
Vortex Interactions in Type II

Superconductors

Brian Martin

April 26, 2005

University of British Columbia

Physics 449: Honours Thesis

Abstract

In describing the properties of type II superconductors there

is an important parameter a, called the scattering length. It is
related to another parameter g, which determines certain prop-

erties of the vortex system (see ref.[1] for details). The goal of
this project was to find the value of a. The first approxima-

tion to the solution found a to be ≈ 15.5. Numerical difficulties
and time constraints yielded inaccurate results for the second

approximation to the solution.

1

Contents

1 Introduction 3

1.1 Superconductors 3

1.2 Type II Superconductors 7
1.3 Interaction of Vortex Lines 9
1.4 Problem Statement 10

2 Theory 13

2.1 Path Integrals . 13

2.1.1 The Classical Action 13
2.1.2 Quantum Mechanics 14

2.1.3 The Sum Over All Paths 15
2.1.4 Path Integrals in Statistical Mechanics . . 16

2.1.5 Vortex Interactions and Statistical Mechan-
ics . 18

2.1.6 From Path Integrals to the Schrodinger

Equation 19
2.2 Solving the Schrodinger Equation in One Dimension 20

2.2.1 Eigenvalue Problem 20
2.2.2 Initial Value Problem 22

2.3 Solving the Schrodinger Equation in Three Di-
mensions . 22

2.3.1 Gauss-Seidel Relaxation 23
2.3.2 Successive Over Relaxation 25
2.3.3 Extracting the scattering length from the

3d solution 26

3 Results and Analysis 27

3.1 One Dimension 27
3.1.1 Eigen-problem 27

3.1.2 Initial Value Problem 30
3.2 Three Dimensions 32

2

3.3 Convergence Tests 34

4 Conclusion 35

5 Program Code 37

5.1 1D Eigenvalue Solver Code 37

5.2 1D Initial Value Problem Code 39
5.3 3D Solver Code 41

6 Acknowledgements 48

Bibliography 48

3

1 Introduction

In this section the important background information is dis-
cussed. The relevant topics are superconductors (specifically,

type II superconductors) and a brief discussion of vortex inter-
actions. References for a more detailed development of the ideas
are given in the appropriate sections. The following sections are

based heavily on De Gennes’ work [2].

1.1 Superconductors

Below certain low temperatures (≈ 10K), some metals enter

a new thermodynamic state. X-ray crystallography confirms
that it is not a new crystal structure, and neutron scattering

confirms that it is not a magnetic transition. The change is that
at low temperatures these metals show no electrical resistance.
This state is called the superconducting state. For example, a

current induced in a ring of tin at T < 3.7K has been observed
to persist for over a year. Mercury was the first superconductor

to be discovered by Kammerling Onnes in 1911.
The free energy curve for a superconductor can be derived

from specific heat data. The data curve for the superconduct-
ing state meets the curve for the normal state at the transition

temperature (T0). At T = 0, the difference between the normal
free energy (FN) curve and the superconducting (FS) curve is
of the order (kBT0)

2/Ef , where Ef is the Fermi Energy of the

conduction electrons in the normal metal. (Some typical values:
Ef ≈ 1eV , and kBT0 ≈ 10−3eV .)

We now consider what effects super-currents (j(r)) and their
corresponding magnetic fields (h(r)) have on the free energy.

The equation for the free energy is:

F =
∫

Fsdr +Ekin +Emag (1)

4

Fs is the energy of the electrons in the superconducting state,
Ekin is the energy associated with the currents, and Emag comes

from the magnetic field.
Let v(r) be the drift velocity of the electrons and ns be the

density of superconducting electrons. Then the current is related
to the drift velocity and density by:

nsev(r) = js(r) (2)

where e is the charge of the electron. The kinetic energy in eq. 1

is given by

Ekin =
∫

dr
1

2
mv(r)2ns (3)

where the integral is taken over the volume of the superconduc-

tor. Equation 3 is approximately correct for slowly varying v,
and is exact for v = constant. The energy associated with the

magnetic field is given by

Emag =
∫ h(r)2

8π
dr (4)

We also have Maxwell’s equation which relates the magnetic
field and the current:

∇× h =
4π

c
js (5)

Now we can rewrite eq. 1 the following way:

E =
∫

Fsdr +
1

8π

∫

dr[h2 + λ2
L|∇ × h|2] (6)

λL =





mc2

4πnsc2





1

2

(7)

We seek to find the distribution of the magnetic field that

will minimize the free energy. The change in the free energy

5

corresponding to a change in the magnetic field is:

δE =
1

4π

∫

[h · δh + λ2
L(∇× h) · (∇× δh)]dr (8)

=
1

4π

∫

[h + λ2
L∇×∇× h] · δhdr (9)

The condition that minimizes E is when δE = 0. The occurs

when the integrand is 0; therefore we arrive at the London Equa-
tion:

h + λ2
L∇×∇× h = 0 (10)

The London equation combined with Maxwell’s equations

(eq. 5) and
∇ · h = 0 (11)

allow us to determine the field and current distribution inside

the superconductor.
As a simple example, let us apply the London equation to a

semi-infinite slab of superconducting material. Let the face of
the slab be the xy plane, such that z < 0 is the superconductor,

and z > 0 is a vacuum. Assume h and j depend only on z. If h

is parallel to the z axis, then eq. 11 becomes ∂h/∂z = 0, and h
is constant. Eq. 5 then gives ∇ × h = 0, and therefore js = 0,

so h = 0. Therefore, a magnetic field parallel to z (normal to
the surface) is not allowed.

If h is perpendicular to z (tangential to the surface), then
eq. 11 is automatically satisfied. If the axes are then chosen

such that h is parallel to the x axis, then js must be parallel to
the y axis and is given by:

dh

dz
=

4πjs
c

(12)

Putting this into eq. 10 gives:

d2h

dz2
=

h

λ2
L

(13)

6

The solutions to this equation are exponentials, but the only
finite solution is exponentially decreasing:

h(z) = h(0)e−z/λL (14)

This is why λL is called the penetration depth, because the

field only penetrates the superconductor that far. The most
important conclusion from this example is that it is energeti-

cally favorable to completely expel magnetic flux lines. This
was experimentally shown by Meissner and Ochsenfeld in 1933,

and it is called the Meissner effect. However, these results are
valid only for weak applied magnetic fields and for macroscopic

samples.
The derivation for the London equation assumed a weak mag-

netic field and a slowly varying drift velocity function. We re-

quire that v(r) be correlated between two neighboring electrons.
This will be the case if v(r) has negligible variation over the dis-

tance between two electrons. Another way of saying this is that
the distance between neighboring electrons is less than the cor-

relation length, ξ0. The correlation length is defined by

ξ0 =
h̄vf

π∆
(15)

where vf is the velocity of electrons at the Fermi energy level,
and ∆ is the excitation energy. It is the energy required to
take an electron from below the Fermi energy and excite it. For

non-superconducting metals, ∆ is quite small, but it gets much
larger for metals in the superconducting state.

For stronger applied magnetic fields, superconductors can be
split into two classes. Type I superconductors are character-

ized by smaller penetration depths (λL ≈ 300Å) and large vf

(> 108cm/s). As can be seen from eq. 15, this gives a large cor-

relation length (≈ 104Å). Therefore, the London equation does
not apply to type I superconductors, as v is not constant over

7

such a large length. These are usually simple, non-transition
metals. These materials still exhibit the Meissner effect, but it

is as a result of a somewhat more complicated equation.
Type II supercondcutors are at the opposite end of the spec-

trum. They are usually transition metals and compounds like
Nb3Sn and V3Ga. These metals have larger penetration depths
(λL ≈ 2000Å) and smaller velocities (vf ≈ 106cm/s), which

gives a much smaller coherence length, ξ ≈ 50Å. Therefore the
London equation is valid in type II superconductors. These are

the type to be studied in this paper.

1.2 Type II Superconductors

The previous discussion only dealt with weak applied magnetic

fields. Type I and II superconductors also differ in their response
to slightly stronger fields. For type I superconductors, there is

an abrupt change between the complete Meissner effect phase
and the normal phase. However, type II superconductors exhibit
an intermediate state.

De Gennes shows that the critical field strength at which the
transition between the superconducting and normal state occurs

is determined by Fn − Fs = H2
c /8π, where Fn is what the free

energy would be if the material was normal, and Fs is the actual

value of the free energy calculated from the specific heat data.
Experimentally it is found that type II superconductors only
exhibit complete Meissner effect below a much weaker magnetic

field, Hc1. For H > Hc1, the magnetic flux lines penetrate, but
not completely. The flux through the slab is less than it would

be in the normal state (that is, at a higher temperature). This
state exists for Hc1 < H < Hc2. For H > Hc2, the material does

not show any flux expulsion on the macroscopic scale, but there
is still superconductivity on the surface (this can be measured

by placing nodes on the surface and measuring the resistance).

8

The existence of this partial penetration region was first shown
by Schubnikov in 1937. There are regions that are normal in-

side regions that are superconduting. There are two possible
situations for the arrangement of these normal regions: either

they will be lamina of thickness ≈ ξ0, or they will be filaments
(“cylinders”) of radius ≈ ξ0. Theoretical calculations show that
the latter situation is preferred.

Each filament has a core of radius ≈ ξ0. The magnetic field
is a maximum at the center of the filament but extends a dis-

tance ≈ λL. Circular currents surround the filament (due to the
magnetic field) and screen out the field for distances r ≈ λL.

We now wish to compute the line energy along a vortex line
(ignoring the complicated structure occurring when r < ξ0).

The equation for the energy is:

τ =
∫

r>ξ0

dr
1

8π
[h2 + λ2|∇ × h|2] (16)

De Gennes shows that the form of h that minimizes the energy

is

h =
φO

2πλ2
K0

(

r

λ

)

(17)

where K0(x) is the zeroth order modified Bessel function. Then

the form of the free energy equation (eq. 16) is

τ =

(

φ0

2πλ

)2

ln

(

λ

ξ

)

(18)

where φ0 is the flux quantum, λ is the penetration depth, and ξ is

the coherence length. The most important result of this equation
is that τ is a quadratic function of the flux quantum φ0. This

means that it is more favorable to have two flux lines (energy
2τ) instead of a single flux line with twice the flux (energy 4τ).

Now let us modify the London equation (eq. 10) to account

for the hard core of the vortex at r < ξ. De Gennes suggests we

9

modify the equation by adding a 2-d delta function:

h+ λ2∇×∇× h = φ0δ
2(r) (19)

The constant in front of the delta function shows that the vortex

carries a flux of φ0.

