
Chapter 8. RNPL: The Language

RNPL (Rapid Numerical Prototyping Language) is a language for expressing time

dependent systems of partial differential equations and the finite difference methods used to

solve them. It was written specifically with the general relativistic evolution problem in mind,

but it can also be used to solve a wide variety of differential systems. The language hides many

of the details of a complete solver while still allowing enough freedom to express most finite

difference techniques. It isbased heavily on ideasdeveloped by Matthew Choptuik throughout

his work in numerical relativity.

RNPL was designed to provide the following capabilities:

• equation expression using a “natural” notation

• easy operator expression

• support for a wide range of difference techniques

• easy interfacing with existing programs

• automatic memory management

• check-pointing

• interactive output control

• parameter management

• easy adaptivization

• easy parallelization

• extensibility
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Operators Associativity

^ ** right

- + (unary) right

* / left

- + left
> < >= <= non

== != non

&& left

|| left
= non

Table 8.1. RNPL operators in order of precedence

• short development time

• easy changing of finite difference methods

• intelligent defaults

RNPL currently provides all these capabilities except adaptivization and parallelization, both

of which will be added shortly. Once these features are added, any existing RNPL program

can make use of them with a simple recompilation.

8.1. Program Structure

An RNPL program consists of a series of object declarations. RNPL is strongly typed, so

all data objects which are referenced must be declared. There are some exceptions to this rule

having to do with coordinates (see Section 9.1). Since RNPL is strictly declarative, there are

no “executable” statements. Thus, there is no notion of order as in a traditional programming

language. Declarationscan occur in any order in the source file. The completeRNPL grammar

is shown in Figure 8.1.

RNPL is case-sensitive in general, although case will be ignored if the backend language

is case insensitive (see Chapter 9). RNPL statements are made up of tokens which fall into
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RNPL Grammar
dec_list →

→ dec_list declaration

declaration → param_dec
→ coord_dec
→ grid_dec
→ gfunc_dec
→ attrib_dec
→ d_operator
→ residual
→ initialization
→ looper
→ update

param_dec → param p_type name
→ param p_type name becomes scalar
→ param p_type name v_size
→ param p_type name v_size becomes vector
→ param ivecname
→ param ivecname becomes ivec_list
→ const paramp_type name
→ const paramp_type name becomes scalar
→ const paramp_type name v_size
→ const paramp_type name v_size becomes vector
→ sys paramp_type name becomes scalar

coord_dec → namecoordinatescoord_list

grid_dec → g_type namegrid name i_region c_region
→ g_type namegrid name
→ g_type nameobrack coord_listcbrack grid name i_region c_region
→ g_type nameobrack coord_listcbrack grid name

gfunc_dec → type nameon name
→ type nameon namestr
→ type nameon nameat o_list
→ type nameon nameat o_list alias
→ type nameon nameat o_list str
→ type nameon nameat o_list alias str

attrib_dec → attrib p_type name encoding
→ attrib p_type name encoding becomes vector

d_operator → operator d_op becomes expr

residual → resid nameobraceres_list opcoloncbrace
→ resid time index nameobraceres_list opcoloncbrace

residual → evaluate residnameobraceres_list opcoloncbrace
→ evaluate residtime index nameobraceres_list opcoloncbrace

initialization → initialize nameobraceres_list opcoloncbrace

looper → looper name

update → name nameupdatecoord_listheaderref_list
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→ stub nameupdatecoord_listheaderref_list
→ auto nameupdatecoord_list

p_type → int
→ float
→ string

name → iden

scalar → inum
→ minus inum
→ num
→ minus num
→ str

v_size → obrack inum cbrack

becomes → assignop
→ equals

vector → obrack scalar_listcbrack

ivec_list → ivel minus ivel
→ ivel minus ivel divide inum
→ ivec_listcommaivel minus ivel
→ ivec_listcommaivel minus ivel divide inum

coord_list → name
→ coord_listcommaname

g_type → uniform
→ nonuniform

i_region → obrack exprcolonexprcbrack
→ obrack exprcolonexprcbrack i_region
→ obrack exprcolonexprcolon inum cbrack
→ obrack exprcolonexprcolon minus inum cbrack
→ obrack exprcolonexprcolon inum cbrack i_region
→ obrack exprcolonexprcolon minus inum cbrack i_region

c_region → obracenamecolonnamecbrace
→ obracenamecolonnamecbracec_region

type → int
→ float

o_list → inum
→ minus inum
→ o_list comma inum
→ o_list comma minus inum

encoding → encodeone
→ encodeall

d_op → nameoparenexprcommacoord_listcparen
→ expandnameoparenexprcommacoord_listcparen
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expr → exprplus expr
→ exprminus expr
→ exprequalsexpr
→ expr timesexpr
→ exprdivide expr
→ exprcaret expr
→ plus expr
→ minus expr
→ exprequiv expr
→ exprnoteqexpr
→ expr lessexpr
→ exprgreat expr
→ expr lesseqexpr
→ exprgreateqexpr
→ exprand expr
→ expror expr
→ oparenexprcparen
→ d_op
→ func
→ gfunc
→ coord
→ name
→ num
→ inum

res_list → i_region becomes expr
→ res_listscoloni_region becomes expr
→ i_region becomes ifstat
→ res_listscoloni_region becomes ifstat

opcolon →
→ scolon

time → time

index → obrack inum cbrack
→ obrack minus inum cbrack
→ obrack inum cbrack index
→ obrack minus inum cbrack index

ref_list → reference
→ ref_listcommareference

scalar_list → scalar
→ scalar_list scalar

ivel → inum
→ times

func → nameoparenexprcparen

gfunc → time name mindex

coord → name indel
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ifstat → if expr then expr
→ if expr then exprelseexpr
→ if expr then exprelseifstat

reference → name
→ nameobrack coord_listcbrack
→ auto work pound inum oparen exprcparen
→ static work pound inum oparen exprcparen

mindex → indel
→ mindex indel

indel → obrack inum cbrack
→ obrack minus inum cbrack
→ obraceexprcbrace

Figure 8.1. RNPL Grammar

four classes—reserved words, names, operators, and punctuation. These tokens are listed

in Table 8.2 and the operators are listed again in Table 8.1. White space (space, tab, newline)

is meaningless except as a token separator, so it can be used freely in a source file to provide

clarity.

