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Figure 1.3.

Above: Assigning “telephone numbers” to events by way of a system of coordinates. To say that the
coordinate system is “smooth” is to say that events which are almost in the same place have almost
the same coordinates. Below: Putting the same set of events into equally good order by way of a different
system of coordinales. Picked out specially here are two neighboring events: an event named *27 with
coordinates (x°, x') = (77.2,22.6) and (x% xT) = (18.5,51.4); and an event named “*” with coordinates
(x%, x1) = (79.9,20.1) and (x°, x1) = (18.4,47.1). Events £ and ¢ are connected by the separation “vector”
Z. (Precise definition of a vector in a curved spacetime demands going to the mathematical limit in
which the two points have an indefinitely small separation [N-fold reduction of the separation & — 2]s
and. in the resultant locally flat space, multiplying the separation up again by the factor N [lim ¥ — o;
“tangent space”; “tangent vector”]. Forego here that proper way of stating matters, and forego complete
accuracy: hence the quote around the word “vector™) In each coordinate system the separation vector
£ is characterized by “components” (differences in coordinate values between 9 and 2):

(&,8h = (799 — 772,201 — 22.6) = (2.7, — 25),
(0. gy = (184 — 185, 47.1 — 51.4) = (—0.1, —4.3).

See Box 1.1 for further discussion of events, coordinates, and vectors.
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Figure 1.4.
How a mere coordinate singularity arises. Above: A coordinate system becomes singular when the “cells
in the egg crate” are squashed to zero volume. Below: An example showing such a singularity in the
Schwarzschild coordinates r, 7 often used to describe the geometry around a black hole (Chapter 31).
For simplicity the angular coordinates f, ¢ have been suppressed. The singularity shows itsell in two
ways. First, all the points along the dotted line, while quite dislinct one from another, are designated
by the same pair of (r, ) values- namely, r = 2m, ¢ = 5. The coordinates provide no way io distinguish
these points. Second. the “cells in the egg crate,” of which one is shown grey in the diagram, collapse
to zero content at the dotted line. In summary, there is nothing strange about the geometry at the dotted
line; all the singularity lies in the coordinate system (“poor system of telephone numbers™). No confusion
sheuld be permitted to arise from the accidental circumstance that the ¢ coordinate attains an infinite
value on the dotted line. No such infinity would occur if r were replaced by the new coordinate 7. defined
by
i (1/2m) = I;m(?,-'?m).

When 1 = co. the new coordinate 7 is 7 = =, The r, t coordinates still provide no way to distinguish
the points along the dotted line. They still give “cells in the egg crate” collapsed to zero content along
the dotted line.




B

L

Y. 1 i . 5 - > - :' .- i : =

| Charles W. MISNER  Kip S. THORNE Johin Archibald WHEELER




/— B ES, S -":h‘ﬁ\')' \

Aq uaaIg st (uoneredas
ajipawn) 7 swn redord 10 (uonwiedos
ayreoeds) “s aouwisip sadoxd sy vy cw
SOUIBAT I IBY) 35/ SUOR 4 1U2AS IDI[IRD UL
yans wolry go aye) Aer 1ysy v 197 5 10040
Y 1B F» oIS g woll Avl 1YFI v o]

"AUI] PIIOA SIY) UO 10U JUIAR UB 9q ¢ 197
dponaed 2211 v Jo aurp priom ay) aq x4 107
(9¢61 qq0y) 28pnsuny sasf-amuipiooy vy
(URIZ)UDIOT ST plIom [eaisiyd [ear
Ay ut awnoords Jo wordar payrwy Apuaigns v
Jo Anowoal a1 yey) Kes o) uvow 1 sa0p JEgM

Answoag ziusuo jeoo] |

‘ueaprony A[eoof st aarpms sardde sy
L Jo Anowoas oy (1) pue ‘uvapronyg A[eoo]
" SI WIAISAS 91BUIPIOOD SIy) (1) 18yl paajuw
4‘» Loy = -1end st auo uay) ‘yuudquinyy ayy ur g pue
i ;L o= x 2 swutod v 103 an1) S1SIY) 2Iaym WaISAS

oreurpiood Aue Juipuy ur spassons auo Jj

T[(J))(”J‘ — (whgx] + AP — () x]= ZHIJ}S

/ e Aq sareurpiood (uvap

% ,’ ’ -1P0F) S[qRIMNS U UIATT § 20URISIP B SI 2I31])