1.3 Interaction of Vortex Lines

The next important topic is the interaction of vortices with each

other. Suppose we have two parallel vortices lined up along the
z axis at positions r1 = (x1, y1) and r2 = (x2, y2). Then eq. 19

becomes

h+ λ2∇×∇× h = φ0[δ(r− r1) + δ(r− r2)] (20)

where h = h1 + h2 is now the sum of two of the fields given by

eq. 17. The free energy has the same form as eq. 16 but now we
integrate over the surface of the two vortices, dσ1 and dσ2:

F =
∫

dr
1

8π
[h2 + λ2|∇ × h|2]

=
λ2

8π

∫

h×∇× h · dσ (21)

The integral over dσ is for |r − ri| < ξ. If we explicitly show the

two domains of integration we get

F =
λ

8π

∫

(dσ1 + dσ2) · (h1 + h2) × (∇× h1 + ∇× h2) (22)

There are a total of eight terms here. We will group them to-
gether in the following way: the individual line energies are

2τ =
λ2

8π

[∫

dσ1 · h1 ×∇× h1 +
∫

dσ2 · h2 ×∇× h2

]

; (23)

there are four terms that go to zero in the limit that ξ → 0:
∫

(h1 + h2) · (∇× h1 × dσ2 + ∇× h2 × dσ1)) (24)

10

because ∇ × h1 is finite in the dσ2 region (and vice versa), so
as dσ2 → 0 (because ξ → 0), the entire integral vanishes. The

last group of terms is important, it represents the interaction
energy:

U12 =
λ2

8π

∫

(h1 ×∇× h2 · dσ2 + h2 ×∇× h1 · dσ1) (25)

If we define h12 by

h12 = h1(r2) = h2(r1) =
φ0

2πλ2
K0

(

r1 − r2
λ

)

(26)

then we can set

U12 =
φ0h12

4π
(27)

Finally, the expression for the free energy becomes:

F = 2τ +
φ0h12

4π
(28)

We ignore the first term, because it is independent of the dis-

tance, and the free energy F we use in the path integral approach
is

F =
φ2

0

8π2λ2
K0

(

r1 − r2
λ

)

(29)

1.4 Problem Statement

The problem to be solved involves the interaction of two vortices
in a slab (see fig. 1). As will be shown later in the path integrals
section, this interaction can be solved like a quantum mechanical

Schrodinger equation problem.
There are three distances in this problem. The x distance

is the horizontal separation of the two vortices. The y distance
is how far off the middle of the slab vortex 1 is. The z dis-

tance is the same but for particle 2. The boundary conditions
are that the particle cannot exist on the y (or z for the other

11

Figure 1: This picture is of the problem domain. The x distance represents the
horizontal separation of the two vortices. The y and z distances are the distances
from the horizontal axis.

particle) boundary. To enforce this condition, image vortices
are introduced, as is standard procedure in similar electricity

and magnetism problems [6]. Because there are both upper and
lower boundaries, an infinite number of image charges are re-

quired. Fortunately, only a small number of them contribute
significantly.

The potential is a sum of the interactions of each vortex
with all the images. Each particle interacts with its own im-

age charges (fig. 2) and with the other particle’s images (fig. 3).
It is shown later (eq. 69) that the effective potential has a multi-
plicative factor in front of it. The solution was found for various

values of this constant according to the equation:

C = 0.27 ∗ 10α (30)

Dr. Affleck proposed that the scattering length should be loga-
rithmically proportional to C, which is the same as being linearly

proportional to α. The actual value of C is 0.27 ∗ 106, which is
found from the actual constants in eq. 29.

The first method of solving involves the approximation that
the vortices stay in the middle of the slab. The eigenvalue and

initial value problem method are both used to handle this case.
Then that assumption is relaxed and the new problem is a func-
tion of three variables (x, y, and z) which is handled by Gauss-

Seidel relaxation.

12

Figure 2: This figure shows the distances from the vortices (inside the slab) to
their images (outside the slab). Note that there are actually an infinite number of
images but only the first few are shown.

Figure 3: This figure shows the distances from the vortices (inside the slab) to the
other vortex’s images (outside the slab). Note that there are actually an infinite
number of images but only the first few are shown.

13

2 Theory

This section discusses the mathematical and numerical concepts
needed to understand the rest of the paper. Feynman’s theory

of path integration is reviewed first, and then a description of
the numerical methods being used is given.

2.1 Path Integrals

The following sections closely follow Feynman’s description (see

ref [3]).

2.1.1 The Classical Action

Classical mechanics is concerned with describing how objects

can travel from one place to another. There are infinitely many
ways to get from point A to point B, but the actual path is
determined by the Principle of Least Action. Let us define S

as the action. The Principle of Least Action says that the path
chosen is the one that extremizes S, that is S ′ = 0. Let the path

be ~x(t), and the object is at ~xa at taand at ~xb at tb. Then S is
defined as:

S =
∫ tb

ta
L(ẋ, x, t)dt (31)

where L is the Lagrangian of the system. For a particle of mass
m and moving in a potential that is a function of both position

and time V (x, t), the Lagrangian is:

L =
m

2
ẋ2 − V (x, t) (32)

We require that the variation in S be 0 to first order in δ~x to

determine the path taken. The variation in S is given by:

δS = S[~x+ δ~x] − S(~x) (33)

14

and:

S[~x+ δ~x] =
∫ tb

ta
L(ẋ+ δẋ, x+ δx, t)dt−

∫ tb

ta
L(ẋ, x, t)dt (34)

The first order expansion of the first integral gives:

δS =
∫ tb

ta
[L(ẋ, x, t) + δẋ

∂L

∂ẋ
+ δx

∂L

∂x
]dt−

∫ tb

ta
L(ẋ, x, t)dt(35)

=
∫ tb

ta
[δẋ

∂L

∂ẋ
+ δx

∂L

∂x
]dt (36)

Upon integration by parts, this gives:

δS = δx
∂L

∂ẋ
|tbta −

∫ tb

ta
δx(

d

dt

∂L

∂ẋ
−
∂L

∂x
)dt (37)

but we have kept the endpoints fixed, such that δx = 0 at ta
and tb. Thus we end up with the Lagrangian equation of motion:

d

dt
(
∂L

∂ẋ
) −

∂L

∂x
= 0 (38)

2.1.2 Quantum Mechanics

The difference between the classical path previously mentioned
and the quantum mechanical path is that classically only one

path is allowed, while quantum mechanics relaxes that restric-
tion. The Principle of Least Action determines the path between

a and b classically. But in Quantum Mechanics, all paths con-
tribute, and we must find out by how much.

The probability to go from xa at ta to xb at tb is the absolute
square of the kernel K(b, a):

P (b, a) = |K(b, a)|2 (39)

where K(b, a) is defined by a sum over all paths from a to b.

K(b, a) = Σallpathsφ[x(t)] (40)

15

where φ is the amplitude of the specific path and is defined by:

φ[x(t)] = Ce
i
h̄
S[x(t)] (41)

where C is a constant chosen to normalizeK(b, a) appropriately.

This formula shows that each path contributes the same amount,
but at different phases. This means the amplitudes of some

paths will cancel when added, while others will increase the to-
tal amplitude.

2.1.3 The Sum Over All Paths

Feynman draws the analogy between the sum of all paths and

the Reimann Integral. The area under a curve is proportional to
the sum of all the values of the function. To make this statement

more clear, we choose a subset of all the values, say those sepa-
rated by a distance h. We then say that the area is proportional

to that sum:
A ∼ Σif(xi) (42)

Next, we take more and more points to approximate A better.

We must introduce a normalizing factor, otherwise the sum will
grow without bound. So we say:

A = hΣif(xi) (43)

and we take the limit as h → 0:

A = limh→0hΣif(xi) (44)

We use a similar procedure to define the sum over all paths.

First, choose a subset of time as it is the independent variable;
takeN values at width ε apart. At each time ti, choose a position
xi, and then connect all neighboring points with straight lines.

For a specific path,

K(b, a) ∼ φ[x(t)] (45)

16

along that path. Then we integrate over all variations in x1 to
xN−1 leaving x0 and xN fixed, as they are the endpoints:

K(b, a) ∼
∫ ∫

· · ·
∫

φ[x(t)]dx1dx2 · · · dxN−1 (46)

Then we take the separation ε smaller and smaller, but we again

need a normalizing factor which will depend on ε, call it A(ε).
Then we have:

K(b, a) = limε→0
1

A

∫ ∫

· · ·
∫

e
i
h̄
S[b,a]dx1

A

dx2

A
· · ·

dxN−1

A
(47)

where
S[b, a] =

∫ tb

ta
L(ẋ, x, t)dt (48)

is the line integral over the current path.

2.1.4 Path Integrals in Statistical Mechanics

The goal of this section is to show how the concepts of statistical
mechanics can be formulated in terms of path integrals, and

then to show that vortex interactions are a statistical mechanical
problem, which can be represented by path integrals.

In statistical mechanics, the partition function plays a critical
role in determining that properties of the system. For example,

the probability that a system is in a state of energy Ei (assuming
non-degenerate energy levels) is:

pi =
1

Z
e−Eiβ (49)

where Z is the partition function and

β =
1

kT
, (50)

k being Boltzmann’s constant. The derivation of these results

can be found in most thermal physics or statistical mechanics
texts (see ref.[4], for example).

17

It can also be shown that if O is some observable quantity,
the statistical average for the whole system is

Ō = ΣpiOi =
1

Z
Oie

−Eiβ (51)

Let a particular state be defined by φi. Then,

Ō =
1

Z
Σi

∫

φ∗i (x)Oφi(x)e
−βEidx (52)

Feynman shows that any observable quantity can be found if

we know the function ρ(x′, x), defined by:

ρ(x′, x) = Σiφi(x
′)φ∗i (x)e

−βEi, (53)

We let O operate on φi only, not on φ∗i . So we use ρ(x′, x) and
let O act only on x′, then set x′ = x in the expression Oρ(x′, x)

and integrate over all x, and we our left with equation 52.
Also note that if P (x) is the probability of finding the system

in state x, defined by

P (x) =
1

Z
Σiφ

∗
i (x)φi(x)e

−βEi, (54)

then,

P (x) =
1

Z
ρ(x, x). (55)

ρ(x′, x) is called the density matrix, or probability density ma-

trix, and many problems in statistical mechanics reduce to de-
termining ρ(x′, x) via eq. 53.

The equation for the density matrix looks like the definition
of the Kernel as defined before. To go from state 1 to state 2,

we have:

K(x2, t2;x1, t1) = Σiφi(x2)φ
∗
i (x1)e

− i
h̄
Ei(t2−t1). (56)

In fact, the expression for the density matrix is the same as the
Kernel corresponding to an imaginary negative time interval.