There are two kinds of comments in RNPL programs. The first kind is like a UNIX shell

comment. It starts with a# at the beginning of a line and continues till the end of the line.

The second kind is like a C++ comment. It starts with// and ends at the end of the line. The

following example illustrates both kinds of comments.

# This is the first kind of comment

float A on grid1 // This is the second kind of comment

// So is this

8.1.1. Data Objects

There are five kinds of data objects available in an RNPL program: parameters,

coordinates, grids, grid functions, and attributes. These objects are in turn made up of scalars,

vectors,and index vectors. Scalarsare made up of a single integer,float,or string,while vectors

are one dimensional arrays of scalars. Index vectors are arrays of triples. The first element of

the triple gives a starting index, the second gives an ending index, and the third gives a stride.



8.1. Program Structure 85

Name Value(s) Category

param parameter or PARAMETER reserved word

ivec ivec or IVEC reserved word

constant constant or CONSTANT reserved word

sys system or SYSTEM reserved word

coordinates coordinates or COORDINATES reserved word

grid grid or GRID reserved word

obrack [ punctuation

cbrack ] punctuation

on on or ON reserved word
str "any characters" name

at at or AT reserved word

alias alias or ALIAS reserved word

attrib attribute or ATTRIBUTE reserved word

operator operator or OPERATOR reserved word

resid residual or RESIDUAL reserved word

obrace { punctuation

cbrace } punctuation

evaluate evaluate or EVALUATE reserved word

initialize initialize or INITIALIZE reserved word

looper looper or LOOPER reserved word

update update or UPDATE or updates or

UPDATES

reserved word

header header or HEADER reserved word

stub stub or STUB reserved word

auto auto or AUTO reserved word

int int or INT reserved word

float float or FLOAT reserved word

string string or STRING reserved word

iden [a-zA-Z_][a-zA-Z_0-9]* name

inum positive integer name

minus - operator, punctuation

num positive real number name

assignop := punctuation
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equals = operator

comma , punctuation

divide / operator, punctuation

uniform uniform or UNIFORM reserved word

nonuniform nonuniform or NONUNIFORM reserved word

colon : punctuation

encodeone encodeone or ENCODEONE reserved word

encodeall encodeall or ENCODEALL reserved word

oparen ( punctuation

cparen ) punctuation

expand expand or EXPAND reserved word

plus + operator

times * operator, name

caret ^ or ** operator

equiv == operator

noteq != operator

less < operator

great > operator

lesseq <= operator

greateq >= operator

and && operator

or || operator

scolon ; punctuation

time <inum> or <-inum> name

if if or IF reserved word

then then or THEN reserved word

else else or ELSE reserved word

work work or WORK reserved word

pound # punctuation

static static or STATIC reserved word

Table 8.2. RNPL Tokens
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8.1.1.1. Parameters

Parameters are constants which are specified at run time. They can be scalars, vectors,

or index vectors of any type. They are used to specify things like initial data, grid sizes, and

output. Here are some example parameter declarations:

parameter int fred

constant parameter float jim := 5

parameter float george[10]

parameter float ted[3] := [2.0 1.7 11]

parameter string name := "file_name"

constant parameter string dft[2] := ["comment 1" "comment 2"]

parameter ivec output := *-10,11-50/10,51-*/15

As the examples show, a parameter declaration starts with the reserved wordparameter

or the pair of reserved wordsconstant parameter. Then comes a type and a name.

Parameterscan be assigned default values. An RNPL generated program readsa user specified

parameter file on startup. If a parameter has been declared without a default value, it must

have a value in the file. The reserved wordconstant is meaningless except when the

backend language isFORTRAN. There is also a special type of parameter known as thesystem

parameter. System parameters only have meaning when the backend language is FORTRAN

(see Section 9.2).

The size of a vector parameter must be included in the declaration (see the declarations

for george, ted, anddft above). Scalar parameter declarations contain no size.

An ivec is an index vector. The only current use for index vectors is for controlling

output. As shown in the example, the index vector can have a default value specified as a

comma-separated list of triples. The third element of each triple (the stride) is optional. If it is

not given, it is assumed to be one. The first and second elements can be integers or an asterisk.

As the first element, an asterisk meansthe first time step. As the second element, an asterisk

meansthe last time step. The example declaration above is interpreted to mean “output every

time step from the first time step to the tenth time step, every tenth time step from the eleventh
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to the fiftieth time step, and every fifteenth time step from the fifty-first to the last time step.”

8.1.1.2. Coordinates

AN RNPL program can use multiple coordinate systems. A single time coordinate can

be used in multiple coordinate systems, but each spatial coordinate must be unique. Some

example coordinate declarations are:

rect coordinates t,x,y,z

sph coordinates t,r,theta,phi

null coordinates u,v

The first coordinate in a list isassumed to be the time coordinate. The first time coordinate

is used forcomputationaltime. The declaration begins with a user-chosen name, followed by

coordinates, followed by a list of coordinate names.

8.1.1.3. Grids

Grids define the spatial regions over which the grid functions will be defined as well as

their storage. A grid declaration can take one of several forms, the longest of which would be

something like:

uniform rect[x,z] grid g1 [1:Nx][1:Nz] {xmin:xmax}{zmin:zmax}

Grids can beuniform or nonuniform, though only the former is currently defined.