LS g Jwod 1eio Aue 01 p yuiod Kue wory
(91083800 Sa1puUIpL002 fo a5onSuvy g

(‘Anowoad uvapronyg Jo swal

-09U] 19710 Os[e (seroeyifd JO Waloay])

s Vg = g

uay ] "5 pue p woly juwsipinba jng
S uoouuod v 9q g 127 “z o 20URISIP
jenbs ue £q 11 puoixy »p U © UIAID
((prong) 28vnduny saif-amuipioor v
gueaprpny st ardde oy ue yuudquiny Kun v

o Jo Anowoad oyy jeyn Aes o) ursw I S0P 1BYA

Ailswosr ueapijony [esoq |

S3LYNIQH00D LNOHLIAMA ANV HLIM
‘AdLINOID NVIAIONI 1vI0T ANV AHLIIWOID ZINIHO 1v201 g'L xog )

-

431d8 NI SOINVYNAQQYLIWOID | 0c¢




§1.4. GEOMETRY IS LOCALLY LORENTZIAN

—

Proof of above criterion for local Lorentz
geomelry, using coordinate methods in the
local Lorentz frame where particle remains
at rest:

i
Taw™ =1

B. Language of coordinates (Lorentz, Poincaré,
Minkowski, Einstein):
From any event & to any other nearby
event 94, there is a proper distance s, or
proper time 7,, given in suitable (local
Lorentz) coordinates by

Sqa” = —Tpy’ = —[X%B) — XD
+ [xY(#B) — xN @)
+ XX B) — xX(a)P?
+ [X3(B) — x} ()2

If one succeeds in finding any coordinate
system where this is locally true for all
neighboring events ¢ and 4, then one is
guaranteed that (i) this coordinate system
is locally Lorentzian, and (i) the geometry
of spacetime is locally Lorentzian.

Ill.  Statements of Fact
The geometry of an apple’s surface is locally Eu-

clidean everywhere. The geometry of spacetime is
locally Lorentzian everywhere.

8

I

x1=9




§1.4. GEOMETRY IS LOCALLY LORENTZIAN 21

s

Proof of above criterion for local Lorentz
geometry, using coordinate methods in the
local Lorentz frame where partic}e remains
at rest:

T = —xT=0— X+ X)

= TQ,EPTJ:;.

B. Language of coordinates (Lorentz, Poincareé,
Minkowski, Einstein):
From any cvent & to any other nearby
event 3, there is a proper distance s, OF
proper time 7, given in suitable (local
Lorentz) coordinates by

S({'sﬂz = 7,].(['?32 = ﬁ[xn(fﬂ) - x()(a’)}z
+ [x1(9) — XU
1+ [xHB) — XD
+ [x3(B) — XL P

If one succeeds in finding any coordinate
system where this is locally true for all . g
neighboring events & and 4, then one 18 T
guaranteed that (i) this coordinate system ok R E
is locally Lorentzian, and (i) the geometry

of spacetime is locally Lorentzian.

lIl. Statements of Fact

The geometry of an apple’s surface is locally Eu-
clidean everywhere. The geometry of spacetime 1s
locally Lorentzian everywhere.
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§1.5. TIME 23

to empirical test in the appropriate, very special coordinate systems: Euclidean
coordinates in Euclidean geometry; the natural generalization of Euclidean coordi-
nates {local Lorentz coordinates: local inertial frame) in the local Lorentz geometry
of physics. However, the theorems rise above all coordinate systems in their content.
They refer to intervals or distances. Those distances no more call on coordinates
for their definition in our day than they did in the time of Euclid. Points in the
great pile of hay that is spacetime; and distances between these points: that is
geometry! State them in the coordinate-free language or in the language of coordi-
nates: they are the same (Box 1.3).

§1.5. TIME

Time is defined so that motion looks simple.

Time is awake when all things sleep.
Time stands straight when all things fall.
Time shuts in all and will not be shut.
Is, was, and shall be are Time's children.
O Reasoning, be witness, he stable.

VYASA, the Mahabarata (ca. A.D. 400)

Relative to a local Lorentz frame, a free particle “moves in a straight line with
uniform velocity.” What “straight” means is clear enough in the model inertial
reference frame illustrated in Figure 1.7. But where does the “uniform velocity” come
in? Or where does “velocity” show itself? There is not even one clock in the drawing!