18

Feynman shows that for a Hamiltonian H given by

H = −
h̄2

2m

d2

dx2
+ V (x), (57)

the Kernal over a short time interval ε = t2 − t1 is,

K(2, 1) =

√

m

2πih̄ε
exp[

im

2h̄

(x2 − x1)
2

ε
−
i

h̄
εV (

x2 + x1

2
)], (58)

and we produce a solution by developing a path integral by

taking ε → 0 and a product of infinitely many Kernels.
So we have shown that you can map statistical mechanics

problems into path integrals and shown a brief glimpse of how
path integrals and the Schrodinger Equation are connected, but
we need to develop that idea further. This will be done later

on. For now, we turn to showing how vortex interactions can be
represented as statistical mechanics problems.

2.1.5 Vortex Interactions and Statistical Mechanics

Nelson ([5]) has shown that in a system of N flux lines (vortices)

whose positions are defined by ~ri(z) (i = 1...N), the Gibbs free
energy is

G = (ε1−
HΦ0

4π
)+

Φ2
0

8π2λ2
Σi>j

∫ L

0
K0(

~rij
λ

)dz+
1

2
ε1Σ

N
i=1

∫ L

0
|
d~ri(z)

dz
|2dz,

(59)
where ~rij = ~ri = ~rj, K0(x) is the modified Bessel Function, λ is

the penetration depth, L is the length of the sample, and Φ0 is
the flux quantum:

Φ0
2πh̄c

2e
(60)

Also, Affleck et al. ([1]) have shown that for a system of N flux
lines, the partition function is:

Z =
1

N !
ΠN

i=1

∫

D[xi(z)]e
−F [xi(z)]β (61)

19

where F is the free energy of the system. Therefore the problem
of interacting vortices can be solved with statistical mechanics

methods, which, in turn, can be solved by quantum mechanical
methods.

2.1.6 From Path Integrals to the Schrodinger Equation

The path integrals that have been discussed so far have the

property that the action S obeys:

S(2, 1) = S(2, 3) + S(3, 1). (62)

That is, the action from state 1 to state 2 is the same as the

sum of the action from state 1 to state 3 and state 3 to state 2.
Because this holds for any time interval, we can take the inter-
val to be infinitesimal, and in this was formulate a differential

equation. Equation 62 allows us to relate the value of a path
integral to its value a short time later, which we then use to de-

velop the differential equation. The wave function at any time
can also be found from the wave function at a previous time via:

ψ(x2, t2) =
∫ ∞

−∞
K(x2, t2;x1, t1)ψ(x1, t1)dx1 (63)

Feynman goes through the derivation of the differential equa-
tion for the case that the Lagrangian L is given by:

L =
mẋ2

2
− V (x, t), (64)

and the resulting differential equation is the Schrodinger Equa-
tion:

−
h̄

i

∂ψ

∂t
= −

h̄2

2m

∂2ψ

∂x2
+ V (x, t)ψ (65)

Now we see that vortex interaction problems are mathematically

equivalent to solving the Schrodinger Equation.

20

2.2 Solving the Schrodinger Equation in One Dimen-

sion

In this section we review the details of the numerical meth-
ods used to solve the Schrodinger Equation in one dimension.

The first method involves using an eigenvalue solver, as the
Schrodinger equation is an eigenvalue problem. The second

method involves making the approximation that the energy goes
to zero, and in that case we can use an initial value method to

find the solution.
All of the numerical methods discussed here have been learned

from Dr. Matt Choptuik, either through classes or private con-

versations.

2.2.1 Eigenvalue Problem

The Schrodinger Equation is an eigenvalue problem; the Hamil-

tonian operator becomes a matrix when discretized, and we have

HΨ = EΨ (66)

and we wish to solve for the eigenvalue E and the eigenvector
Ψ. We discretize the continuum into a finite grid of points xi

on the problem domain xmin < x < xmax. If there are N grid
points, then the distance between neighboring grid points is

h =
xmax − xmin

N − 1
(67)

Let Ψi be the value of Ψ at xi. Then, the second derivative at
Ψi is given by:

Ψ′′
i =

Ψi−1 − 2Ψi + Ψi+1

h2
+O(h2) (68)

Ignoring the higher order terms, we are left with an approxima-
tion to the second derivative that is correct to second order.

21

Next, we group all the constants into one constant, C, and
re-write the Schrodinger Equation as

−Ψ′′ + CVΨ = EΨ (69)

The parameter C is absorbed into V for now. Using the dis-

cretized version of the second derivative, eq. 68, we can re-write
the Schrodinger equation at a single point xi as

−
Ψi−1 − 2Ψi + Ψi+1

h2
+ VΨi = EΨi (70)

We then apply this equation at each point in the grid and enforce

periodic boundary conditions by coupling the 1st andN th points.
This produces the following matrix equation:






























2
h2 + V1 − 1

h2 0 · · · 0 − 1
h2

− 1
h2

2
h2 + V2 − 1

h2 0 · · · 0

0 − 1
h2

2
h2 + V3 − 1

h2 · · · 0

0 0
... 0 0 − 1

h2

− 1
h2 0 · · · 0 − 1

h2

2
h2 + VN































[Ψ] = E [Ψ]

(71)
We can then put this matrix into an eigenvalue solver and it

will give us the eigenvalues and associated eigenvectors. I used
Fortran’s lapack library.

The next step is to extract the scattering length from the
solution. The solver gives us back an array of eigenvalues and
another array of associated eigenvectors. We are interested in

the ground state energy, so we find the lowest eigenvalue. The
plots of the eigenvectors can be seen in the results section. The

solution is expected to be of a sinusoidal form at large length
scale:

Ψ = A sin (k(|x| − a)) (72)

The parameter we are interested in is the scattering length, rep-
resented by a in eq. 72. The solution can be fit to that form and

22

then the scattering length can be extracted. This process will
be described in the results section.

2.2.2 Initial Value Problem

Because we are interested in only the ground state wave func-

tion, the energy can be taken to go to zero. In this limit, the
Schrodinger equation becomes an initial value problem instead

of an eigenvalue problem:

−Ψ′′ + CVΨ = 0 (73)

In the large x region, V (x) drops off to zero and we are left with:

−Ψ′′ = 0 (74)

The solution of which is just a line. The line has the form:

Ψ = k(|x| − a) (75)

Again, the scattering length is given by fitting the solution to
this from and reading off the value of a.

The solving method used in this section requires that the

equations come in first order canonical form. This means that
instead of a single second order equation, we get two coupled

first order equations:

y1 = y′2
y′1 = CV y2 (76)

The solver then computes the solution at requested output times.
Plots of the solution can be seen in the results section.

2.3 Solving the Schrodinger Equation in Three Dimen-

sions

The next step is to relax the assumption that the particles stay
in the middle of the slab. They can now each have a non-zero

23

y coordinate, which makes a total of three dimensions including
the separation distance. This also means a new way of repre-

senting the image charges is needed in order to allow them to
move in response to the movement of one of the particles. Now

the potential is a function of three variables as well. The same
second order approximation to the second derivative as before
can be used but now it is generalized to three dimensions:

Ψ′′ ≈
Ψi−1,j,k − 2Ψi,j,k + Ψi+1,j,k

h2
x

+
Ψi,j−1,k − 2Ψi,j,k + Ψi,j+1,k

h2
y

+
Ψi,j,k−1 − 2Ψi,j,k + Ψi,j,k+1

h2
z

(77)

And the full Schrodinger equation reads:

−Ψi−1,j,k + 2Ψi,j,k − Ψi+1,j,k

h2
x

+
−Ψi,j−1,k + 2Ψi,j,k − Ψi,j+1,k

h2
y

+
−Ψi,j,k−1 + 2Ψi,j,k − Ψi,j,k+1

h2
z

+ Vi,j,kΨi,j,k = EΨi,j,k (78)

The method used to solve this problem is called Successive Over
Relaxation. It is based on the Gauss-Seidel algorithm, which is

defined next.

2.3.1 Gauss-Seidel Relaxation

The 3D problem cannot be easily put into a matrix form, nor can
we use the initial value method anymore because the freedom

in the y direction always contributes a non-zero energy. Instead
we use the Gauss-Seidel algorithm. As before, the continuum

domain is discretized, but this time in three dimensions. I use

24

the convention that i represents an x index, j for y, and k for z.
Then the domain is xi, where x1 = xmin and xN = xmax, And

likewise for the other variables but with possibly different min-
imum and maximum values, as well as different number of grid

points N . The algorithm works by looking at each lattice point
individually. The discretized Schrodinger equation (eq. 77) can
be solved exactly at that point according to:

Ψi,j,k





2

h2
x

+
2

h2
y

+
2

h2
z

+ Vi,j,k −E



 =
Ψi−1,j,k + Ψi+1,j,k

h2
x

+
Ψi,j−1,k + Ψi,j+1,k

h2
y

+
Ψi,j,k−1 + Ψi,j,k+1

h2
z

(79)

Ψi,j,k =

Ψi−1,j,k+Ψi+1,j,k

h2
x

+ Ψi,j−1,k+Ψi,j+1,k

h2
y

+ Ψi,j,k−1+Ψi,j,k+1

h2
z

2
h2

x
+ 2

h2
y
+ 2

h2
z
+ Vi,j,k − E

(80)

Call the first time this is done step one. The solution at this
lattice point is based on the value of its nearest neighbours.

Then we move to the next lattice site and solve eq. 80 there, step
2. Of course, this changes the value of a parameter used in step

1, so that the solution of step 1 is no longer an exact solution.
But the point is that it is getting closer. At any one time only

the last lattice point visited is an exact solution to eq. 80, but
we keep visiting each lattice site and updating the value there

until the solution converges. Solving equation 80 assumes we
already know the energy. Initially, however, we just guess the
solution and the energy. So at the end of a loop through the

entire lattice, the energy is updated. In the continuum, the
energy would be given by

E =

√

√

√

√

√

< HΨ|HΨ >

< Ψ|Ψ >
(81)

25

Both the numerator and denominator can be discretized, and
then a second order approximation to the integral is used (a

3-D trapezoid rule approximation) to sum up the contribution
from each lattice site. This is done for both HΨ and Ψ and

then put into equation 81. After visiting each lattice site, solving
eq. 80 at each and then updating the energy according to eq. 81,
we are ready to start the process over again, but this time we

(hopefully) have a starting point that is closer to the solution.
The change in energy is monitored (that is, when the energy is

updated it is compared to its old value) and when the change is
less than a certain tolerance parameter, the process is stopped.

At the end of it all, Ψ is the approximate solution, and E is the
associated energy.

2.3.2 Successive Over Relaxation

One of the problems with the Gauss-Seidel algorithm is that it

takes a long time to converge. Successive over relaxation is a
way of speeding things up. At each step in the solving process,

instead of using eq. 80 to solve for the value at a lattice point,
a slightly different equation is used.

ΨSOR = w ∗ ΨGS + (1 − w)Ψold (82)

where ΨGS is the solution calculated from the Gauss-Seidel al-

gorithm, Ψold is the current value of Ψ, and ΨSOR is the new
value.

