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1 Introduction

These projects investigate the evolution of a relativistic fluid with an ultra
relativistic equation of state. Due to the similarities between the 1D and 2D
cases, the write up for both are presented here.

2 Equations of Motion

The equations of motion are derived from the conservation of energy and mo-
mentum and the conservation of particles [1, 2]:

∇bT
ab = 0 (1)

∇a(ρa) = 0 (2)

For a perfect fluid, the stress energy tensor can be written as:

T ab = (ρ + P ) uaub + Pgab (3)

In these projects we restrict our attention to Minkowski space so that the metric
is given by its usual cartesian form. In addition to the conservation equations
above, we must have an equation of state to relate the pressure to our other
fluid variables. For simplicity, we consider an ultra relativistic fluid (we assume
that the internal energy density of the fluid is much larger than the rest mass
density ρ0ε � ρ0):

P = (Γ − 1)ρ (4)

In the above equation, Γ is the adiabatic index which will be taken to be a
constant in the range (1, 2]. When the fluid is ultra relativistic, the number of
particles no longer needs to be conserved and the only equation we need to con-
sider is the conservation of energy-momentum [1]. Introducing the conservative
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variables:

τ = (ρ + P )W 2 − P (5)

Sx = vx(τ + P ) (6)

Sy = vy(τ + P ) (7)

W = (1 − v2)−1/2 (8)

The relevant stress energy components become:

T 00 = τ (9)

T 01 = T 10 = Sx (10)

T 02 = T 20 = Sy (11)

T 11 = Sxvx + P (12)

T 22 = Syvy + P (13)

T 12 = T 21 = Sxvy = Syvx (14)

The non-trivial equations of motion are:

∂tτ + ∂x(vx(τ + P )) + ∂y(vy(τ + P )) = 0 (15)

∂tSx + ∂x(Sxvx + P ) + ∂y(Sxvy) = 0 (16)

∂tSy + ∂x(Syvx) + ∂y(Syvy + P ) = 0 (17)

The equations shown above are prone to shocks even when the initial data is
smooth, so simple discretizations based will not be accurate or stable. Instead of
using a finite difference discretization we take a finite volume approach, treating
our grid points as cells which contain a finite amount of the fluid. We then cast
the equations in a form which explicitly conserves the conservative variables to
within numerical accuracy. For the details of the remaining derivation please
see the original handouts [1] and [2]. For a great introduction of fluid solvers
(and in particular the Roe solver see [3]).

It is worth noting that there is a small typo in [2]. The eigenvector denoted
ly0 should have the following form:

ly0 =

[

−
vx(1 + v2 − 2v2

y)

(1 − v2
y)(1 − v2)

,
1 − v2 + 2v2

x

1 − v2
,
vxvy(1 + v2 − 2v2

y)

(1 − v2
y)(1 − v2)

]

(18)

rather than how it appears in the original document:

ly0 =

[

−
vx(1 + v2 − 2v2

y)

(1 − v2
y)(1 − v2)

,
1 − v2 − 2v2

x

1 − v2
,
vxvy(1 + v2 − 2v2

y)

(1 − v2
y)(1 − v2)

]

(19)

The differences caused by the substitution are quite subtle for low velocities and
only become significant for non-slab-symmetric data at high velocities.
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3 Numerics

For both the 1D and 2D cases a Roes solver was implemented to solve the
equations of motion. This particular solver has the benefits of being second
order accurate in regions of smooth data while it uses first order methods to
capture shocks and prevent dissipation. The boundary conditions for the 1D
and 2D models were chosen to be approximate outflow boundary conditions
implemented using ghost cells. The time stepping was performed with an RK2
integrator to insure second order accuracy in Δt.

4 Results

4.1 1D fluid

Using a variety of mesh densities it was verified that the solutions obtained
from the simulations were second order accurate except in the presence of local
extrema and shocks. Figure 1 shows the convergence of gaussian initial data for
a series of mesh refinements.
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Figure 1: Convergence of the fluid solver for gaussian initial data for a series of
mesh refinements.

Figure 2 demonstrates the convergence of a shock tube test to the exact
solution. Although the shock front narrows as the mesh density is increased, it
remains spread over approximately 10 grid points. Using a different flux limiter
(such as superbee rather than minmod) may give better shock resolution.

By varying the magnitude of the density on the left hand side of the shock
tube, it was determined that the maximum Lorentz Factor that could be ob-

3



 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

-1 -0.5  0  0.5  1

P
re

ss
ur

e

x

P_0
P_1
P_2
P_3
P_4

exact

Figure 2: Convergence of the fluid solver for stock tube test for a series of mesh
refinements. In the vicinity of the shock the convergence is first order.

tained was approximately β = 0.98c corresponding to a baseline density of 0.1
with a jump of 450 across the discontinuity. At slightly higher densities gaps,
the density of the fluid in the vacinity of the discontinuity goes quickly to zero
driving the square of the velocity to within roundoff error of c. Due to the
dependance of the conservative variables on

(
1 − v2

)−1
, a divide by zero error

occurs and the relevant arrays are quickly populated by NaN . This maximum
Lorentz Factor is robust against increases in mesh density. The obvious choices
of imposing a minimum background density or additional flux limitations on
cells with low densities lead to instabilities which I was unable to resolve.

4.2 2D fluid

After extending the 1D code, a variety of convergence tests were run on smooth
initial data. As in the 1D case, the simulation was second order accurate far
from local extrema and shocks and first order accurate in those regions. The
results of a shock tube test are shown below in Figure 3.

An interesting pattern emerged when two jets were placed on opposite sides
of the simulation region and offset from each other slightly. Figures 1 and
2 demonstrate the periodic nature of the solution obtained. Videos of this
simulation as well as a demonstration of the Kelvin Helmholtz instability may
be found on my website [4].
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Figure 3: Convergence of the fluid solver for stock tube test for a series of mesh
refinements. Here a 1D cross section is displayed. Both the 1D and 2D results
converge to the exact solutions as the mesh density is increased.
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Table 1: Pressure of a Periodic solution obtained by offsetting two opposing jets
from one another. The solution is characterized by the development of a high
pressure center and low pressure edges which build in size and sparcity before
exiting the region at highly relativistic speeds.
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Table 2: Y velocity of the above solution.
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