A more fully developed model of a Lorentz reference frame will have not only
holes, as in Fig. 1.7, but also clock-activated shutters over cach hole. The projectile
can reach its target only if it (1) travels through the correct region in space and
{2) gets through that hole in the correct interval of time (“window in time”). How
then is time defined? Time is defined so that motion looks simple!

No standard of time is more widely used than the day, the time from one high
noon to the next. Take that as standard, however, and one will find every good clock
or watch clashing with it, for a simple reason. The Earth spins on its axis and also
revolves in orbit about the sun. The motion of the sun across the sky arises from
neither effect alone, but from the two in combination, different in magnitude though
they are. The fast angular velocity of the Earth on its axis (roughly 366.25 complete
turns per year) is wonderfully uniform. Not so the apparent angular velocity of the
sun about the center of the Earth (one turn per year). It is greater than average
by 2 per cent when the Earth in its orbit (eccentricity 0.017) has come 1 per cent
closer than average to the sun (Kepler’s law) and lower by 2 per cent when the
Earthis I per cent further than average from the sun. In the first case, the momentary
rate of rotation of the sun across the sky, ex pressed in turns per year, is approximately

366.25 — (1 + 0.02):

The time coordinate of a
local Lorentz frame is so
defined that motion looks
simple

A
R




CHAPTER 2

FOUNDATIONS OF
SPECIAL RELATIVITY

In geometric and physical applications, it always turns out that a
quantity is characterized not only by its tensor order,
but also by symmetry.

HERMAN WEYL (1925)

Undoubtedly the most striking development of geometry during
the fast 2,000 years is the continual expansion of the concept
“geometric object.”” This concept began by comprising only the
few curves and surfaces of Greek synthetic geometry, it was
stretched, during the Renaissance, to cover the whole domain of
those objects defined by analytic geometry; more recently, it has
been extended to cover the boundiess universe treated by
point-set theory.

KARL MENGER, IN SCHILPP (1949), P. 466

§2.1. OVERVIEW

Curvature in geometry manifests itself as gravitation. Gravitation works on the
separation of nearby particle world lines. In turn, particles and other sources of
mass-energy cause curvature in the geometry. How does one break into this closed
loop of the action of geometry on matter and the reaction of matter on geometry?
One can begin no better than by analyzing the motion of particles and the dynamics
of fields in a region of spacetime so limited that it can be regarded as flat. (See
“Test for Flatness,” Box 1.5).

Chapters 2-6 develop this flat-spacetime viewpoint (special relativity). The reader,
it is assumed, is already somewhat familiar with special relativity:* 4-vectors in
general: the energy-momentum 4-vector; elementary Lorentz transformations; the
Lorentz law for the force on a charged particle; at least one look at one equation

#For example, see Goldstein (1959), Leighton (1959). Jackson (1962), or, for the physical perspective
presented geometrically, Taylor and Wheeler (1966).

Background assumed of
reader
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Figure 2.1.
From vector as connector of two points to vector as derivative
(“tangent vector”; a local rather than a bilocal concept).

§2.3. VECTORS

Begin with the simplest idea of a vector (Figure 2.1B): an arrow extending from
one spacetime event & (“tail”) to another event % (“tip”). Write this vector as

v,; =9 — & (or &9B).

1]

For many purposes (including later generalization to curved spacetime) other com-
pletely equivalent ways to think of this vector are more convenient. Represent the
arrow by the parametrized straight line P(A) = & + A(B — &), with A = 0 the tail
of the arrow, and A = 1 its tip. Form the derivative of this simple linear expression
for (A):

(d/dN[@ + MB — &) = B — ¢ = P(1) — P(0) = (tip) — (tail) = v,

This result allows one to replace the idea of a vector as a 2-point object (“bilocal”™)
by the concept of a vector as a I-point object (“tangent vector”; local):

Vg = (dP/dN), = 2.1)

Example: if 9(t) is the straight world line of a free particle, parametrized by its
proper time, then the displacement that occurs in a proper time interval of one second
gives an arrow 4 = P(1) — 2(0). This arrow is easily drawn on a spacetime diagram.
It accurately shows the 4-velocity of the particle. However, the derivative formula
u = d7/dr for computing the same displacement (1) is more suggestive of the
velocity concept and (2) lends itself to the case of accelerated motion. Thus, given
a world line #(7) that is not straight, as in Figure 2.2, one must first form &% /dr,
and only thereafter draw the straight line (0) + Md¥’/dr), of the arrow u = d/dr
to display the 4-velocity w.