Instead of moving just to the Gauss-Seidel value, the solution
is set to go past it in an attempt to get closer to the solution

faster. The parameter w in the equation is commonly taken to
be 1.8, I have used 1.7 in my program after running tests and
finding that it works well.

26

2.3.3 Extracting the scattering length from the 3d solution

Turning to the main goal of the problem, this section describes
how to extract the scattering length from the Ψ given in 3 di-
mensions. As was shown before, the potential at large distances

drops off to zero. Therefore, at large separation distances, the
particles only feel the potential due to their own image charges.

This situation can be solved with a 1-D solver as the only rele-
vant dimension is the particle’s y value. As described before, the

energy can be extracted from this situation as well. Under the
assumption that the particles do not affect each other at large
distances (which is justified, since the potential goes to zero),

the total energy can be written as the sum of the energy result-
ing from each particles interaction with its own images (Ey and

Ez) and an energy coming from the particles interacting with
each other (Ex). The energy found from successive over relax-

ation is the total energy, Ey and Ez can be found via the 1-d
solver, so we are left with:

Ex = Etotal − Ey − Ez (83)

From this energy the scattering length can be extracted. As
was shown in the 1-d case, the solution at large distances can be
approximated by a sinusoidal form. It can be shown (see ref. [7])

that the energy of a sinusoidal wave is inversely proportional to
(L− a)2. In that case, the energy is given by:

E =
C

(L− a)2
, (84)

where L is the length of the superconductor, a is the scattering
length, and C is a constant. The value of C was found by putting

the known values of E, L, and a from the 1-D case into eq. 84.
In the 3-D case a similar method can be used. At large dis-

tances we can write the solution as a product of solutions de-
pending on the different variables, and in that case the energies

27

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

-10 -5 0 5 10

Potential V(x) with alpha = 6, length = 10

V(x)

Figure 4: The potential energy function for parameters α = 6, and xmax = 10.
For values of x larger than this, the potential is approximately zero.

just add. Putting it all together, the successive over relaxation
method returns Etot, a 1-D solver can find Ey and Ez - from
those Ex can be found. Ex is then of the form eq. 84, and the

scattering length can be extracted.

3 Results and Analysis

The solution data are shown here. In each case plots of the
wave function are shown and then the scattering length data is

extracted and analyzed.

3.1 One Dimension

Let us first look at a plot of the potential function. This can

be seen in fig. 4. Clearly the potential is only non-zero over a
region approximately −5 < x < 5. Therefore, we only consider

ranges larger than this. As it turns out, even xmax = 10 is not
large enough.

3.1.1 Eigen-problem

The first area of exploration was to see if the solution was sinu-
soidal at large values of x. The following plots show the solution

28

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-10 -5 0 5 10

1D solution with alpha = 6, length = 10

psi
sine fit

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

-20 -15 -10 -5 0 5 10 15 20

1D solution with alpha = 6, length = 20

psi
sine fit

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

-40 -30 -20 -10 0 10 20 30 40

1D solution with alpha = 6, length = 40

psi
sine fit

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

-80 -60 -40 -20 0 20 40 60 80

1D solution with alpha = 6, length = 80

psi
sine fit

Figure 5: The solution and sine fit for length scales xmax = 10 (top left), 20 (top
right), 40 (bottom left) and 80 (bottom right). All solutions used α = 6. The sine
wave fits well for the large x region, as expected. For xmax < 20, the sine wave
oscillates rapidly, indicating that the solution still has a relatively high energy
compared to the other solutions. The other interesting feature is that the solution
goes to zero as |x| gets smaller, indicative of the large potential in that region.

for various values of xmax, which is the length of the problem

domain (see fig. 5). From looking at the plots, it is clear that we
want to take xmax to be greater than 10 to get a solution with

a small k (low energy).
Dr. Affleck has proposed that the scattering length a should

be proportional to the logarithm of the potential multiplier. The
multiplier is defined by

V1 = 0.27 ∗ 10αV0(x) (85)

where V0(x) is the potential that the fortran function which
calculates the potential returns and V1(x) is the potential used

29

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 1 2 3 4 5 6

"avsa.10"

 0

 2

 4

 6

 8

 10

 12

 14

 0 1 2 3 4 5

"avsa.20"

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 1 2 3 4 5 6

"avsa.40"

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 1 2 3 4 5 6

"avsa.80"

Figure 6: These are plots of the scattering length a versus the parameter α used
in the potential calculation. The data is for different values of xmax. The top left
is xmax = 10, the top right is xmax = 20, the bottom left is xmax = 40, and the
bottom right is xmax = 80. These plots show further evidence for using a length
greater than 10, as the data is not linear in that region.

in the solving of the problem. In this form, the hypothesis is

that the scattering length is linearly proportional to α. We now
investigate this hypothesis. The plot of the scattering length a
versus α at various lengths is shown in figure 6, and it is indeed

linear.
The next area of interest is looking at the scattering length

as a function of the length xmax. It is expected that at a large
enough value of xmax, the scattering length will approach a con-

stant (taking the length to infinity implies letting the energy go
to zero, which is the situation of interest). The data for this

part of the experiment is shown in figure 7. It is clear that the
scattering length does approach a constant value of ≈ 15.5.

30

 9

 10

 11

 12

 13

 14

 15

 16

 10 20 30 40 50 60 70 80

Plot of scattering length a vs. length L

"avsl.l"

Figure 7: The plot of scattering length a versus length x
max

. It is clear that
the scattering length approaches a constant value, as expected. The value of
the constant is ≈ 15.5.

3.1.2 Initial Value Problem

The IVP method was used as a way to validate the results found
from the eigenvalue problem. There were numerical difficulties

here, though, due to the large values of the potential function at
small values of x. The initial value solver was not able to handle

an α value greater than ≈ 1.5. As the value of α is supposed to
be taken to 6, this is not much help. However, the solution is

still explored for the small α region.
A plot of the solution is shown in fig. 8, along with a linear

fit to the solution at large x. It is clear that the fit matches well.

The ivp solver gives back values of y and the slope of y, so it is a
simple matter to compute the constants in the linear equation:

y = k(x− a) (86)

If the solver has just given back y(xmax) and y′(xmax) (the last

data point), then the constants are found by:

k = y′(xmax) (87)

a = xmax−
y(xmax)

y′(xmax)
(88)

31

-400

-200

 0

 200

 400

 600

 800

 1000

 1200

 0 5 10 15 20

IVP Psi
linear fit

Figure 8: A plot of the solution of the ivp problem along with the linear fit.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 10 20 30 40 50 60 70 80

Plot of scattering length a vs. length L

"ivpavsl"

Figure 9: A plot of the scattering length a vs. length xmax. The value of α is 0.

This is how the scattering length is extracted from the ivp so-
lution.

The next figure is of the scattering length a versus length
xmax (fig. 9). The shape of the graph is the same as for the
eigenvalue solution for a larger value of α, but the length scale

is different. Here, the graph flattens out at x ≈ 10, whereas
in the eigenvalue solution it flattened out at x ≈ 25. Also the

constant value that they approach is different. These differences
are due to the different values of α being used.

32

tcalcv3d output

v(x,y0,z)

 0
 5

 10
 15

 20
 25

 30
 35 0

 5

 10

 15

 20

 25

 30

 35

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

Figure 10: Plot of the potential function for the cross-section y = 0. The peak in
the middle represents the repulsion from the other particle, while the peaks at the
side represent the repulsion from the boundaries. The potential drops off as the
particles move away from each other.

3.2 Three Dimensions

In the three dimensional problem, the particles are now allowed

to move off the middle of the slab. The scattering length is then
extracted from the energy as described in the theory section.

First let us look at the potential function. A three-dimensional
cross section is shown in fig. 10. The potential has peaks where
the particles overlap at x = 0 as in the one dimensional case,

and also at the boundaries of y and z due to the repulsion from
their image vortices.

A similar problem was encountered with the three dimen-
sional problem as with the initial value method: the large co-

efficients that occur in the numerical approximations when α
gets large make the algorithm fail. For values of α larger than
4, then solver did not converge. We proposed to find the scat-

tering length for the lower values of α and then extrapolate the
solution to the higher values. It was shown in the one dimen-

sional case that the scattering length was linearly proportional
to α; it is reasonable to think that this may be the case for three

33

out

psi(x0,y,z)

-0.6
-0.4

-0.2
 0

 0.2
 0.4

 0.6-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0

 4.005e-28

out

psi

-0.6
-0.4

-0.2
 0

 0.2
 0.4

 0.6
y

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

z

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

v(x0,y,z)

Figure 11: The plot on the left is a cross section of the solution at x = 0. This
region is interesting because it is where the particles are repelled by each other as
well as the boundaries. The two peaks indicate that there are two symmetrical
positions at which the vortices are most likely to exist; it is where the repulsion
from the boundaries balances the repulsion from the other vortex. The plot on
the right shows a cross section taken at x = xmax, which is where the particles are
furthest from each other. It clearly shows that both particles are most likely to
be found on the horizontal axis when they are far apart. Note that the maximum
value in this plot is ≈ 1 while for x = 0 it is of the order 10−28, indicating that
the probability of finding the vortices close together is almost 0.

34

dimensions as well.
The wave function has large peaks at x = ±xmax, y = z = 0,

as would be expected. A cross section taken at x = xmax (that
is when the vortices are furthest from each other) shows that

the most probable location for both vortices is at y = z = 0
(see fig. 11). It is interesting to look at the solution for x = 0
though, because there the particles are repelled by each other

as well as the slab boundaries. A plot of this is shown in fig. 11.
The next problem that occurred in solving the 3-D problem

had to do with the resolution of the domain. As was described
in the theory section, the total energy returned from the solving

program is a sum of three energies: Ey, Ez, and Ex. The energies
that result from the vortices being repelled by the boundaries

(Ey and Ez) end up being orders of magnitude larger than Ex.
As a result, the value of Ex found from eq. 83 is almost 0, and
the accuracy of that value is not enough to be able to extract

any meaningful data. This issue could theoretically be solved
by increasing the resolution of the problem domain or by other

methods described in the conclusion.

3.3 Convergence Tests

When solving a problem as complex as this, it is important to

check that the answer is reasonable. Convergence testing is the
act of testing to see that the solution has converged, ie. that the
solution that was calculated is indeed a solution. It is similar to

solving the matrix equation Ax = b - when you calculate x, it
is a good idea to check that Ax does in fact equal b.

The convergence testing done on the one dimensional prob-
lem is performed automatically in the graphics viewing program

XVS. The solutions at resolution levels that are factors of 2 apart
are inputs to the program. For example, one might use the so-

lutions for N = 64, 128, and 256. The error is computed by

35

taking the difference of the higher and lower order solutions (ie.
the solution for N = 128 minus the solution for N = 64). If

the solution is indeed converging, then the error from a higher
resolution solution (ie. the solution for N = 256 minus the so-

lution for N = 128) will be smaller by a factor corresponding to
the increase in resolution (2, in this case). XVS multiplies the
two graphs appropriately, such that if the solution is converging,

then the graphs will overlap. This testing was done every step in
finding the 1-D solution and it was confirmed that the solution

was converging.
The method used to check convergence in the 3-D case is

called an independent residual test. It relies on using a differ-
ent numerical approximation scheme to find the same solution.

