = 0 since the gamma function has a pole whenever

λ = 3
2 (see [60] for more details), however I will ignore this problem for now.

Given the above, I will follow Higuchi in [53] and call a state of the form

a†L1`1m1
a†L2`2m2

. . . a†Ln`nmn |0 >,

an ‘n-particle state‘ even though there is no globally timelike Killing vector in de Sitter which could

justify this phrase. I will also call a finite linear combination of such n-particle states |ψ >. The

general idea is to take |ψ > and smear it over the group volume of SO(4,1) using the volume measure

we have already calculated in equation (5.47). More specifically, first one may define U(M), with

M defined in equation (5.45), as the unitary operator associated with de Sitter transformations of

the creation and annihilation operators (which Higuchi has already calculated in [53]). Then one

can take dV as the group volume element from equation (5.47). Acting on |ψ > with these de

Sitter transformations and integrating over each such ‘action‘, one may formally define the ‘state‘

24Type ‘? hypergeom‘ without the quotes in the GUI of any recent version of Maple to see the particular
conventions Maple uses in this expression of the hypergeometric function.
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|Ψ > via

|Ψ > ≡
∫

dVMU(M)|ψ >

=

∫ ∞

0

dβ sinh3(β)Bi(β)

∫

dχdθdφ sin2(χ) sin(θ)Rχθ(χ1)Rθφ(θ2)Rχφ(φ3)|ψ >,(5.147)

where by Rab(α) I mean a rotation between the axes a and b by an amount α. Similarly, Bi(β)

denotes a boost along the basis vector eµ[i] by an amount β.

It is at least formally clear that such a construction for |Ψ > (which Higuchi in [53] was the

first to construct) is automatically de Sitter invariant because

U(N)|Ψ > =

∫

dVMU(NM)|ψ >=

∫

dVMU(M) = |Ψ >, (5.148)

where the invariance of the group volume under a de Sitter transformation has been used. It is

clear from these definitions and manipulations, however, that the infinite group volume of SO(4,1)

enters in uncomfortable ways, so that |Ψ > is not normalizable. The infinities arise because of the

integrations over the entire infinite group volume and make it difficult to make practical use of this

smearing scheme. It is interesting, however, that one may create and use exactly the same sort of

scheme for our current problem, which has a scalar degree of freedom arising from the nonlinear

matter contributions in addition to the usual gravitational wave (TT) waves considered by Higuchi.

5.5.1 Massless de Sitter invariant vacua

I turn away from this line of thought here and instead consider more closely the notion that the

infrared divergence in the symmetric two-point function indicates that de Sitter invariance is broken

for a massless, minimally, coupled scalar field25. Actually, the precise statement Allen in [60] proved

was that one can construct a de Sitter invariant vacuum for this case, but it cannot be used to

create a space of states in the usual ‘Fock‘ sense of applying creation operators.

An entirely analagous situation occurs with the simple harmonic oscillator, where the expres-

sions for x(t) and p(t) in terms of the creation and annihilation operators make no sense in the

limit of the frequency ω → 0 because the Hamiltonian spectrum becomes continuous. In that case

one quantizes in terms of the canonical position and momentum operators, which are simply

x(t) = A+Bt (5.149)

p(t) = B, (5.150)

where [A,B] = i. It is clear that A and B are constants of the motion in this case. By analogy

this suggests that one may take the zero mode associated with (5.134) when m = 0 whenever

L = 0, and simply define some new constants of the motion, instead of creation and annihilation

25The primary technical difficulty is the presence of the spatially homogeneous zero mode, for which an expansion
in terms of creation and annihilation operators is well-known to be problematic.
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operators, via

χ000 =
[

fh1Ã+ fh2B̃
]

, (5.151)

π000 =
1

(H sin η)2
(ḟh1Ã+ ḟh2B̃), (5.152)

where fh1 and fh2 are of (5.138) for L = 0 = m, i.e. homogeneous solutions satisfying the

Wronskian condition. Taking these definitions seriously, then the commutation relations (5.140)

between ’the rest of’ the χ, π solutions imply simply

[Ã, B̃] = i (5.153)

In this sense one can then define a vacuum via the requirements that

B̃|0 > = 0 (5.154)

aL`m|0 > = 0 ∀L > 0, (5.155)

and it is easy to see that the usual freedom one has in picking a vacuum state is distributed between

picking a homogeneous function fhi plus that of picking an inhomogeneous function, i.e. uL`m for

L 6= 0.

