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Critical collapse phenomena in Newtonian gravity will be investigated. The gravitational field
will be modelled using a massive complex scalar field, and in the Newtonian limit the equations of
motion reduce to a coupled system of Schrödinger-Poisson equations. Critical collapse will be looked
for numerically in a 1-parameter family of initial data, and if found will lead to investigations of
self-similarity of solutions. The equations of motion will be approximated using a Crank-Nicholson
finite-differencing scheme and numerical simulations will be run using ADI and multigrid methods.
If self-similarity is found there will be a need to implement some form of mesh refinement to follow
the evolution over a wide range of length-time scales.

I. MOTIVATION

Singular solutions in gravitational systems have been
of much interest since the discovery of the Schwarzchild
solution of a spherically symmetric black hole in General
Relativity in 1917. In the 1960s, singularity theorems
were developed which guarantee independently of sym-
metry or type of mass the existence of a black hole[1]. In
the early 1990s, critical collapse of self-gravitating sys-
tems was first observed by Choptuik in numerical stud-
ies of a massless scalar field in spherical symmetry[2], and
describes systems which are near the threshold between
formation of a singularity in gravitational collapse and
the total dispersion of the mass.

For precisely fine tuned initial conditions, the system
may tend towards a critical solution between singularity
formation and dispersion. Numerical studies[2][3][4] of
self-gravitating systems show that critical solutions ex-
hibit either time independence or self-similarity (for a
review of self-similar solutions in General Relativity, see
[5]), and are labeled Type I and Type II critical phenom-
ena, respectively. They are so labelled because of their
resemblence to Type I and Type II phase transistion in
statistical mechanics. For Type I critical phenomena the
mass of the stable singular solution is a certain fraction of
the mass of the critical solution, but for Type II the mass
of the stable singular solution obeys a power scaling law,
and initial conditions can be set to make the resulting
black hole mass infinitesimally small.

Self-similarity has also been found in the stable singu-
lar solutions to a self-gravitating perfect gas in general
relativity[6], and thus form from generic initial condi-
tions. This provides support for the self-similarity hy-
pothesis which states that self-similarity is a generic phe-
nomenon in critical collapse. These self-similar solutions
are also known to have naked singularities, and thus pro-
vide a strong counter-example for the cosmic censorship
conjecture (see [7] for a review on cosmic censorship). It
is generally believed that some form of cosmic censorship
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is valid, although the precise form has still yet to be de-
fined, and so critical collapse offers a way of testing which
forms of cosmic censorship might be valid. Furthermore,
the range of validity of the self-similarity hypothesis has
not been tested significantly beyond spherical symmetry,
so whether or not self-similarity is a generic feature of fi-
nal states in critical gravitational collapse is still an open
question.

Investigations of critical collapse in purely Newtonian
self-gravitating systems have been carried out for a New-
tonian isothermal gas[8], and also scalar fields with or
without mass/self-interaction potential. These systems
also exhibit self-similar critical and stable solutions which
have naked singularities, and so provide another window
for investigating the range of validity of cosmic censor-
ship. Comparatively less work has been done on Newto-
nian systems than on general relativistic ones; however,
due to the reduced complexity associated with Newto-
nian gravity, it offers a good laboratory for investigation
of critical collapse under deviations from spherical sym-
metry and other simplifications that are common place in
general relativistic investigations, and therefore a means
of probing the validity of cosmic censorship and the self-
similarity hypothesis. It should be noted that since these
analyses are purely Newtonian, they could potentially
have been carried out long before the development of gen-
eral relativity. There is presently no explanation for the
fact that stable solutions exhibit self-similarity in terms
of dynamics, so an understanding of the Newtonian case
may provide insight into the role that the dynamics play
in creating self-similar solutions.

Here we are interested in investigating critical collapse
in Newtonian self-gravitating systems which develop so
called “blow-up” solutions, ie. solutions which become
singular in finite time. Such solutions are interesting for
a number of reasons. As mentioned above, investigating
the evolution of solutions as they become singular will
provide insight into how singular solutions form out of the
dynamics. Blow-up solutions are also interesting because
in the context of Newtonian gravity, it is not clear that
critical phenomena will occur for any matter model. In
general relativity, the universality of coupling of mass-
energy-momentum guarantees that there will be black
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FIG. 1: The phase space portrait near a critical point. The
red line represents a 1-parameter family of initial gravity con-
figurations, and the blue lines extending from the initial data
represent trajectories in the phase space of possible Z. The
red line is drawn to cross the singularity threshold at p = p∗,
and for this value of p the gravity configuration tends towards
the critical solution.

hole formation in any matter model; however, Newtonian
gravity only sets a universality of coupling of mass to
momentum, and it is not clear that all matter models
will admit initial data that result in blow-up.