Next comes the name of the coordinate system followed by a list of coordinates on which

the grid is defined. The above grid is two dimensional with coordinatesx andz. After the

coordinate system comes the reserved wordgrid followed by the grid name. Next comes the

index region. In this example, the first index starts at 1and goes toNx, while the second starts

at 1and goes toNz. Nx andNz are names of grid sizes. The index regions can contain arbitrary

expressions such as[A*B+C-2:4*Nx-5/a], however, as discussed in Section 9.1.1, it is best

tokeep to forms like[1:Nx]and[0:Nx-1]. Finally,comesthe coordinate region which gives

the actual spatial ranges of the coordinates. In the example, we have xmin≤ x ≤ xmax and
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zmin≤ z≤ zmax . Coordinate regions must be of the form{name1:name2}, wherename1

andname2 have been declared as parameters.

Other forms of the grid declaration leave out one or more of the above parts. The

minimum allowable declaration is:

uniform rect grid g2

This declaration (along with the example coordinate declaration in Section 8.1.1.2) declares

g2 to be a three dimensional grid with coordinatesx, y, andz. The index region will be

[0:Nx-1][0:Ny-1][0:Nz-1] for C output and[1:Nx][1:Ny][1:Nz] for FORTRAN

output. The coordinate region will be{xmin:xmax}{ymin:ymax}{zmin:zmax}.

8.1.1.4. Grid Functions

A grid function is a function defined on a grid at one or more times. Some examples of

grid function declarations are:

float A on g1 at -1,0,1

int B on g2 at 0,1

float C on g1

float D on g2 at -1,0,1 alias

float E on g3 at 0,1 "Electric Field"

First comes the grid function type, eitherfloat or int. Next comes the name followed

by the reserved wordon and the grid name on which the function is defined. If the declaration

stopped here (such as that forC above),we get a single time level. Adding the reserved wordat

followed by a list of offsets (positive or negative integers) gives a function defined on one time

level for each offset. For instance the definition forA would give a three time level function

defined at timesn− 1, n, andn + 1. Next comes the optional reserved wordalias which

declares common storage for the first and last time levels. Following any of these declarations

can be a string which is used as aprint namefor the grid function. There are not any real uses

for the print name. It simply provides a more descriptive name by which the grid function will



90 Chapter 8. RNPL: The Language

be identified during output and visualization (see Chapter 9 for information on these compiler

features).

8.1.1.5. Attributes

An attribute is a flag array associated with the grid functions. For instance, an attribute

may tell which grid functions are to be output and which are not. Attributes are defined in a

similar manner to vector parameters,except the size is replaced by an encoding. The encoding

is eitherencodeone or encodeall, with encodeone giving one value per grid function

andencodeall giving one value per time level per grid function (see Section 8.1.1.4 for

information about defining grid functions). For instance, if five grid functions are defined,

three of which have three time levels each while the remaining two have two levels each, then

an attribute marked asencodeone would have a length of five, while an attribute marked as

encodeall would have a length of thirteen. In this case an output flag array could be defined

as either

attribute int out_gf encodeone

or

attribute int out_gf encodeone := [0 0 1 1 0]

8.1.2. Difference Equations

The “heart” of any RNPL program is the definition of the system of equations to be

solved and the methods to be used in solving it. This information is declared using derivative

operators, residuals, initializations, and updates.

8.1.2.1. Derivative Operators

Derivative operators are operators which act on grid functions. They are used for turning

differential equations into finite difference equations by substituting for continuum differential
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operators. Here is a declaration for a forward difference operator:

operator D_FW(f,r) := (<0>f[1] - <0>f[0])/dr

Whenever an operator is used in an expression (see Section 8.1.3), it is replaced by its

definition. The namef isarbitrary. It simply showswhere the expression goes in the definition.

For instance, ifD_FW(3*A+B,r) appeared in an expression, thef’s in the right hand side

would be replaced by3*A+B. The notation<0>f[1] is interpreted asf n
i+1. The<>[] is really

an operator which acts on expressions as follows:

<a>f[b] → f if f is a number or parameter or time coordinate

<a>f[b] → fi+b if f is a spatial coordinate

<a>f[b] → f n+a
i+b if f is a grid function

Three dimensional forward difference operators would look like this:

operator D_FW(f,x) := (<0>f[1][0][0] - <0>f[0][0][0])/dx

operator D_FW(f,y) := (<0>f[0][1][0] - <0>f[0][0][0])/dy

operator D_FW(f,z) := (<0>f[0][0][1] - <0>f[0][0][0])/dz

Operator definitions can be nested as in:

operator D_FW(f,r) := (<0>f[1] - <0>f[0])/dr

operator D_BW(f,r) := (<0>f[0] - <0>f[-1])/dr

operator D_CN1(f,r,r) := D_BW(D_FW(<0>f[0],r),r)

operator D_CN2(f,r,r) := D_BW(D_FW(<1>f[0],r),r)

As you can predict, the definition ofD_CN1 will result in the usual centered second derivative,

namely
(

f n
i+1− 2 f n

i + f n
i−1
)

/ 2dr , while the definition ofD_CN2 will result in the same thing

applied at the advanced time level, that is
(

f n+1
i+1 − 2 f n+1

i + f n+1
i−1
)

/ 2dr . The list of coordinate

names after thef signifies with respect to which coordinate(s) the derivative is taken.

Although operators are defined like derivatives and act as derivatives under certain

circumstances (see Section 8.1.3), they can be defined to perform other functions such as the
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spatial averaging operator defined below.

operator AVG(f,r) := (<0>f[1] + <0>f[0])/2

Because operators are internally treated as derivatives, even definitions such as this need

the coordinate list.

8.1.2.2. Residuals

Residuals define the system of equations, typically by using derivative operators.