Drawing on the work of Section 5.2.2, one can set B (as defined by equation (5.35) to be repre-

sented by the de Sitter Casimir invariant computed in (5.35) because it is the natural generalization

of a classical constant of the motion for de Sitter spacetime. In any case this appears to be a good

starting point for developing a sensible de Sitter invariant vacuum state (for a massless, minimally

coupled field) in which it is possible to calculate expectation values of physical observables. In

fact, after this work was completed it was pointed out to me that precisely such a programme

was already carried26 out some 12 years ago by Kirsten and Garrigas in [62]. In this work they

advocated taking the zero mode more seriously using basically the same lines of thought, and ac-

tually extended the result (5.132) by computing the dispersion of massless δφ in their constructed

de Sitter invariant ‘vacuum‘ state. However, they did not actually calculate the de Sitter invariant

constants of motion which are required by the analysis. These amount to the Casimir invariants of

the de Sitter group. In this sense their relation (38) is less general than (5.154) above, which shows

exactly what the structure of B̃ (their P ) must be in order to be a constant of the motion in de Sit-

ter. As emphasized in Section 5.2.2, the constants of the motion in de Sitter lead to fundamentally

different conservation laws and notions of de Sitter invariant energy and momentum, and in this

sense the above equations combined with the analysis of Section 5.2.2 are more general than their

given framework. This is especially important given the claim in [62] that P should be observable,

as the only observers which are possible in this theory are de Sitter invariant, for whom, e.g., the

centre of mass must be constant in space or total angular momentum must be zero.

26I thank A.O. Barvinsky for pointing this out to me.
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5.6 Summary

I have shown that the leading order gravitational response to nonlinear scalar field fluctuations

in de Sitter spacetime can be reduced to solving for three physical degrees of freedom, namely a

lone scalar fluctuation and two transverse-traceless fluctuations. These fluctuations obey, given the

closed slicing I have chosen, initial value constraints which are the perturbed Einstein constraint

equations. If one demands that these equations be satisfied to leading order, then one must also

satisfy a nontrivial global LS condition for each of the ten background Killing vectors of de Sitter

spacetime. These LS conditions only involve the nonlinear scalar field fluctuations because, as is

demonstrated, the gravitational terms drop out. On the classical level these LS conditions possess

a Poisson bracket algebra which is isomorphic to the Lie algebra of the Killing vectors in de Sitter

space. Since the LS conditions are proven to be conserved and gauge invariant in Chapter 2,

this shows that they are the generators of the de Sitter transformations. It is also shown that

if one insists on the nonlinear quantum scalar field perturbations being local and covariant in

the sense of Hollands and Wald, then one can use use the freedom to redefine these nonlinear

perturbations to render all quantum anomalies associated with the imposition of tracelessness, the

equations of motion, and the LS conditions to zero. This implies that the quantum version of the

LS conditions impose strict de Sitter invariance on the quantum states of the nonlinear matter and

linear gravitational fluctuations. For our massless fields this is highly problematic, as discussed,

and a sketch is presented to construct a de Sitter invariant spectrum of states using the Casimir

invariants of the de Sitter group. This is advocated over SO(4,1) group-smearing ordinary members

of the O(4) invariant Fock space.
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CHAPTER 6

SUMMARY AND CONCLUSIONS

6.1 Outline

In this Chapter I conclude and summarize the three projects which comprise this thesis. I also

offer some thoughts on possible follow-up work to be left for the future.

6.1.1 Linearization instabilities in Einstein static

There are perhaps two noteworthy features of this analysis, namely that of an extension of the

linearization stability analysis proper and of the proof that linearization stabilities can have a

direct physical consequence in a linearized perturbative analysis. In order to summarize how this

extended the linearization stability analysis, I will place my work in the context of preceding work.

Linearization instabilities in the Einstein equations were initially discovered by Fischer and Marsden

in [9] and formulated under rather restrictive conditions, which included the demand of extremal

slicing in the background (namely, that the trace of the extrinsic curvature Kab be constant) and

also a restriction to vacuum background spacetimes. Moncrief in [19] and [5] greatly strengthened

these results by doing away with the extremal slicing requirement and emphasizing the direct role of

background isometries in linearization instabilities, primarily because he used the more physically

motivated ADM formalism [17] rather than the implicit function theorem to express the results.

