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Outline

• Brief Review of Critical Collapse

• Spherically-symmetric Einstein-Vlasov

• Spherically-symmetric Perfect Fluid in “Dust” Limit
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Review of Black Hole Critical Phenomena

• Consider parameterized families of solutions to Einstein equations, typically
coupled to one or more matter fields (but vacuum case can also be considered);
focus on collapse of matter/energy and black hole formation

• Family parameter, p, viewed as “control parameter” for initial data, and hence
for subsequent dynamical evolution
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• Family parameter, p, viewed as “control parameter” for initial data, and hence
for subsequent dynamical evolution

• Demand that family “interpolates” through the black hole threshold, i.e. that
there exists a critical value, p = p?, such that

1. p < p?: No black hole forms
2. p > p?: Black hole forms

• Empirically (and for some models, analytically) scenarios 1. and 2.
characterized by long-time, stable “end-states” of evolution, may be only such
states
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for subsequent dynamical evolution

• Demand that family “interpolates” through the black hole threshold, i.e. that
there exists a critical value, p = p?, such that

1. p < p?: No black hole forms
2. p > p?: Black hole forms

• Empirically (and for some models, analytically) scenarios 1. and 2.
characterized by long-time, stable “end-states” of evolution, may be only such
states

• Solution in near-critical regime p ∼ p? ≡ black hole critical phenomena

• Use “competition” (loosely, kinetic energy vs potential energy) inherent in
collapse models, and fine-tuning to dynamically evolve to unstable critical
solution
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Critical Phenomenology

• Critical solutions Z?, do exist (for all models considered thus far) and are
locally unique (in solution space sense and up to certain symmetry
transformations)—details of initial data, parameterization irrelevant
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Critical Phenomenology

• Critical solutions Z?, do exist (for all models considered thus far) and are
locally unique (in solution space sense and up to certain symmetry
transformations)—details of initial data, parameterization irrelevant

• Critical solutions have additional symmetry, beyond that which may define the
model (i.e. spherical symmetry), symmetry sometimes characterized by
“exponents” (one or more “eigenvalues”)

• Critical solutions belong to two broad classes, that can conveniently be labelled
by behaviour of black hole mass at threshold (which can be viewed as an order
parameter)

1. Type I: Black hole formation turns on at finite mass
2. Type II: Black hole formation turns on at infinitesimal mass

• Near-critical solutions characterized by scaling of dimensionful quantities
(defines additional critical exponents)
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Critical Phenomenology

• Although unstable, critical solutions tend to be minimally so, in the sense of
having one unstable mode in the context of perturbation theory

• Growth factor (Lyapunov exponent), Reλ1, of unstable mode can be
immediately related to exponents in scaling relations
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Type I Critical Solutions

• Smallest BH has finite mass

• Model will generally have one (or more) intrinsic length scales that will set the
minimum mass

• Critical solution exhibits time translational invariance

1. Continuous: static
2. Discrete: periodic, defines “exponent”, ω

• Scaling law for, e.g., “lifetime” of near-critical configuration during dynamical
evolution

τ ∼ σ ln |p− p?| σ = [Reλ1]
−1
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Type I Critical Solutions

• Examples (all spherically symmetric)

• magnetic EYM (n = 1 Bartnik-McKinnon solution)

• real scalar field (unstable oscillons, Brady et al)

• complex scalar field (unstable mini-boson stars, Hawley, Lai)

• perfect fluid (neutron star models on unstable branch, Noble)
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Type II Critical Solutions

• No minimum BH mass, arbitrarily small BHs possible

• Critical solution exhibits scale invariance

1. Continuous: continuous self-similarity (CSS)
2. Discrete: discrete self-similarity (DSS), defines ”echoing exponent”, ∆

• Scaling law for, e.g., BH masses from super-critical evolutions:

lnMBH ∼ γ ln |p− p?| γ = [Reλ1]
−1
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Type II Critical Solutions

• Examples (spherically symmetric)

• massless scalar field: ∆ ≈ 3.44, γ ≈ 0.37
• magnetic EYM: ∆ ≈ 0.74, γ ≈ 0.20
• non-linear sigma models (Choptuik et al, Husa et al)

• perfect fluid (Evans & Coleman, Neilsen, Noble)

• Examples (axisymmetric)

• vacuum gravitational waves (Abraham & Evans)

• massless scalar field with angular momentum (Pretorius et al)

13



Near Critical Evolution in Einstein-Vlasov Collapse

• ANIMATION of marginally sub-critical evolution

• ANIMATION of marginally super-critical evolution
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