In this case, a slightly different approximation to the second
derivative was used. This independent residual approximation
is applied to the solution that was found. Let the original Hamil-

tonian used in the solution be H and the independent residual
Hamiltonian be H ′. The solution is found by using H to find Ψ

and E. Once they are found, we check that H ′Ψ − EΨ goes to
zero as the resolution gets higher.

4 Conclusion

The main goal of this project was to determine the scattering
length a - a parameter that plays an important role in describing

the properties of type II superconductors. For the 1-D case, this
problem was solved and the value of a was found to be ≈ 15.5.

For the 3-D case, time constraints and unforeseen numerical dif-
ficulties resulted in a solution that was not accurate enough to
be able to extract a meaningful value for the scattering length.

For future work, there are several possibilities to improve the ac-
curacy. The most straightforward would be to simply increase

the number of lattice points used in the solving program. An-

36

other solution would be to use higher order approximations in
the program.

A secondary goal was to investigate whether or not the scat-
tering length depended linearly on the parameter α. This prob-

lem was also solved and it was found that the scattering length
is indeed linearly dependent on α.

37

5 Program Code

5.1 1D Eigenvalue Solver

Code

c==

program symsolve

c Author: Brian Martin

c PHYS 449: Honours Thesis

c

c last modified: Apr. 25, 2005.

c

c The program is used to solve the Schrodinger Equation

c with a potential supplied by the file "calcv.f"

c==

implicit none

c command line parsing tools

integer i4arg, iargc

real*8 r8arg

c n becomes 2^level + 1, size of matrix.

c maxn is the max size of the matrix

integer level, n, maxn

parameter (maxn = 2**12 + 1)

c xmax is used in determing the solution range

integer xmax,ymax

c index variables

integer i, j

c--

c dsyevx variables

c see LAPACK documentation for complete details.

c--

integer lwork

parameter (lwork = 2**24)

real*8 a(maxn*maxn)

real*8 vl, vu

integer il,iu,m

real*8 w(maxn)

real*8 z(maxn*maxn)

integer liwork

parameter (liwork = 5*maxn)

integer iwork(liwork)

integer ifail(maxn)

real*8 work(lwork)

integer info

real*8 psi(maxn)

integer shape(1)

real*8 bbox(2)

real*8 alpha,lambyxi

real*8 sinfit(maxn)

c--

c END OF VARIABLE DECLARATIONS

c==

c--

c argument parsing

c--

if (iargc() .lt. 1) goto 900

c set the size of the matrix

level = i4arg(1,-1)

if (level .lt. 1) go to 900

n = 2**level + 1

c make sure n is not too large

if (n .gt. maxn) go to 900

c get the range of eigenvectors to be found

c the 1st one is the 0 eigenvalue vector, so we ignore

c that

c one and find the 2nd through (iu + 1) vector.

c for example, an input value of iu = 2 finds the first

c two non-zero eigenvalue solutions, which corresponds

c to the 2nd and 3rd vectors.

il = 1

iu = 1

if (iu .lt. 1 .or. iu .gt. n) go to 900

alpha = r8arg(2,6.0d0)

if (alpha .lt. 0.0d0) then

write(0,*) ’alpha must be positive’

goto 900

end if

c xmax is the range the solution is found on. if not

c supplied, it defaults to one.

xmax = i4arg(3,10)

ymax = i4arg(4,1)

if (xmax .lt. 0 .or. ymax .lt. 0) then

write(0,*) ’domain must be positive’

goto 900

end if

lambyxi = r8arg(5,2.0d1)

c--

c end argument parsing

c--

c--

c Main program. all done in a driver subroutine

call driver(n,a,vl,vu,il,iu,

& m,w,z,work,lwork,iwork,ifail,info,liwork,xmax,

& ymax,psi,shape,bbox,alpha,lambyxi,sinfit)

stop

c==

900 continue

write(0,*) ’usage: symsolve <n> ’//

& ’[<alpha> <xmax> <ymax> <lambyxi>]’

stop

end

c==

c END OF PROGRAM

c==

subroutine driver(n,a,vl,vu,il,iu,

& m,w,z,work,lwork,iwork,ifail,info,liwork,xmax,

& ymax,psi,shape,bbox,alpha,lambyxi,sinfit)

implicit none

c==

c Variable declarations

c--

c for argument parsing

integer iargc

integer i4arg

c parameters for the matrix and vectors

c and dgeev variables.

integer maxsize

parameter (maxsize = 1000)

integer n

real*8 a(n, n) ! hamiltonian matrix

real*8 vl, vu

integer m, il, iu

real*8 w(n)

real*8 z(n,n)

integer liwork

integer iwork(liwork)

integer ifail(n)

integer info, lwork

real*8 work(lwork)

c other necessary variables

integer i, j, level, im1, ip1

real*8 h, hm2, m2hm2

real*8 x(n), v(n)

c integer vmin, vmax

integer xmax,ymax

38

real*8 potential

logical evals, showpotential, analyze

parameter (evals = .true.)

parameter (showpotential = .false.)

parameter (analyze = .true.)

real*8 psi(n)

real*8 e

integer shape(1)

real*8 bbox(2)

real*8 alpha,lambyxi,fdp,fdpof,k,b,pi,al

real*8 sinfit(n)

c--

c end of variable declarations

c==

if (n .lt. 1) return

c--

c set up hamiltonian matrix

c--

c h is the step size

h = 2.0d0 * xmax/(1.0d0*n-1.0d0)

c x is the array of points used in

c finding the potential v(x)

do i = 1,n

x(i) = (i-1.0d0)*h - xmax

end do

if (showpotential) then

do i = 1, n

call calcv(potential,x(i),1.0d-8,ymax,lambyxi)

write(10,*) x(i), 0.27d6*potential

end do

stop

end if

c useful constants

hm2 = -1.0d0/(h*h)

m2hm2 = -2.0d0 * hm2

c write(0,*) ’hs: ’, h, hm2, m2hm2

c the hamiltonian

do i = 1,n

im1 = i-1

ip1 = i+1

if (i .eq. 1) then

im1 = n

end if

if (i .eq. n) then

ip1 = 1

end if

a(i,im1) = hm2

call calcv(potential,x(i),1.0d-20,ymax,lambyxi)

a(i,i) = m2hm2 + (0.27*10**(alpha))*potential

a(i,ip1) = hm2

end do

c===

c find the eigenvalues and eigenvectors

c---

call dsyevx(’V’,’I’,’U’,n,a,n,vl,vu,il,iu,

& 0.0d0,m,w,z,n,work,lwork,iwork,ifail,info)

c---

c---

c display the result

c---

if(info .ne. 0) go to 800

if (evals) then

do i = 1,m

write(0,*) i, w(i)

end do

end if

i = 1

do j = 1, n

psi(j) = -z(j,i)

end do

call normalize(psi,n,h)

do j = 1, n

write(10,*) x(j),psi(j)

end do

e = w(i)

c calculations to figure out parameters in the

c sine fit

fdp = (psi(n) - 2*psi(1) + psi(2))/(h**2)

fdpof = -fdp/psi(1)

k = sqrt(fdpof)

b = psi(1)

pi = acos(0.0d0)*2.0d0

al = xmax - pi/(2*k)

write(*,*)

do j = 1, n

sinfit(j) = b*sin(k*(x(j)-al))

write(30,*) x(j), b*sin(k*(x(j)-al))

end do

shape(1) = n

bbox(1) = -xmax

bbox(2) = xmax

call gft_out_bbox(’sine’,1.0d0,shape,1,bbox,sinfit)

call gft_out_bbox(’psi’,1.0d0,shape,1,bbox,psi)

write(20,*) alpha,xmax

write(20,*) e,k,al

call ires(psi,x,n,e,ymax,lambyxi)

return

800 continue

write(0,*) ’full: dgeev() failed’

stop

end

c==

subroutine normalize(psi, n, h)

implicit none

integer n,i

real*8 psi(n)

real*8 h

real*8 magpsi

magpsi = 0.0d0

do i = 1, n

magpsi = magpsi + ((psi(i))**2)*h

end do

magpsi = sqrt(magpsi)

do i = 1, n

psi(i) = psi(i) / magpsi

end do

magpsi = 0.0d0

do i = 1, n

magpsi = magpsi + ((psi(i))**2)*h

end do

magpsi = sqrt(magpsi)

return

end

c--

c routine to find the residual

subroutine ires(psi,x,n,e,ymax,lambyxi)

implicit none

integer n

real*8 psi(n)

real*8 x(n)

39

real*8 hm2,h

integer i,il,ir

real*8 res, v, e, length

integer ymax

real*8 lambyxi

res = 0.0d0

length = x(n) - x(1)

h = length/(n-1)

hm2 = -1.0d0/(h**2)

do i = 1, n

il = i-1

ir = i+1

if (i .eq. 1) then

il = n

end if

if (i .eq. n) then

ir = 1

end if

call calcv(v,x(i),1.0d-20,ymax,lambyxi)

v = 0.27d6*v

res = res+(hm2*(psi(ir)-2.0d0*psi(i)

& +psi(il))+(v-e)*psi(i))**2

end do

res = sqrt(res)/n

write(0,*) ’res: ’, res

return

end

c===

c end of symsolve.f

c===

c---

c Author: Brian Martin

c modified last: Apr. 25, 2005.

c---

c---

c a program to calculate the sum of

c Bessel Functions.

c The equation is:

c V(x) = 2 *sum(n=-inf..inf)U(sqrt(x^2+(nw)^2))

c Where U(r) is defined by:

c U(r) = const. * Ko(r)

c Ko is the 0th order bessel function

c---

subroutine calcv(v,x,e,ymax,lambyxi)

implicit none

c---

c function declaration

external u

real*8 u

c---

c---

c Variable declarations

c x is separation distance.

c v is the value of the potential that is returned

c dv is the change in the potential when

c adding new terms

c e is the error tolerance

c n is an index variable

c lambyxi is the ratio lambda/xi

c ymax represents the width of the slab

c---

real*8 x, v, e, dv

integer n

real*8 lambyxi

integer ymax

c---

c---

c we initialize v to be the 0th element in

c the sum, then, because the function is

c symmetric, we double the sum from

c 1 to infinity

c---

dv = 2.0d0 * u(x,0,lambyxi)

v = dv

n = 1

do while (abs(dv) > e)

dv = 4.0d0 * u(x,n*ymax,lambyxi)

n = n+1

v = v + dv

end do

return

end

c---

c this is the function u, as defined above.