Consider the following residual definition:

residual phi { [0:0] := D_LF(phi,t) ;

[1:Nx-2] := D_LF(phi,t,t) - D_LF(phi,x,x) ;

[Nx-1:Nx-1] := D_LF(phi,t) }

Assuming the proper definitions of the derivative operators, this residual encodes the

linear wave equation on a string with the end points fixed. An equivalent declaration would

be:

residual phi { [0:0] := D_LF(phi,t) = 0 ;

[1:Nx-2] := D_LF(phi,t,t) = D_LF(phi,x,x) ;

[Nx-1:Nx-1] := D_LF(phi,t) = 0 }

First comes the reserved wordresidual followed by the name of the grid function

whose residual is being defined. Next comes a bracket-enclosed set of index regions and

expressions. The index region shows over what range the expression is a valid description of

the behavior of the system. The union of the index regions should equal the index region of the

grid on which the function is defined,but this is not required. Note that each region-expression

pair is separated by a semicolon. A semicolon can also follow the last expression but is not

required.

An alternate form for an index region is[expr1:expr2:stride], whereexpr1 and

expr2 are the region bounds as above, andstride is an integer stride which can be positive
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or negative. In the first form, the stride is taken to be one.

The residual tells how to determine the advanced value of a grid function. Thus, the

residual must contain<a>f... wherea is the offset to the most advanced time level defined

for grid functionf.

Part of a residual for a three dimensional grid function would look like:

residual A { [1:Nx][1:1][1:1] := D_LF(A,x) + D_FW(B,y) ;

[Nx:Nx][1:Ny][1:Nz] := <1>A[0][0][0] = 5.0*C }

The reserved wordresidual can be preceded by the reserved wordevaluate which

tells the compiler to produce code which will evaluate the residual.

In addition, the wordresidual can be followed by a global offset for example:

residual <1>[0] A { [1:Nx] := ... }

This offset is applied globally to each expression appearing in the residual.

Residuals also support the if-then-else construct. Consider the following declaration:

residual A { [1:Nx] := if(<0>C[0] == 1 && <0>C[-1] == 1) then

D_LF(A,t) = D_LF(A,x)

else if(C == 1) then

D_LF(A,t) = D_FW(A,x)

else D_LF(A,t) = 0 }

HereC is a characteristic function which tells which equation belongs in which region.

8.1.2.3. Initializations

An initialization defines the initial data for a grid function. Its form is identical to the

residual declaration withresidual replaced byinitialize. However the expression is

interpreted differently. Consider the following initialization declaration:

initialize phi { [1:Nr] := amp*exp(-((r-c)/delta)^2) }
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Unlike the residual declaration, the expression in the initialization must not contain its

grid function (though it can contain other grid functions). The retarded time level of the grid

function isset to the expression. In the caseabove,phiwill be set toa Gaussian. Initializations

are evaluated in the order in which they are defined. Thus, if one grid function is used in the

initialization for another, it must be initialized first.

8.1.2.4. Updates

Update declarations can take many forms. Here are some examples:

auto update phi,pi,beta

stub evolver updates A,B,C

header A, B[Bnp1,Bn,Bnm1], C[C], x,y,z,dt,

auto work#0(5*Nx*Ny*Nz),

static work#1(3*Nx*Ny-.5*Nz)

myroutine.inc myupdate update A,B header A,B,dt

The first form defines an automatic update. The declaration above would cause the

compiler to produce a routine to update the grid functionsphi,pi, andbeta if residuals have

been declared for them. Otherwise, the compiler has no idea how to update the grid functions

and will produce an error message. Grid functions are updated in the order they are listed in

the update declaration.

The second declaration will cause the compiler to produce the header for a routine called

evolverwhich is expected to update grid functionsA,B, andC. The body of the routine is left

blank, to be filled in by the user. Following the reserved wordheader, comes a list of things

to appear in the calling sequence for the function. A grid function name such asA above will

cause all the time levels ofA to be passed to the function. IfA has three time levels (1, 0, -1),

then they will be namedA_np1, A_n, andA_nm1 by default. The user can provide his own

names to override the defaults as in the case ofB. If only one name is provided (as forC), the

time levels will be passed in as the elements of a single vector, the first component of which

will be theadvancedtime level.



8.1. Program Structure 95

Other things that can appear in the header list are coordinates (such asx,y, andz above)

and coordinate differentials (such asdt). Parameters can also be included in the list. Work

arrays are declared like the final two parameters. First comesauto or static. Static work

arrays are declared at the start of the program and persist throughout. Auto work arrays are

allocated before the call to the update routine and are destroyed afterwards. Next comes the

word work followed by the# symbol and an integer. This integer is tacked onto the end of

the word work to form the name of the array. Finally comes an expression for the size of the

work array enclosed in parentheses.

The thrid declaration is much like the second, except the body of the update routine is

taken from the file namedmyroutine.inc.

8.1.2.5. The Loop Driver

There is one remaining kind of declaration—theloop driver. This declaration defines

the overall method used for solving the equations. It consists of the reserved wordlooper

followed by a name. The currently defined loop drivers arestandard anditerative.

Declaring thestandard loop driver means that the update routines will be called once

for each time step. This driver can be used for a fully explicit system or when a user-written,

external update routine is called.

Declaring theiterative loop driver means that the update routines will be called from

a loop which first makes an initial guess at the advanced values and then continues to call the

update routines until the norm of the residual is below a certain threshold. This driver is useful

for implicit schemes.

Future loop drivers will may include a full Newton iteration, and will definitely include

various adaptive options.

8.1.3. Expressions

Expressions are made up of objects separated by operators (see Table 8.1 for a list of

operators in order of precedence). Objects include numbers, identifiers, functions, derivative
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operators, coordinates, and grid functions.

Numbers can be integer or floating point. Floating point numbers can be written with

exponents as in1.0e-3. Identifiers are strings beginning with a letter or an underscore

and containing letters, digits, or underscores. Identifiers may be names of grid functions,

coordinates, or parameters.