II. THEORY

A. Properties of Critical Collapse

We now describe in greater detail some of the prop-
erties of critical collapse elluded to in the motivation
section. The mathematical ideas sketched out here are
modelled from Gundlach[9].

1. Type I Critical Phenomena

In investigating critical collapse, one is concerned with
a function Z which represents the strength of the gravi-
tational field, and is in general a function of both space
and time, Z = Z(t, r). Z can also depend on any number
of parameters depending on the physical system in ques-
tion. In the phase space of parameters, there will be a
surface defining initial Z which will tend towards the crit-
ical solution. Varying a single parameter, p, holding all
others fixed will produce initial configurations Z which
generically will have an intersection with this surface.
Fig.1 shows a one parameter family of initial configura-
tions, and their resulting “trajectories” in phase space,
ultimately resulting in one of three possible outcomes:
singularity formation, total dispersion, or a critical solu-
tion.

The critical solution in a Type I critical phenomenon
is observed to be either independent of time or period in

time. Here we focus on the case where the solution is
independent of time, and so we can write Z∗ = Z∗(r),
and its general linear perturbation can be written as

Z(r, t) = Z∗(r) +
∑

i

Ci(p)eλitZi(r) (1)

numerical simulations suggest that when looking at a
one parameter family of initial configurations, there is
only one growing mode (λ0 > 0), and so for Z close to
the critical solution we have the approximation

Z ≃ Z∗(r) +
dC0

dp
(p∗)(p − p∗)e

λ0tZ0(r) (2)

Initial configurations Z will all approach the critical
solution before the growing mode forces them into one of
the two stable configurations. The time spent near the
critical solution will be longer for initial configurations
with p−p∗ closer to zero. This can be made quantitative
in defining a time, tp by

dC0

dp
|p − p∗|eλ0tp ≡ ǫ (3)

where ǫ is an arbitrarily small positive constant. By
setting ǫ to a particular small value this causes tp to be
interpretted as the time at which Z satisfies

Z(r, tp) ≃ Z∗(r) ± ǫZ0(r) (4)

where Z0(r) is the initial configuration of gravity, and
the sign in front of ǫ is the sign of (p − p∗). From its
definition we can see that tp scales as

tp = − 1

λ0
ln|p − p∗| + const (5)

tp can be thought of as the time up to which the solu-
tion Z(t, r) is significantly dependent on (p − p∗). After
t = tp the solution will quickly converge to a stable solu-
tion and the information of the magnitude of (p − p∗) is
lost.

It is also a matter of observation through numerical
simulations that the mass of the stable singular solution
is a certain fraction of the mass of the critical solution,
independent of initial data. Therefore, Type I critical
collapse usually occurs in physical systems where a mass
scale is set.

2. Type II Critical Phenomena

Type II critical phenomena are observed to have crit-
ical solutions which exhibit scale-invariance, or self-
similarity. This symmetry comes in a continuous and
discrete form, as it did in Type I phenomena, and to
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facilitate this symmetry we need to introduce new vari-
ables, for example

x = −r

t
, τ = −ln(− t

l
), t < 0 (6)

where the origin of t has been moved so t = 0 and
τ → ∞ corresponds to the time of critical collapse in
the critical case, and l is a dimensionful parameter with
units length which depends on the 1-parameter family of
initial data.

If we now define gravity configurations by Z = Z(τ, x),
and the critical solution is Z∗(τ, x), then we can see that
Z∗(τ, x) is continuously scale-invariant if it is indepen-
dent of τ , and this property is called continuous self-
similarity (CSS). The discrete version is when Z∗(τ, x) is
periodic in τ with

Z∗(τ, x) = Z∗(τ + ∆, x) (7)

and this is called discrete self-similarity (DSS), because
in going from τ to τ +∆, the solution is the same but the
space and time scales (x and t) are smaller by a factor of
e−∆.