c---

real*8 function u(x,n,lambyxi)

implicit none

c---

c variables

c---

c reals for the arbitrary constants and

c the bessel function.

c---

real*8 x, y

real*8 k, lambda, xi

parameter (k = 1.0d0)

parameter (lambda = 1.0d0)

real*8 dbesk0 !the bessel function

integer n

real*8 lambyxi

xi = lambda/lambyxi

c distance between vortices

y = sqrt(x**2 + n**2)

if (y .eq. 0.0d0) then

u = log(lambda/xi)

return

end if

u = k * dbesk0(y/lambda)

c for y values greater than this, dbesk0 may underflow

c but this approximation is valid since the function

c is approaching 0.

if (y < 32.0d0) then

u = u - k * dbesk0(y/xi)

end if

return

end

c===

c end of calcv

c===

5.2 1D Initial Value Prob-

lem Code
Note that this code uses the same file “calcv.f” as used in

the eigenvalue solver.

c===

c ivp: Program which uses ODEPACK routine LSODA

c to solve the second-order ODE

c

c u’’(x) - v(x)*u(x) = 0

c 0 <= x <= xmax

c

c (’ = d/dx), with initial conditions

c

c u(0) = 1, u’(0) = 0

c

c===

c This program is based on ’tlsoda.f’ which was

c given by Matt Choptuik in Phys 410 at UBC.

c===

program ivp

implicit none

include ’fcn.inc’

real*8 calcv

external calcv

40

integer iargc, i4arg

real*8 r8arg

logical option

real*8 a

integer k, kmax

c---

c Command-line arguments:

c

c xmax: Final integration position

c tol: Error tolerance (this program uses LSODA’s

c pure absolute error control)

c olevel: Output level: dtout = tmax/2**olevel

c---

real*8 xmax, u0, du0, tol

integer olevel

real*8 r8_never

parameter (r8_never = -1.0d-60)

c---

c initial conditions

c---

parameter (u0 = 1.0d0)

parameter (du0 = 0.0d0)

c---

c===

c Start of LSODA declarations

c===

c---

c Note that ’fcn’ and ’jac’ are user supplied SUBROUTINES

c (not functions) which evaluate the RHSs of the ODEs and

c the Jacobian of the system. Under normal operation,

c (as in this case), the Jacobian evaluator can be a

c ’dummy’ routine; if and when needed, LSODA will compute

c a finite-difference approximation to the Jacobian.

c---

external fcn, jac

c---

c Number of ODEs (when written in canonical first order

c form).

c---

integer neq

parameter (neq = 2)

c---

c y(neq): Storage for approximate solution

c t: Initial time for LSODA integration sub-interval

c tout: Final time for LSODA integration sub-interval

c---

real*8 y(neq)

real*8 x, xout

c---

c Tolerance parameters:

c

c The following comment block is extracted from the

c LSODA documentation.

c---

c rtol = relative tolerance parameter (scalar).

c atol = absolute tolerance parameter (scalar or array).

c the estimated local error in y(i) will be controlled so

c as to be less than

c ewt(i) = rtol*abs(y(i)) + atol if itol = 1, or

c ewt(i) = rtol*abs(y(i)) + atol(i) if itol = 2.

c thus the local error test passes if, in each component,

c either the absolute error is less than atol

c (or atol(i)),

c or the relative error is less than rtol.

c use rtol = 0.0 for pure absolute error control, and

c use atol = 0.0 (or atol(i) = 0.0) for pure relative

c error

c control. CAUTION.. actual (global) errors may exceed

c these local tolerances, so choose them CONSERVATIVELY.

c---

real*8 rtol, atol

integer itol

c---

c Control parameters and return code (see below).

c---

integer itask, istate, iopt

c---

c Work arrays.

c---

integer lrw

parameter (lrw = 22 + neq * 16)

real*8 rwork(lrw)

integer liw

parameter (liw = 20 + neq)

integer iwork(liw)

c---

c ’jt’ defines which type of Jacobian is supplied or

c computed; we use jt = 2 here which, as mentioned

c above, instructs LSODA to compute a finite-difference

c approximation to the Jacobian if and when needed.

c---

integer jt

c===

c End of LSODA declarations

c===

c---

c Miscellaneous variables

c---

real*8 dxout

integer it, nxout

real*8 ymax

integer i

c---

c Argument parsing.

c---

if(iargc() .lt. 4) go to 900

xmax = r8arg(1,r8_never)

tol = r8arg(2,r8_never)

olevel = i4arg(3,-1)

w = r8arg(4,r8_never)

option = .false.

kmax = 1

if(iargc() .eq. 5) then

option = .true.

kmax = 100

end if

if(xmax .le. 0.0d0) then

write(0,*) "xmax error: ", xmax

goto 800

end if

if(tol .eq. r8_never) then

write(0,*) "tol not read: ", tol

goto 800

end if

if(olevel .lt. 0) then

write(0,*) "olevel error: ", olevel

goto 800

end if

if (tol .gt. 10d-2 .or. tol .lt. 10d-12) then

write(0,*) "tol out of range: ", tol

goto 800

end if

if (w .lt. 0.0d0) then

write(0,*) "width less than 0: ", w

goto 800

end if

c---

c Set LSODA parameters ... see LSODA documentation

c for fuller description.

c---

itol = 1 ! Indicates that ’atol’ is scalar

rtol = 0.0d0 ! Use pure absolute tolerance

atol = tol ! Absolute tolerance

itask = 1 ! Normal computation

iopt = 0 ! Indicates no optional inputs

jt = 2 ! Jacobian type

c---

c Compute number of output times and output interval,

c and intialize sub-interval start time and solution

c estimate.

c---

nxout = 2**olevel + 1

41

dxout = xmax / (nxout - 1)

x = 0.0d0

y(1) = u0

y(2) = du0

ymax = 1.0d0

c---

c Output initial solution.

c---

write(*,*) x, y(1)/ymax

c---

c Loop over requested output times ...

c

c Set istate to 1 to indicate initial call, istate

c should be set to 2 for subsequent calls, but lsoda

c will automatically do this so long as the initial

c call is successful.

c--

istate = 1

do it = 2, nxout

c---

c Set final integration time for current interval

c--

xout = x + dxout

c--

c Call lsoda to integrate system on [t ... tout]

c

c Note that LSODA replaces ’t’ with the value

c of ’tout’ if the integration is successful.

c---

call lsoda(fcn,neq,y,x,xout,

& itol,rtol,atol,itask,

& istate,iopt,rwork,lrw,iwork,liw,jac,jt)

c--

c Check return code and exit with error message if

c there was trouble.

c--

if(istate .lt. 0) then

write(0,1000) istate, it, nxout, x, x + dxout

1000 format(/’ sode: Error return ’,i2,

& ’ from integrator LSODA.’/

& ’ sode: At output time ’,i5,’ of ’,i5/

& ’ sode: Interval ’,1p,e11.3,0p,

& ’ .. ’,1p,e11.3,0p/)

go to 500

end if

c---

c Output the solution.

c--

write(*,*) x, (y(1)/ymax)

end do

write(0,*) y(1)

a = xmax - y(1)/y(2)

k = y(2)

write(0,*) w, a

write(0,*) ’k = ’, y(2)

do i = 1, nxout

x = (i-1)*xmax/(nxout-1)

write(10,*) x, k*(x - a)

end do

500 continue

stop

800 continue

write(0,*) ’xmax > 0’

write(0,*) ’10e-12 <= tol <= 10e-2’

write(0,*) ’olevel > 0’

write(0,*) ’width > 0’

write(0,*)

900 continue

write(0,*) ’usage: ivp <xmax> ’//

& ’<tol> <olevel> <width>’

stop

end

c===

c Implements differential equations:

c

c u’’(x) = v(x)* u(x)

c

c y(1) := u

c y(2) := u’

c

c y(1)’ := y(2)

c y(2)’ := v(x) * y(1)

c

c Called by ODEPACK routine LSODA.

c===

subroutine fcn(neq,x,y,yprime)

implicit none

include ’fcn.inc’

integer neq

real*8 x, y(neq), yprime(neq)

real*8 v

call calcv(v,x,w,1.0d-8)

yprime(1) = y(2)

yprime(2) = v*y(1)

return

end

c==

c Implements Jacobian (optional). Dummy routine in

c this case.

c==

subroutine jac

implicit none

return

end

5.3 3D Solver Code
c===

c Author: Brian Martin

c last modified: Apr. 25, 2005.

c

c written for Undergraduate Honours thesis

c University of British Columbia

c

program solve3d

c

c The program solves the 3-d Schodinger Equation

c describing the interaction of two vortices in a

c Type II superconducting slab.

c===

implicit none

c---

c Variable Declarations

c--

c for argument parsing

integer iargc, i4arg

real*8 r8arg

c parameter for argument parsing

real*8 r8never

parameter (r8never = -1.0d-60)

c psi is wavefunction

integer maxsize

parameter (maxsize = 257)

real*8 psi(maxsize,maxsize,maxsize)

real*8 psi2(maxsize,maxsize,maxsize)

c v is the potential

real*8 v(maxsize,maxsize,maxsize)

c used for number of lattice points

integer nx, ny, nz

c length and width of the slab

real*8 length, width

c the output level. xmax = 2^level + 1

42

integer level

c index variable

integer i

c the potential multipler (’alpha’)

real*8 amp

c used for file output

character*256 fname

c the energy

real*8 e

c---

c End of Variable Declarations

c Start of program code.

c---

c--

c Argument parsing.

c Make sure there are the right number of arguments

c and that those arguments have appropriate values.

c---

if (iargc() .lt. 4) go to 900

length = r8arg(1,r8never)

width = r8arg(2,r8never)

level = i4arg(3,-1)

amp = r8arg(4,r8never)

if (length .le. 0.0d0) then

write(0,*) ’length must be greater than 0’

write(0,*) ’length = ’, length

go to 900

end if

if (width .le. 0.0d0) then

write(0,*) ’width must be greater than 0’

write(0,*) ’width = ’, width

go to 900

end if

if (level .lt. 1) then

write(0,*) ’level must be at least 1’

write(0,*) ’level = ’, level

go to 900

end if

if (amp .lt. 0.0d0) then

write(0,*) ’amp must be at least 0’

write(0,*) ’amp = ’, amp

go to 900

end if

amp = 0.27d0*(10**amp)

c---

c End of argument parsing.

c--

c--

c Set up lattice size.

c--

nx = 2**level + 1

if (nx .gt. maxsize) then

write(0,*) ’nx too large’, nx, maxsize

go to 900

end if

ny = 2**level + 1

if (ny .gt. maxsize) then

write(0,*) ’ny too large’, ny, maxsize

go to 900

end if

nz = ny

c--

c Call the driver function, which does all the

c real work.