A function is a function name followed by a parentheses-enclosed expression, such as

cos(3*r). The only currently recognized function names are: exp, log, tan, sin, cos, sinh,

cosh, tanh, and sqrt.

A derivative operator is a name followed by an opening parenthesis, an expression,

a coordinate list, and a closing parenthesis. It may also begin with the reserved word

expand which tells RNPL to symbolically expand the derivative before making the operator

substitution. For instance,expand D_(a*b + c,r) would expand toD_(a,r)*b +

a*D_(b,r) + D_(c,r).

A coordinate is a coordinate name followed by a spatial offset. For example,

r[1]

x[-5]

y{a*b+5}

are valid coordinates. The bracket-enclosed offsets are interpreted as in Section 8.1.2.1. That

is,r[1] becomesr i+1. The object inside the brackets must be an integer. The brace-enclosed

expression is interpreted as an absolute index. That is,y{a*b+5} becomesya∗b+5 . The object

in the braces isan arbitraryexpression. If a coordinate name appears in an expression without a

following offset, it will still be recognized as a coordinate and will be given an offset of zero.

A grid function is much like a coordinate except the name is preceded by a temporal offset

in angle brackets and is followed by one spatial offset for each dimension. The following are

examples of grid functions.

<0>A[0][-1]

<-1>B[1]{b+2}[0]
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Also like a coordinate, a grid function name can appear without offsets.

There are three “types” of expressions possible in RNPL. A type 1 expression is

completely arbitrary. A type 2 expression is a type 1 expression that contains no logical

operators. A type 3 expression is a type 2 expression that contains no derivative operators,

grid functions, or coordinates. Table 8.3 shows which expression types can be used in which

areas.

8.2. Examples

Since languages are best learned by example, I will present two which illustrate most of

RNPL’s features.

8.2.1. 3D Wave Equation

Consider the linear wave equation in three dimensions. This is an initial-value,

boundary-value problem which can be stated as follows:

∂
2
tφ−− ∂

2
xφ + ∂2

yφ + ∂2
zφ
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)
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Location Type Example

if statement 1 if ( expr ) then

residual 2 residual A { [1:1] := expr }

initialization 2 initialize A { [1:1] := expr }

absolute index 2 x{expr }

index region 3 residual A { [1: expr ]

Table 8.3. RNPL Expression Types

wherexmin ≤ x ≤ xmax, ymin ≤ y≤ ymax, andzmin ≤ z≤ zmax.

Typically one would also specify
.
φ, but RNPL doesn’t allow this (see Section 9.4 for a

full discussion of the RNPL initial data problem). To set this problem up with RNPL we must

identify our requirements. We need one grid function,φ. We need difference operators for∂2
t ,

∂
2
x, ∂

2
y, and∂2

z. We also need parameters for the initial data, namelycx, cy, cz, A, δx , δy, andδz as

well as parameters for the domain boundaries,xmin, xmax, ymin, ymax, zmin, andzmax.

We begin this RNPL program by specifying the parameters. The declarations look like

this:

parameter float xmin := 0

parameter float xmax := 100

parameter float ymin := 0

parameter float ymax := 100

parameter float zmin := 0

parameter float zmax := 100

parameter float A := 1.0

parameter float c_x := 50.0

parameter float c_y := 50

parameter float c_z := 50

parameter float delta_x

parameter float delta_y
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parameter float delta_z

Default values are optional.

Next, we define the coordinate system. The declaration looks like this:

rect coordinates t,x,y,z

The namerect is arbitrary, but should be descriptive.

Since we need a grid function, we must define a grid.

uniform rect grid g1 [1:Nx][1:Ny][1:Nz]

{xmin:xmax}{ymin:ymax}{zmin:zmax}

As stated in Section 8.1.1.3, the index and spatial ranges will be automatically defined if we

leave them out.

We define our grid function to have three time levels so we can use the standard leap-frog

operators to solve the equation. The definition is:

float phi on g1 at -1,0,1

Now come the operator definitions. We need four second derivatives, one for each

coordinate.

operator D_LF(f,t,t) := (<1>f[0][0][0] - 2*<0>f[0][0][0] +

<-1>f[0][0][0])/(dt*dt)

operator D_LF(f,x,x) := (<0>f[1][0][0] - 2*<0>f[0][0][0] +

<0>f[-1][0][0])/(dx*dx)

operator D_LF(f,y,y) := (<0>f[0][1][0] - 2*<0>f[0][0][0] +

<0>f[0][-1][0])/(dy*dy)

operator D_LF(f,z,z) := (<0>f[0][0][1] - 2*<0>f[0][0][0] +

<0>f[0][0][-1])/(dz*dz)

Since we wish RNPL to produce the complete program, we must specify the partial

differential equations. This is done by defining the residual.
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evaluate residual phi {

[1:Nx][1:Ny][1:1] := <1>phi[0][0][0] = 0;

[1:Nx][1:Ny][Nz:Nz] := <1>phi[0][0][0] = 0;

[1:Nx][1:1][1:Nz] := <1>phi[0][0][0] = 0;

[1:Nx][Ny:Ny][1:Nz] := <1>phi[0][0][0] = 0;

[1:1][1:Ny][1:Nz] := <1>phi[0][0][0] = 0;

[Nx:Nx][1:Ny][1:Nz] := <1>phi[0][0][0] = 0;

[2:Nx-1][2:Ny-1][2:Nz-1] := D_LF(phi,t,t) = D_LF(phi,x,x) +

D_LF(phi,y,y) + D_LF(phi,z,z)

}

The boundary conditionscould also have been stated with a time derivative ofφ, but this would

have required another operator definition. The above method is the simplest.