Working through the same perturbation analysis as
with Type I, we arrive at an analogous relation for time
scaling

τp =
1

λ0
ln|p − p∗| + const (8)

Where τ represents a measure of the time spent near the
critical solution. In analogy with Eq.4, and shifting the
origin of t to correspond with τ = τp, the solution can be
written as

Z(0, r) = Z∗(−
r

Lp
) ± ǫZ0(−

r

Lp
) (9)

where Lp = le−τp , which now represents an overall scale.
Now, in the units we’re working in, c = G = 1, then

mass also has units of length, which means the mass of
the singularity is proportional to Lp

M ∝ Lp ∝ (p − p∗)
1/λ0 (10)

where the last proportionality follows from the definition
of τ , Eq.8, and we have found the so called critical expo-
nent γ = 1/λ0

3. Equations of Motion

The discussion here on the equations of motion
and finite differencing schemes is heavily influenced by
Choi[10]. In the limit of Newtonian gravity, ie., weak
gravitational fields and velocities much smaller than the
speed of light, the complex massive scalar field, Ψ,

FIG. 2: Discretization of r-axis for finite-differencing.

with Newtonian gravitational potential, V , satisfies a
Schrödinger equation coupled to a Poisson equation

i
∂Ψ

∂t
= −1

2
∇2Ψ + V Ψ (11)

∇2V = ΨΨ∗ (12)

where we are working in units with G = c = ~ = 1,
and the physical quantities are given by

xphy =
~

mc
xcomp (13)

tphy =
~

mc2
tcomp (14)

Ψphy =
c2

√
4πG

Ψcomp (15)

III. DETAILS ON PROPOSED CALCULATION

To solve Eq.11 and Eq.12 numerically, a finite differ-
encing scheme must be employed. A popular choice for
numerically solving Schrödinger type equations is to use
a Crank-Nicolson (CN) scheme, but the Poisson equation
can be solved using simpler techniques.

In spherical symmetry, the laplacian takes the form

∇2 =
2

r

∂V

∂r
+

∂2V

∂r2
(16)

A basic discretization of the r-axis is shown in figure
2. To solve Eq.12 on this mesh, the differential operators
need to be replaced by finite-difference operators defined
on this mesh, and V and ΨΨ∗ replaced by vectors with
components of V and ΨΨ∗ on the mesh points. The
standard approximation is

∂V

∂r
(r) ≃ V (r + h) − V (r − h)

2h
(17)

∂2V

∂r2
(r) ≃ V (r + h) − 2V (r) + V (r − h)

h2
(18)

Eq. 12 can now be written as a matrix equation

LV = ΨΨ
∗ (19)
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where L has the form

L =
1

h2
∗















h2 0 0 0 0
(r2−h)

r2

−2r2

r2

(r2+h)
r2

0 0

0 (r3−h)
r3

−2r3

r3

(r3+h)
r3

0

0 0 (r4−h)
r4

−2r4

r4

(r4+h)
r4

0 0 0 0 h2















Eq.19 is then inverted to solve for V , and plugged into
equation 11, and now we have a PDE for Ψ. A CN scheme
can then be implemented to solve for Ψ on the computa-
tional domain, which is documented elsewhere.

At this point in time, the research does not call upon
any new numerical techniques, and all the techniques re-
quired are well documented in the literature of numerical
relativity. Other hardware and software requirements are
listed below.

IV. RESOURCES LIST

Preliminary work on critical collapse using complex
massive scalar fields in spherical symmetry will only re-
quire the use of a single personal computer, however if
singular solutions or self-similarity are found the compu-
tations will become more expensive. The UBC physics
dept. has two computer clusters available for compu-
tationally expensive calculations. The calculations will

require the use of software developed by Choptuik for
the visualization of time dependent PDEs, namely XVS
and RNPL.

V. PLANNED SCHEDULE

Development of initial code, and preliminary simula-
tions should be completed by the beginning of January
2009. If self-similarity is found, exact construction of the
self-similar solutions and critical exponent for mass scal-
ing may be pursued during the month of January. More
expensive calculuations could be pursued from February
to April, including critical collapse simulations in axi-
alsymmetry or other symmetry, or investigations using
2-parameter initial data. Writing of the thesis should
begin at the beginning of March.
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