Ways of defining vector:

As arrow

As parametrized straight line

As derivative of point along
curve
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§2.3. VECTORS

Begin with the simplest idea of a vector (Figure 2.1B): an arrow extending from
one spacetime event ¢ (“tail”) to another event & (“tip”). Write this vector as

V,y = B — & (or &B).

For many purposes (including later generalization to curved spacetime) other com-
pletely equivalent ways to think of this vector are more convenient. Represent the
arrow by the parametrized straight line ?(\) = & + A(# — &), with A = 0 the tail
of the arrow, and A = 1 its tip. Form the derivative of this simple linear expression
for @(A);

(d/dN[E + NB — @) = B — & = P(1) — P(0) = (tip) — (tail) = v,

This result allows one to replace the idea of a vector as a 2-point object (*“bilocal”)
by the concept of a vector as a 1-point object (“tangent vector”; local):

Voo = (dP/dN), 2 o @.1)

Example: if (7) is the straight world line of a free particle, parametrized by its
proper time, then the displacement that occurs in a proper time interval of one second
gives an arrow u = P(1) — 9(0). This arrow is easily drawn on a spacetime diagram.
It accurately shows the 4-velocity of the particle. However, the derivative formula
u = d9/dr for computing the same displacement (1) is more suggestive of the
velocity concept and (2) lends itself to the case of accelerated motion. Thus, given
a world line #(r) that is not straight, as in Figure 2.2, one must first form &% /dr,
and only thereafter draw the straight line (0) + A(d¥/dr), of the arrow u = dor/dr
to display the 4-velocily u.

Ways of defining vector:

As arrow

As parametrized straight line

As derivative of point along
curve
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§2.4. METRIC TENSOR
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Box 2.1 FAREWELL TO ‘et

One sometime participant in special relativity will
have to be put to the sword: “x* = jcr.” This
imaginary coordinate was invented to make the
geometry of spacetime look formally as little
different as possible from the geometry of Eu-
clidean space; to make a Lorentz transformation
look on paper like a rotation; and to spare one
the distinction that one otherwise is forced to make
between quantities with upper indices (such as the
components p# of the energy-momentum vector)
and quantities with lower indices (such as the
components p, of the energy-momentum 1-form).
However, it is no kindness to be spared this latter
distinction. Without it, one cannot know whether
a vector (§2.3) is meant or the very different geo-
metric object that is a 1-form (§2.5). Moreover,
there is a significant difference between an angle
on which everything depends periodically (a rota-
tion) and a parameter the increase of which gives
rise to ever-growing momentum differences (the
“velocity parameter” of a Lorentz transformation;
Box 2.4). If the imaginary time-coordinate hides
from view the character of the geometric object
being dealt with and the nature of the parameter
in a transformation, it also does something even
more serious: it hides the completely different
metric structure (§2.4) of + 4 + geometry and
— ++ + geometry. In Euclidean geometry, when
the distance between two points is zero, the two

points must be the same point. In Lorentz-Min-
kowski geometry, when the interval between two
events is zero, one event may be on Earth and the
other on a supernova in the galaxy M31, but their
separation must be a null ray (piece of a light
cone). The backward-pointing light cone at a given
event contains all the events by which that event
can be influenced. The forward-pointing light cone
contains all events that it can influence. The multi-
tude of double light cones taking off from all the
events of spacetime forms an interlocking causal
structure. This structure makes the machinery of
the physical world function as it does (further
comments on this structure in Wheeler and Feyn-
man 1945 and 1949 and in Zeeman 1964). If in
a region where spacetime is flat, one can hide this
structure from view by writing

(4s)? = (Ax1)? + (Ax%)2 + (Ax3)2 + (Ax1)?,

with x* = icr, no one has discovered a way to
make an imaginary coordinate work in the general
curved spacetime manifold. 1f “x* = ies” cannot
be used there, it will not be used here. In this
chapter and hereafter, as throughout the literature
of general relativity, a real time coordinate is used,
x" =1 =ct,, (superscript 0 rather than 4 to
avoid any possibility of confusion with the imagi-
nary time coordinate).

™

J

The components w of any other vector w in this frame are similarly defined as
the coefficients in such an expansion,

— [43
w = wle,.

§2.4. THE METRIC TENSOR

of basis

2.4)

Notice: the subscript a on e, tells which vector, not which component!

The metric tensor, one recalls from part IV of Box 1.3, is a machine for calculating
the squared length of a single vector, or the scalar product of two different vectors.

Expansion of vector in terms
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