To get RNPL to generate the initial data, we must provide an initialization forφ.

initialize phi {

[1:Nx][1:Ny][1:Nz] := A*exp(-(x-c_x)^2/delta_x^2)*

exp(-(y-c_y)^2/delta_y^2)*

exp(-(z-c_z)^2/delta_z^2)

}

We now instruct RNPL to solve the equation iteratively and to automatically generate the

update routine.

looper iterative

auto update phi

8.2.2. “Shifted” Wave Equation

As a slightly more complicated example, let’s consider the “shifted”wave equation in one

dimension with periodic boundary conditions. We’ll take the shiftβ to be a constant and the
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initial field configurationφ to be a left-moving Gaussian pulse. This problem can be stated as

follows:

∂
2
tφ
(

x, t
)

−−
(

1− 2
β
)

∂
2
xφ
(

x, t
)

− 2β ∂t∂xφ
(

x, t
)

φ
(

xmin, t
)

−− φ
(

xmax, t
)

φ
(

x,0
)

−− Aexp
(

−
(

x− c
2)
/

2
∆
)

∂tφ
(

x,0
)

−−
− 2
(

x− c
)

X 2
∆

Aexp
(

−
(

x− c
2)
/

2
∆
)

β
(

x
)

−− 0.5

wherexmin ≤ x ≤ xmax.

We can rewrite this equation in first order form by introducing the two auxiliary variables

Φ andΠ defined by:

Φ ≡ ∂xφ ,

Π ≡ ∂tφ−β∂xφ .

In terms of these variables, the problem becomes:

∂tΦ
(

x, t
)

−− ∂x

(

β Φ +Π
)

∂tΠ
(

x, t
)

−− ∂x

(

βΠ +Φ
)

Φ
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)

X 2
∆
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)

Π
(
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(
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X 2
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Φ
(

xmin, t
)

−− Φ
(

xmax, t
)

Π
(

xmin, t
)

−− Φ
(

xmax, t
)

The RNPL program to solve this problem is shown below. It uses a two-level

Crank-Nicholson difference scheme with numerical dissipation.

# This program solves 1D 1st order shifted wave equation

# with constant shift and periodic boundary conditions

parameter float xmin := 0

parameter float xmax

parameter float epsdis

parameter float c

parameter float A

parameter float delta

rec coordinates t,x

uniform rec grid g1 [0:Nx-1] {xmin:xmax}

float Phi on g1 at 0,1

float Pi on g1 at 0,1

float beta on g1

float phi on g1 at 0,1

operator D_PER(f,x) := (<1>f[1] - <1>f{Nx-2} + <0>f[1] - <0>f{Nx-2})/(4*dx)

operator D_CN(f,t) := (<1>f[0] - <0>f[0])/dt

operator D_CN(f,x) := (<1>f[1] - <1>f[-1] + <0>f[1] - <0>f[-1])/(4*dx)

operator D_CND(f,t) := (<1>f[0] - <0>f[0] +

epsdis/16*(6*<0>f[0] + <0>f[-2] + <0>f[2] -4*(<0>f[-1] + <0>f[1])))/dt
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operator D_CNDP1(f,t) := (<1>f[0] - <0>f[0] +

epsdis/16*(6*<0>f[0] + <0>f{Nx-3} + <0>f[2] -4*(<0>f{Nx-2} + <0>f[1])))/dt

operator D_CNDP2(f,t) := (<1>f[0] - <0>f[0] +

epsdis/16*(6*<0>f[0] + <0>f{Nx-2} + <0>f[2] -4*(<0>f[-1] + <0>f[1])))/dt

operator D_CNDP3(f,t) := (<1>f[0] - <0>f[0] +

epsdis/16*(6*<0>f[0] + <0>f[-2] + <0>f{1} -4*(<0>f[-1] + <0>f[1])))/dt

operator AVG(f,t) := (<1>f[0] + <0>f[0])/2

evaluate residual Phi { [0:0] := D_CNDP1(Phi,t) = D_PER(beta*Phi + Pi,x);

[1:1] := D_CNDP2(Phi,t) = D_CN(beta*Phi + Pi,x);

[2:Nx-3] := D_CND(Phi,t) = D_CN(beta*Phi + Pi,x);

[Nx-2:Nx-2] := D_CNDP3(Phi,t) = D_CN(beta*Phi + Pi,x);

[Nx-1:Nx-1] := <1>Phi[0] = <1>Phi{0} }

residual Pi { [0:0] := D_CNDP1(Pi,t) = D_PER(beta*Pi + Phi,x);

[1:1] := D_CNDP2(Pi,t) = D_CN(beta*Pi + Phi,x);

[2:Nx-3] := D_CND(Pi,t) = D_CN(beta*Pi + Phi,x);

[Nx-2:Nx-2] := D_CNDP3(Pi,t) = D_CN(beta*Pi + Phi,x);

[Nx-1:Nx-1] := <1>Pi[0] = <1>Pi{0} }

residual phi { [0:Nx-1] := D_CN(phi,t) = AVG(Pi + beta*Phi,t) }

initialize beta { [0:Nx-1]:= .5 }

initialize Phi { [0:Nx-1]:= -2*(x-c)/delta^2*A*exp(-(x-c)^2/delta^2) }

initialize Pi { [0:Nx-1]:= -(x-c)/delta^2*A*exp(-(x-c)^2/delta^2) }

initialize phi { [0:Nx-1]:= A*exp(-(x-c)^2/delta^2) }

looper iterative
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auto update Phi, Pi, phi

Notice that the periodic boundary conditions are enforced in the operators and the residuals

by using an absolute index. Without this construct, such a boundary condition is impossible

to implement except for a fixed size grid.
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I have written a compiler for RNPL. This compiler is a complete implementation of the

language as defined in Chapter 8. As new constructs and features are added to the language,

the compiler will be updated to include support for them.