However, he retained the vacuum restriction because of the general intuition that another matter

degree of freedom will in general allow one to ’soak up the instability’ (since a freely specifiable

stress-energy allows any metric to solve the linearized Einstein equations). As shown much later

by Kastor and Traschen in [63] (following closely the earlier intuition of Taub concerning conserved

quantities in perturbation theory), if one restricts the matter perturbations and background then

a similar linearization instability can arise. In [1] I show that such a situation does indeed arise in

Einstein static, where the background matter must have enough pressure to render the speed of

sound of the perturbations sufficient to stabilize inhomogeneous perturbations. The linearization

instability associated with the background timelike Killing vector in Einstein static implies that the

negative-norm spatially homogeneous modes, which are famously (exponentially) unstable, must

be present in addition to any neutrally stable inhomogeneous modes. This calculation forms the

first concrete example of a linearization instability implying a dynamical instability to linear order.

It is useful to point out that I have not considered the LS conditions associated with the spacelike

Killing vectors of Einstein static. I do not expect any further strong constraints from them.

The main conclusion one can draw is that linearization instabilities are not simply an academic

oddity, but can provide considerable insight into global questions about the modes of the linearized

perturbation. By global I mean that the LS conditions are expressed as integrals of modes over a
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closed space, so that if one wishes to delete one class of modes or include only special ones, it may

well be that these global conditions can be violated. A violation of the LS conditions means that

one has not yet really solved the linearized constraint equations, so that either spurious solutions

exist or not all of them have been found or included in the analysis. Given that much of what

we know about cosmology is from perturbation theory about highly symmetric backgrounds, these

features are important to keep in mind.

6.1.2 Backreactions in slow-roll

The question of whether or not higher order terms can become important in slow-roll inflation

is crucial to understanding currently favoured mechanisms of structure formation. In the fourth

Chapter, using [2], I looked at this question for the case of nonlinear super-Hubble modes back-

reacting on suitably defined notions of energy density and pressure. The fact that the calculation

conceptually reduced to determining how scalars (which appear in the energy density and pressure)

behave is no accident, given the relative ease with which one can handle coordinate issues in scalars

compared to tensors such as the metric. This will remain the case until some sensible methods are

created to compute an averaged spacetime metric, and this is an active area of research today in

the context of the so-called cosmological averaging problem (see Coley in [64]).

Nevertheless, the behaviour of scalars, and in particular the eigenvalues of the total stress energy

of the fluctuations can potentially say quite a lot about the behaviour of the metric in general,

as one can see in the analysis of Chapter 4. When I compute the dispersion of the second order

energy density and compare it to the analagous dispersion at linear order, the surprising conclusion

is that the second order terms dominate. One could immediately argue that this result may be

specific to the many coordinate choices made at first and second order, however there are actually

gounds for optimism, as I argue underneath equation (4.70), as it seems that one can go to any

other coordinate system and the dominating terms will still go as sufficiently large inverse powers

of β as to dominate the linearzed result. A rigorous proof of this result, or its falsity, will be a

focus of my future research. Another way to state the coordinate issue is to ask if one can find

an exhaustive coordinate system in which all the higher order effects are rendered subdominant1.

Although one can certainly find a coordinate system where δ2ρIR is zero, the metric as cast in

this coordinate system will be very complicated and almost certainly be dominated by second and

higher order terms (much like the metric of the surface of a raging river would be if one chose a

coordinate system in which the density of the water were constant). Furthermore, it is not possible

to set δ2ρIR and δ2pIR simultaneously to zero. On physical grounds it is also very hard to ignore

the compelling fact that these higher order effects are cumulative in the k-modes and that as the IR

(superhorizon) phase space rapidly grows, with more and more modes exiting the horizon during

inflation, their relative amplitude only grows.