c---

call initialize(psi,nx,ny,nz,e)

call driver(psi,v,nx,ny,nz,length,width,fname,e,amp)

call interpolate(psi,psi2,nx)

nx = 2*nx-1

ny = nx

nz = ny

call driver(psi2,v,nx,ny,nz,length,width,fname,e,amp)

call interpolate(psi2,psi,nx)

nx = 2*nx-1

ny = nx

nz = ny

call driver(psi,v,nx,ny,nz,length,width,fname,e,amp)

call interpolate(psi,psi2,nx)

nx = 2*nx-1

ny = nx

nz = ny

call driver(psi2,v,nx,ny,nz,length,width,fname,e,amp)

call interpolate(psi2,psi,nx)

nx = 2*nx-1

ny = nx

nz = ny

call driver(psi,v,nx,ny,nz,length,width,fname,e,amp)

c this function displays the relevent data

call disp(psi,nx,ny,nz,length,width,fname,e,v)

stop

c---

c Usage statement.

c---

900 continue

write(0,*) ’usage: solve3d <length>’//

& <width> <level> <amp>’

stop

end

c===

c END OF MAIN PROGRAM BLOCK.

c===

c==

c Author: Brian Martin

c last modified: Apr. 25, 2005.

c

c written for Undergraduate Honours thesis

c University of British Columbia

subroutine initialize(psi,nx,ny,nz,e)

c a subroutine used to make the initial guess

c on the wavefunction.

c===

implicit none

integer nx,ny,nz

real*8 psi(nx,ny,nz)

real*8 e

integer i,j,k

e = 1.0d0

c--

c initialize faces to 0. (planes where y or z = +- w/2)

c here and throughout the code, the index variables

c correspond to the same dimension. i:x, j:y, k:z.

c--

do i = 1, nx

do j = 1, ny

do k = 1, nz

psi(i,j,k) = 0.0d0

end do

end do

end do

c--

c initial guess on psi and e

c only need to set psi on interior since faces have

c been set already and do not change.

c--

do i = 1, nx

do j = 2, ny-1

do k = 2, nz-1

psi(i,j,k) = 1.0d0

end do

end do

end do

return

end

c===

c end of subroutine initialize

c===

c===

subroutine driver(psi,v,nx,ny,nz,

& length,width,fname,e,amp)

c driver subroutine which does all the work.

c===

implicit none

c--

c Variable declarations

43

c---

c number of lattice points

integer nx,ny,nz

c wave function

real*8 psi(nx,ny,nz)

c length and width of slab

real*8 length, width

c energy and change in energy

real*8 e, de

c index variables

integer i,j,k,n

c maxiter is maximum number of relaxation loops.

integer maxiter

parameter (maxiter = 100000)

c step sizes

real*8 hx, hy, hz

c debugging variable

logical checking

parameter (checking = .false.)

logical c2

parameter (c2 = .true.)

c convergence is a tolerance parameter. when

c de is less than convergence, the relaxation

c is complete.

real*8 convergence

parameter (convergence = 1.0d-6)

c the potential array

real*8 v(nx,ny,nz)

real*8 tempv

real*8 x,y,z,xmax,ymin,zmin

character*(*) fname

real*8 error

parameter (error = 1.0d-8)

real*8 amp

c--

c End of variable declarations.

c--

c--

c Start of subroutine code.

c--

c--

c first pass, set potential to 0.

c initialize the potential array

c--

xmax = length

ymin = -width/2.0d0

zmin = -width/2.0d0

c set up step sizes

hx = length/(nx-1)

hy = width/(ny-1)

hz = width/(nz-1)

do i = 1, nx

x = xmax - (i-1)*hx

do j = 1, ny

y = ymin + (j-1)*hy

do k = 1, nz

z = zmin + (k-1)*hz

call calcv3d(tempv,x,y,z,width,error)

c the constant value being used

c assumes m_perp/m_z = 0.01

v(i,j,k) = amp*tempv

end do

end do

end do

n = 0

c--

c de is change in energy, we set it to be larger

c than the convergence value because it will

c default to 0, which means it will have already

c converged.

c--

de = 10.d0 * convergence

c--

c Relaxation Loop.

c While the change in energy is larger than the

c convergence, update the wavefunction and energy.

c---

do while (abs(de) > convergence)

c--

c Loop

c solve is

c designed to handle special boundary conditions

do i = 1, nx

do j = 2, ny-1

do k = 2, nz-1

call solve(psi,nx,ny,nz,i,j,k,hx,hy,hz,e,v)

end do

end do

end do

c--

c--

c Wavefunction has been updated, so now update

c energy.

call update(psi,nx,ny,nz,hx,hy,hz,e,de,v)

c--

c--

c increment iteration counter

n = n + 1

if (c2) then

if (mod(n,500) .eq. 0) then

write(0,*) n

end if

end if

c--

end do

c--

c End of relaxation procedure.

c--

write(0,*) ’energy = ’, e, ’, n = ’, n

c--

c normalize the wavefunction

call normalize(psi,nx,ny,nz,length,width)

c--

return

end

c==

c End of driver subroutine.

c==

c==

c Author: Brian Martin

c last modified: Apr. 25, 2005.

c

c written for Undergraduate Honours thesis

c University of British Columbia

c

subroutine interpolate(psi,psi2,n)

c this subroutine takes two arrays, one of twice

c the dimension of the other, and interpolates

c the values in between.

c==

implicit none

integer n

real*8 psi(n,n,n)

real*8 psi2(2*n-1, 2*n-1,2*n-1)

integer i,j,k

do i = 1, n

do j = 1, n

do k = 1, n

psi2(2*i-1,2*j-1,2*k-1) = psi(i,j,k)

if (i .lt. n) then

psi2(2*i,2*j-1,2*k-1)=

& 0.5d0*(psi(i,j,k)+psi(i+1,j,k))

end if

if (j .lt. n) then

psi2(2*i-1,2*j,2*k-1)=

& 0.5d0*(psi(i,j,k)+psi(i,j+1,k))

end if

if (k .lt. n) then

psi2(2*i-1,2*j-1,2*k)=

& 0.5d0*(psi(i,j,k)+psi(i,j,k+1))

end if

if (i .lt. n .and. j .lt. n) then

psi2(2*i,2*j,2*k-1)=

& 0.25d0*(psi(i,j,k)+psi(i+1,j,k)+

& psi(i,j+1,k) + psi(i+1,j+1,k))

end if

if (i .lt. n .and. k .lt. n) then

psi2(2*i,2*j-1,2*k)=

& 0.25d0*(psi(i,j,k)+psi(i+1,j,k)+

& psi(i,j,k+1) + psi(i+1,j,k+1))

end if

if (j .lt. n .and. k .lt. n) then

44

psi2(2*i-1,2*j,2*k)=

& 0.25d0*(psi(i,j,k)+psi(i,j+1,k)+

& psi(i,j,k+1) + psi(i,j+1,k+1))

end if

if (i .lt. n .and. j .lt. n

& .and. k .lt. n) then

psi2(2*i,2*j,2*k) =

& 0.125d0*(psi(i,j,k)+psi(i,j,k+1)

& +psi(i,j+1,k)+psi(i,j+1,k+1)

& +psi(i+1,j,k)+psi(i+1,j,k+1)

& +psi(i+1,j+1,k)+psi(i+1,j+1,k+1))

end if

end do

end do

end do

return

end

c===

c end of subroutine interpolate

c===

c===

c Author: Brian Martin

c last modified: Apr. 25, 2005.

c

c written for Undergraduate Honours thesis

c University of British Columbia

c

subroutine calcv3d(v,x,y,z,w,e)

c

c A subroutine used to calculate the potential

c for the vortex interactions given the x,y, and z

c positions of the vortices.

c==

implicit none

c---

c Variable Declarations

c--

c input parameters:

c v is outputed potential

c x,y,z are the vortex positions

c w is the width of the slab, e is the energy

real*8 v,x,y,z,w,e

c temporary variables used in calculations

real*8 dv, temp

integer n

real*8 v1, v2, d, u

c u is the function that calculates the potential

c between any two charges, which is then summed up.

c--

c End of Variable Declarations

c Start of program code.

c--

n = 1

dv = 1.0d1*e

c initial v to be 0th term in sum

call getu(x,y,z,w,0,v)

c add in term from y-z interaction

d = sqrt(x**2 + (y - z)**2)

v = v + u(d)

do while (abs(dv) .gt. e)

call getu(x,y,z,w,n, v1)

call getu(x,y,z,w,-1*n,v2)

dv = v1 + v2

v = v + dv

n = n + 1

end do

return

end

c--

c--

c--

c--

subroutine getu(x,y,z,w,n,v)

implicit none

real*8 x,y,z,w,v

integer n

real*8 dy1, dy2

real*8 dz1, dz2

real*8 dyz1, dyz2

real*8 dzy1, dzy2

real*8 u1, u2

real*8 u

c--

c there are four distances to find:

c 1. the distance from y to its images

c 2. the distance from z to its images

c 3. the distance from y to z images

c 4. the distance from z to y images

c

c each of these has two terms which we break

c note overcounting of interaction of y

c with itself and z with itself (n=0 terms)

c--

c y with its images

dy1 = abs(2*abs(y) - (2*n+1)*w)

dy2 = abs(2*n*w)

c z with its images

dz1 = abs(2*abs(z) - (2*n+1)*w)

dz2 = abs(2*n*w)

c y with z images

dyz1 = sqrt(x**2+(y+z-(2*n+1)*w)**2)

dyz2 = sqrt(x**2+(y-z+2*n*w)**2)

c z with y images

dzy1 = sqrt(x**2+(y+z-(2*n+1)*w)**2)

dzy2 = sqrt(x**2+(y-z+2*n*w)**2)

c then calculate u for these terms and

c find v

if (n .ne. 0) then

u1 = u(dy1) + u(dy2) + u(dz1) + u(dz2)

u2 = u(dyz1) + u(dyz2) + u(dzy1) + u(dzy2)

else

u1 = u(dy1) + u(dz1) + u(dz2)

u2 = u(dyz1) + u(dzy1) + u(dzy2)

end if

v = u1 + u2

return

end

c--

c--

c--

c--

real*8 function u(d)

implicit none

real*8 d

real*8 lambda, xi

parameter (lambda = 1.0d0)

parameter (xi = lambda/2.0d1)

real*8 dbesk0

if (d .eq. 0.0d0) then

u = log(lambda/xi)

return

end if

if (d .gt. 5.0d2) then

u = 0.0d0

return

end if

if (d/xi .gt. 5.0d2) then

u = dbesk0(d/lambda)

return

end if

45

u = dbesk0(d/lambda) - dbesk0(d/xi)

return

end

c==

c END OF CALCV3D.

c==

c==

subroutine disp(psi,nx,ny,nz,length,width,fname,e,v)

c routine to display the wavefunction.

c==

implicit none

c--

c Variable declarations.