Other authors [23] have argued that compilers for numerical languages are best written

in a language such as Maple or Mathematica because of their in-built symbolic manipulation

capability. It is my opinion that compilers (including ones for math-oriented languages such as

RNPL)should be written in a traditional programming language such as C in combination with

compiler writing tools such as lex and yacc (readers interested in using lex and yacc should

consult [16]).

I first planned to implement the RNPL compiler in Maple. However, it soon became

clear that such a language is not suited to the task. On the one hand, RNPL does require

some symbolic manipulation (simple algebra and differentiation), a task which Maple can

perform well. On the other hand, compilers require complex data structures and excellent text

handling, both tasks which are better suited to a general purpose programming language. I

decided to write the compiler in C, using lex and yacc for the parser. I wrote my own symbolic

manipulation routines. As it turned out, the time spent implementing the symbolic capabilities

wasmuch less than the time spent on code generation, thus justifying my decision.

It can certainly be argued that C++ would be better suited to the task than C, however I

decided to use C due to its wider availability on the target platforms. A future version of the

compiler may use C++.

9.1. Compiler Assumptions

As discussed in Chapter 8, RNPL has no “executable” statements. Because of this, it is

up to the compiler to decide how to translate the source into an executable program (or portion

105
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thereof). In this way, the user is shielded as much as possible from the details of programming

and can concentrateon the equations. In order tosuccessfullygeneratea program,the compiler

must make certain assumptions which place some constraints on the form of the source.

Although some of these assumptions seem to violate the strong typing rules of the language,

in actuality, they simply move the responsibility for some declarations from the user to the

compiler. That is, all data objects are still declared, just some are declared automatically. If a

name is multiply defined, the first definition will be kept and subsequent ones will be discarded.

If the objects with the same name are of the same type, for instance two parameters named

X, then no error will be reported. However, ifX is first declared to be a parameter and later

redeclared to be a grid function, the compiler will report an error.

9.1.1. Coordinates and Differentials

Coordinate differentials are automatically defined by the compiler. They are given the

same names as the coordinates except they begin with a lower cased. Thus, if t andx are

coordinates,dt anddxwill be coordinate differentials. At run time the coordinate differentials

are assigned values based on the grids. For instance, if an RNPL program contains the

following definitions:

rectangular coordinates t,x,y

uniform rectangular grid G [1:Nx][0:Ny-1]

{xmin:xmax}{ylow:yhigh}

then the spatial coordinate differentials will be assigned values using

dx−− xmax− xmin
XNx− 1

and

dy−−
yhigh− ylow

XNy− 1
,
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while the time coordinate differential will be assigned by

dt−− λ

√
X

2dx + 2dy
X2

,

whereλ is the Courant factor (see below).

When there is more than one grid defined, the compiler uses the first grid which uses a

given coordinate to define that coordinate’s differential. If along with the above definitions,

an RNPL program contains

uniform rectangular[x] grid g [1:N] {min:max}

thendxwill still be defined as above. The user must construct his own grid spacing variable for

grid g. On the other hand, if the definition forg came before the definition forG, dxwould be

assigned fromg by dx−− (min−max)/(N− 1), while dy would still be defined fromG, since

that is the first grid which usesy.

Along with the coordinate differentials, the grid sizes are defined automatically. These

are named like the differentials except with an initial upper caseN instead of thed. Also like

the differentials, the grid sizes are not assigned values by the user. Their values are calculated

from thegrid baseparameters (see below). Although the user can use any expression he likes

to define the index regions, using the grid sizes is best since it allows for easy convergence

testing by changing only thelevelparameter (see below).

9.1.2. “Special” Parameters

There are several parameters which are needed by every RNPL program. Instead of

forcing the user to always define these, the compiler takes care of them. These parameters are

listed in Table 9.1. Most of their uses are obvious. The others will be explained here or in the

following sections.

Thelevelparameter and the grid bases can be used together for easy convergence testing.

Assume we have defined the coordinatest, x, y, andz. Then at run time, the grid sizes will be

set as follows:
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Name Type Default Use

start_t float 0 start time

s_step int 0 starting iteration

iter int 100 number of iterations

epsiter float 1.0e-5 iteration threshold

fout int 0 file output (0 no, 1 yes)

ser int 0 fs output (0 no, 1 yes)

lambda float .5 Courant factor

output ivec *-*/1 output control

in_file string none name of file from which initial data will be read

out_file string none name of file to which final state will be written

level int 0 refinement level

tag string "" prepend symbol for grid function names

Nc0 int 0 base number of grid points for the coordinate namedc (there

is one for each spatial coordinate)

Table 9.1. Special Parameters

Nx−− Nx0 · level2 + 1

Ny−− Ny0 · level2 + 1

Nz−− Nz0 · level2 + 1.

That is, if Nx0 is 100 andlevel is 0, thenNx will be set to 101. Iflevel is 1, thenNx will be

set to 201. If any grid base is an odd number, then the above procedure will not give proper

lengths for a convergence series. In this case, the grid size will be set to the grid base and a

warning message will be printed. This way, a user can do a single run with an arbitrary grid

size.

If a grid hasbeen declared without using the grid sizes, then itssize will remain unaffected

by changes tolevel.
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9.2. Language Modifications

Feedback from use by myself and othershas resulted in several modificationsof the initial

language design which make it more effective. These modifications are discussed below.

One of the initial design goals for RNPL was to allow users to easily convert existing

programs to RNPL so they could take advantage of the built-in features. Initially, this was

going to be done by having the user directly edit the RNPL-generated code. This proved too

burdensome, so the update declaration was modified to allow automatic header generation and

code inclusion.

In order to have the compiler output FORTRAN 77, I had to addconstantparameters and

systemparameters. It was also necessary to either make RNPL completely case-insensitive,or

case-insensitive when producing FORTRAN output. I chose the latter option.

Constantparameters are needed because of FORTRAN’s lack of support for globals.