The fact that the dispersion of δ2ρIR dominates that of δρ combines with the fact that the

quantum average < δρ >= 0 to allow for a simple constraint on the slow-roll parameter (since

there are no <
√

(δ2ρIR)2 >< δρ > cross-terms), equation (4.113). This inequality provides a

simple window of slow-roll parameters for the background which in turn lead to strong or weak

1I am indebted to W.G. Unruh for emphasizing this to me.
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relative second order effects. The inequality is certainly violated for Planck-scale initial values of

the inflaton (which is a common assumption in chaotic inflation models among others) given the

standard number of N ∼ 70 e-foldings of inflation. In other words, the inequality asserts that for

such an initial value of the inflaton and for a standard duration of inflation, the slow-roll condition

is precisely the condition for higher order terms to dominate. If this radical possibility is actually

true, then one is forced to accept that the linearized approximation to slowly-rolling spacetimes is

intrinsically ill-posed. It may well also be that the inequality (4.113) can be weakened substantially

by more realistic assumptions, including coordinate conditions which render higher order effects

subdominant as mentioned above, however the calculation at least seems to warrant a closer look

at the consistency of the slow-roll approximation in this sense. After all, the whole premise of

fluctuations in inflation is based on the assumption of a linear evolution of squeezed Gaussian

vacua during slow-roll.

6.1.3 Backreactions in de Sitter

Given the summary of Chapter 5, I would like to comment on the exclusive use of invariant states

to describe dynamics in de Sitter. Moncrief notes in [59] that in order to obtain a reasonable

interpretation of invariant physical states one needs to regard the observer as an intrinsic part

of the quantum system rather than something external. The work in Chapter 5 suggests that

even in the leading order backreaction problem of de Sitter this issue can crop up, and indeed

one may regard the requirement of this invariance as a relic of the full diffeomorphism invariant

theory underlying a fully quantized theory of gravity. In this sense the backreaction problem

outlined in Chapter 5 provides a relatively tractable playing ground for looking at much more

fundamental issues. This should be sharply contrasted with the analagous analysis carried out in

the semiclassical approximation, in which the background geometry is not allowed to fluctuate, for

in that case the whole issue of de Sitter invariance is not forced on the level of the LS conditions.

It is also important to note that the LS conditions ensure that if one were to examine the next

order of perturbative corrections, they would be integrable and in that sense well-posed.

The construction of sensible, de Sitter, invariant states remains a big challenge. The small

beginnings described at the end of Chapter 5 must be extended and much thought still remains

to be put in to extending the de Sitter invariant vacua for the massless fields of this backreaction

problem. This project is made all the more urgent by the result that quantum anomalies cannot

ruin the invariance requirement, for even if there was something wrong in the calculation one

can always choose to abandon the tracelessness gauge-condition and retain the combination of

stress-energy conservation, equation of motion, and the LS conditions. This would simply give one

another scalar mode in the problem, but nothing would fundamentally change. The robustness of

this result therefore ensures that the invariance requirement is very much relevant even at leading

order in the backreactions. In some sense this is the main contribution of this Chapter to the young

and exciting study of backreactions in the early universe.
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APPENDIX A

Second order Scalar Constraints

The solutions to the first and second order scalar constraints, which I use right above equation

(4.53) to eliminate the matter fluctuations (and their first time derivatives) to first and second

order in ε, are

F =
H

2κβ

(

6Q̇+ 18H2tψ2 + 18Htψψ̇ − 9ψψ̇ − 6AH + 6Hψ2
)

− 81H3k2

κ2a2β3
(ψ̇ +Hψ)ψ (A.1)

Ḟ =
β

6
(9ψ2Ht2 −At) +

3H

4κa2β

(
−36k2ψ2Ht+ 36a2H3tψ2 − 12k2Q− 12a2H2ψ2 (A.2)

+36a2H2tψψ̇ − 3a2(ψ̇)2 − 18a2Hψψ̇ + 12a2H2ψ2 + 45k2ψ2
)

− 81H3k

2κ2a4β3

(

−3k2ψ2 + 6a2Hkψψ̇ + a2k(ψ̇)2 + a2H2kψ2 + 2Ha2kψψ̇ + 6a2H2kψ2
)

Φ =
3H

κβ

(

ψ̇ +Hψ
)

(A.3)

Φ̇ = tβψ − 9Hk2ψ

κa2β
(A.4)

Recall here that the times ‘t‘ above come from the slowly decaying background scalar field:

φ̄(t) = φ0 −
βt

3H
(A.5)

In the second order solutions above I have not subsituted in particular value of the lapse

(equation (4.50)) given by the gauge conditions (equations (4.48) - (4.49)), however I have imposed

the condiitons (4.51) and (4.52) in order to simplify the expressions. Also, I have not carried out

the implied integrals over k using equation (4.60), however this is done straightforwardly in the

main thesis. In this thesis the above constraints are only used to eliminate the matter fluctuations

in favour of the metric fluctuations.