c--

c lattice size

integer nx,ny,nz

c wavefunction

real*8 psi(nx,ny,nz)

c index variables

integer i,j,k

c display parameters

integer shape(3)

real*8 bbox(6)

real*8 length

real*8 width

logical plot

parameter (plot = .false.)

real*8 e

integer indlnb

character*(*) fname

integer uto, rc

real*8 v(nx,ny,nz)

real*8 x,y,z

c--

c end of variable declarations.

c--

c--

c Start of subroutine code.

c--

c--

c set up display parameters.

shape(1) = nx+1

shape(2) = ny

shape(3) = nz

bbox(1) = -1.0d0

bbox(2) = 1.0d0

bbox(3) = -1.0d0

bbox(4) = 1.0d0

bbox(5) = -1.0d0

bbox(6) = 1.0d0

c--

c--

c this next part is used to output data to make 3-d

c gnu-plots.

c--

fname = ’out’

uto = 1

open(uto,file=fname(1:indlnb(fname)),

& form=’formatted’,iostat=rc)

if (rc .ne. 0) then

write(0,*) ’disp: Error opening ’,

& fname(1:indlnb(fname))

return

end if

c gnuplot output commands

i=nx

j = ny/2+1

k = nz/2+1

x = length/(2.0d0*(nx-1.0d0))*(2.0d0*i-nx-1.0d0)

do j = 1, ny

y = width/(2.0d0*(ny-1.0d0))*(2.0d0*j-ny-1.0d0)

do k = 1, nz

z = width/(2.0d0*(nz-1.0d0))*(2.0d0*k-nz-1.0d0)

write(uto,*,iostat=rc) y,z,psi(i,j,k)

if (rc .ne. 0) then

write(0,*) ’disp: error writing array’

end if

end do

write(uto,*,iostat=rc)

end do

close(uto)

fname = ’energy’

uto = 2

open(uto,file=fname(1:indlnb(fname)),

& form=’formatted’,iostat=rc)

if (rc .ne. 0) then

write(0,*) ’disp: Error opening ’,

& fname(1:indlnb(fname))

return

end if

write(uto,*,iostat=rc) e

close(uto)

c here is the 4-d plot

call gft_out_bbox(’psi’, 1.0d0,shape,3,bbox,psi)

c--

return

end

c==

c End of display subroutine.

c==

c==

c Author: Brian Martin

c last modified: Apr. 25, 2005.

c

c written for Undergraduate Honours thesis

c University of British Columbia

subroutine normalize(psi,nx,ny,nz,length,width)

c a subroutine used to normalize the wavefunction.

c It loops through and finds the magnitude of psi

c and then divide each element by that value

c==

implicit none

integer nx,ny,nz

real*8 psi(nx,ny,nz)

integer i,j,k

real*8 mag_psi

real*8 length, width

real*8 hx,hy,hz

real*8 max, pm

hx = length/(nx-1)

hy = width/(ny-1)

hz = width/(nz-1)

mag_psi = 0.0d0

max = 0.0d0

do i = 1, nx

do j = 1, ny

do k = 1, nz

mag_psi = mag_psi + (psi(i,j,k)**2)*hx*hy*hz

if (abs(psi(i,j,k)) .gt. abs(max)) then

max = psi(i,j,k)

end if

end do

end do

end do

pm = 1.0d0

if (max .lt. 0.0d0) then

pm = -1.0d0

end if

do i = 1, nx

do j = 1, ny

do k = 1, nz

psi(i,j,k) = psi(i,j,k) * pm / sqrt(mag_psi)

end do

end do

end do

return

end

c==

c End of normalize subroutine.

c==

46

c==

c Author: Brian Martin

c last modified: Apr. 25, 2005.

c

c written for Undergraduate Honours thesis

c University of British Columbia

subroutine solve(psi,nx,ny,nz,i,j,k,hx,hy,hz,e,v)

c routine to solve for psi(i,j,k)

c==

implicit none

c--

c Variable declarations

c--

c lattice size

integer nx, ny, nz

c wavefunction

real*8 psi(nx, ny, nz)

c temporary variable used in SOR algorithm.

c it is the gauss-seidel update value.

real*8 psi_gs

c the old psi value

real*8 psi_old

c the multiplier in the SOR algorithm

real*8 mult

parameter (mult = 1.7d0)

c index variables

integer i,j,k,il,ir

c step sizes

real*8 hx,hy,hz

c energy

real*8 e

c potential

real*8 v(nx,ny,nz)

c temporary variables used to aid in calculations

real*8 numx,numy,numz,den

c debugging variable

logical checking

parameter (checking = .false.)

c--

c End of variable declarations.

c--

c--

c Start of subroutine code.

c--

c--

c calculation to update psi(i,j,k) based on its

c nearest neighbors.

c--

c we need separate i indices to handle the special

c x boundary conditions

il = i-1

ir = i+1

if (i .eq. 1) then

il = 2

ir = 2

end if

if (i .eq. nx) then

il = nx-1

ir = nx-1

end if

numx = (psi(il,j,k) + psi(ir,j,k)) / hx**2

numy = (psi(i,j-1,k) + psi(i,j+1,k)) / hy**2

numz = (psi(i,j,k-1) + psi(i,j,k+1)) / hz**2

den = 2.0d0/hx**2 + 2.0d0/hy**2

& + 2.0d0/hz**2 + v(i,j,k) - e

psi_gs = (numx + numy + numz) / den

psi_old = psi(i,j,k)

psi(i,j,k) = mult*psi_gs + (1.0d0 - mult)*psi_old

return

end

c==

c End of solve subroutine.

c==

c==

c Author: Brian Martin

c last modified: Apr. 25, 2005.

c

c written for Undergraduate Honours thesis

c University of British Columbia

subroutine update(psi,nx,ny,nz,hx,hy,hz,e,de,v)

c routine to update the energy

c==

implicit none

c--

c Variable declarations.

c--

c lattice size

integer nx,ny,nz

c wavefunction

real*8 psi(nx,ny,nz)

c step sizes

real*8 hx,hy,hz

c energy, change in energy

real*8 e, de

c potential

real*8 v(nx,ny,nz)

c variables to aid in calculation

real*8 mag_psi,mag_psi_temp

real*8 h_psi

real*8 h_psi_temp

c debugging variable.

logical checking

parameter (checking = .false.)

c index variables

integer i,j,k

real*8 f

c--

c End of variable declarations.

c--

c--

c Start of subroutine code.

c--

c--

c This routine must loop through all lattice points

c to calculate <H psi | H psi> and <psi | psi>.

c--

h_psi = 0.0d0

mag_psi = 0.0d0

c--

c To figure out the desired quantities, we need to loop

c over the entire space and look at nearest neighbors.

c This region is the interior of the 3-d space plus

c 14 special cases: the 8 corners and the 6 faces.

c for these cases we use a linear continuation:

c ie. psi(i,0,k) = psi(i,2,k)

c--

do i = 2, nx-1

do j = 2, ny-1

do k = 2, nz-1

c--

c Calculation of <H psi | H psi>

c using a 3-d trapezoid rule.

h_psi_temp = f(psi,nx,ny,nz,v,i, j, k, hx,hy,hz)

& + f(psi,nx,ny,nz,v,i ,j, k+1,hx,hy,hz)

& + f(psi,nx,ny,nz,v,i ,j+1,k, hx,hy,hz)

& + f(psi,nx,ny,nz,v,i ,j+1,k+1,hx,hy,hz)

& + f(psi,nx,ny,nz,v,i+1,j, k ,hx,hy,hz)

& + f(psi,nx,ny,nz,v,i+1,j, k+1,hx,hy,hz)

& + f(psi,nx,ny,nz,v,i+1,j+1,k ,hx,hy,hz)

& + f(psi,nx,ny,nz,v,i+1,j+1,k+1,hx,hy,hz)

h_psi_temp = h_psi_temp*(hx*hy*hz)/8.0

h_psi = h_psi + h_psi_temp

c--

c--

c Calculation of <psi | psi>

mag_psi_temp = (hx*hy*hz/8.0d0)*

& ((psi(i ,j ,k))**2 +

& (psi(i ,j ,k+1))**2

& + (psi(i ,j+1,k))**2 +

& (psi(i ,j+1,k+1))**2

& + (psi(i+1,j ,k))**2 +

& (psi(i+1,j ,k+1))**2

& + (psi(i+1,j+1,k))**2 +

& (psi(i+1,j+1,k+1))**2)

mag_psi = mag_psi + mag_psi_temp

c--

end do

end do

47

end do

c--

c update energy and change in energy

de = sqrt(h_psi/mag_psi) - e

e = sqrt(h_psi/mag_psi)

c--

return

end

c==

c end of update routine.

c==

c==

real*8 function f(psi,nx,ny,nz,v,i,j,k,hx,hy,hz)

c a function to find the midpoint between

c lattice sites.

c==

implicit none

integer nx,ny,nz

real*8 psi(nx,ny,nz)

real*8 v(nx,ny,nz)

integer i,j,k

real*8 numx,numy,numz,fx,fy,fz,hx,hy,hz

numx = - psi(i-1,j,k) - psi(i+1,j,k) + 2*psi(i,j,k)

fx = numx / hx**2

numy = - psi(i,j-1,k) - psi(i,j+1,k) + 2*psi(i,j,k)

fy = numy / hy**2

numz = - psi(i,j,k-1) - psi(i,j,k+1) + 2*psi(i,j,k)

fz = numz / hz**2

f = fx + fy + fz + v(i,j,k)*psi(i,j,k)

f = f**2

return

end

c==

c end of function

c==

c==

c End of update routine.

c==

48

6 Acknowledgements

Thank you to Dr. Affleck and Dr. Choptuik for their patience and wisdom.
I also enjoyed several useful conversations with Roland Stevenson and Pal
Sandhu.

References

[1] I. Affleck, W. Hofstetter, D.R. Nelson and U. Schollwoeck, J. Stat.
Mech.: Theor. Exp. P10003 (2004).

[2] P.G. De Gennes, Superconductivity of Metals and Alloys. W.A. Ben-
jamin, Inc., New York (1966).

[3] R.P. Feynman and A.R. Hibbs, Quantum Mechanics and Path Integrals.
McGraw-Hill, New York (1965).

[4] D.V. Schroeder, Thermal Physics. Addison Wesley Longman, San Fran-
cisco, 2000.

[5] D.R. Nelson, Vortex Entanglement in High-Tc Superconductors. Phys.
Rev. Lett. 60, 1973 (1988).

[6] D. Griffiths, Introduction to Electricity and Magnetism. Prentice Hall,
New Jersey (1999).

[7] D. Griffiths, Introduction to Quantum Mechanics. Prentice Hall, New
Jersey (1995).

[8] M.P.A Fisher, Vortex-Glass Superconductivity: A Possible New Phase

in Bulk High-Tc Oxides. Phys. Rev. Lett. 62, 1415 (1989).

49