They behave exactly like regular parameters except they can not be passed to update routines

or residual evaluators in the argument list. They are placed in a separate common block from

the other parameters and globals and are declared in every function.

Systemparameters are needed because of FORTRAN’s lack of support for dynamically

allocated memory. There is currently only one system parameter defined—memsiz. This

parameter has the default value of 2000000. It is the size of the FORTRAN program’s heap

in doubles. It can be changed with a declaration like:

system parameter int memsiz := 8000000

A few syntactic changes were made to RNPL at user’s requests. These were support for

all capital reserved words, the # in the work array declaration, and the optional semicolon to

end a residual block.

9.3. Equation Solver

The primary job of an RNPL program is to solve a system of evolution equations. The

equations are specified through the residuals and it is up to the compiler to decide how to solve
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them. The solution is generated by symbolically solving each grid function’s residual for its

advanced value.

This method is exactly what is required for solving explicit schemes. Using the iterative

loop driver,one can use thismethod to solve implicit schemesaswell. Such an iterativemethod

may in fact be sufficient for all implicit schemes, though some early attempts to use thismethod

on the fully-averaged implicit scheme failed to converge.

In the future, I will add support for a global Newton iteration which should solve any

implicit scheme. Although such a scheme is no more difficult to support than the current

scheme (from the compiler’s point of view), it requires a banded matrix solver. Due to the

large number of architectures that RNPL supports (these include serial, vector, and massively

parallel machines), I decided to wait on the matrix routines until it was clear that they were

needed.

9.4. Initial Data Generation

The weakest part of the compiler is its initial data support. It only allows analytic initial

data to be specified. However, the initial data problem is very different from the evolution

problem that RNPL was designed to solve. If not known analytically, initial data is usually

solved for from elliptic equations. Techniques to solve elliptic equations are very different

from techniques used to solve hyperbolic equations.

There are also problems with initial data that are inherent to finite differencing. For

instance, assume we are attempting to solve the one dimensional linear wave equation in flat

space. This equation is∂2
tφ−− ∂

2
xφ. The initial state of the system is specified by givingφ

(

x,0
)

and
.
φ
(

x,0
)

.

In RNPL, we can only giveφ
(

x, 0
)

. If we wish to use a three-level scheme to solve

this equation, then we need two time levels of initial data. RNPL will find the second time

level through an iterative procedure using the evolution equations. This will result in

time-symmetric initial data which contains both an ingoing and an outgoing piece. If this is

not what we want, we must modify the compiler-generated initial data generator to produce
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our own data.

However, assume we wish to use a two-level scheme. In this case we can still only give

φ
(

x,0
)

. However, that is all the data we can possibly give. This is a problem with using the

two-level scheme. It does not capture both degrees of freedom available in the physical

problem.

Now assume we decide to rewrite the problem in first order form. The equationsof motion

are∂tΦ−− ∂xΠ and∂tΠ−− ∂xΦ, withΦ ≡ ∂xφ andΠ ≡ ∂tφ. Now using a two level scheme we

can specify one time level for each function. This allows us to completely specify the initial

configuration.

A three-level scheme for this problem will require four levels of initial data, two for each

function. RNPL will only allow us to specify two levels and will solve for the other two using

an iterative procedure. In this case, unlike the second order problem above, this is the correct

way of generating the extra time levels since the physical problem only contains two degrees

of freedom.

These examples show that RNPL will correctly handle the specification of analytic

initial data for systems written in first order form and using two or three-level finite difference

schemes for solution. A simple modification to RNPL would allow the user to specify multiple

time levels of initial data for each grid function. This would allow RNPL to correctly handle

initial data for systems written in higher order form.

9.5. Parameter Files

At run time, RNPL generated programs look for a parameter file. This is an ASCII file

consisting of arbitrary text. The RNPL program will scan this file for lines of the formname

:= value, wherename is the name of a parameter, andvalue is the value of the parameter

given in the same form as default values in RNPL source. If the program finds such a line for a

parameter, it will set that parameter to the value in the file. If not, it will use the default value for

the parameter. If the parameter has no default, the program will exit with an error message.

Here is an example of a parameter file:
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This is a parameter file

tag := "a_"

level := 1

Nx0 := 100

xmin := -10

This is a comment

in_file := "init_data.hdf"

out_file := "dump.hdf"

9.6. Output Control

RNPL generated programs allow the user to dynamically control output during execution.

At any time, the user can interrupt the program and turn output on or off for any grid function,

as well as control the frequency of output.

By default, output is controlled by three parameters and an attribute. The parameterfout

can be set to zero or one. If it is set to one, then output is sent to HDF files. If the parameter

ser is set to one, then output is sent to Matthew Choptuik’svsgraphics server. Sincevsonly

handles one dimensional functions, only one dimensional grid functions will be sent from the

program.

The parameteroutputis an index vector. It controls when the program generates output.

For example, if the interesting dynamics occur after iteration 100, output could be set like:

output := *-100/50,101-150/2,151-*/50

This would output only once every 50 time steps during the first part of the calculation, every

other time step during the dynamic part, and then every 50 time steps till the end. The initial

* is set tos_step and the final * is set toiter.

There is one automatically defined attribute. It controls which grid functions are output.

It is calledout_gf and has encodingencodeone. Any of its elements can be set to one to
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enable output for that grid function or to zero to disable output.

9.7. Check Pointing

Check pointing provides a way for calculations to be stopped during execution and

then restarted at a later time without losing any information. All RNPL generated programs

automatically dump state upon completion. If a calculation needs to be stopped during

execution, it can be interrupted and told to dump state. The state issaved in the file whose name

is given by the parameterout_file. The state file is identical in format to an initial data file.

Thus, to restart, the user simply has to set the parameterin_file to the name of the state file

and rerun the program. The parametersstart_t ands_step are read from the state file, so

their values in the parameter file do not need to be changed.


