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1 Introduction

We are at the brink of opening a new window to the universe. With gravitational wave detectors
like GEO600, VIRGO, and LIGO already in operation, one expects to observe gravitational
wave signals from far away extreme events like stellar core collapses (supernovae) and binary
black hole or neutron star mergers. By that one hopes to gain very exciting new insights into the
role of gravitation as one of nature’s fundamental interactions and the evolution of our universe
in general. Due to the very weak nature of gravitational wave signals it is a very delicate and
complicated effort to detect waveforms. Therefore it is one of numerical relativity’s (NR) pri-
mary goals to simulate the events one hopes to observe and investigate the resulting waveforms.

But simulating those events by numerically solving Einstein’s equations turned out to be much
more complicated than initially expected. Trying to evolve binary black hole mergers introduces
delicate numerical difficulties and has thus become one major challenge in numerical relativity.
Einsteins equations, a set of coupled non-linear partial differential equations (PDEs), can be
formulated in equivalent but different forms. In the harmonic formulation gauge source func-
tions are chosen in a way that the equations for the metric components form a set of wave
equations. These equations then have known stability properties deduced from mathematical
and numerical analysis. The BSSN system on the contrary is based on a 3+1 formalism which
splits Einsteins equations into space- and timelike parts and handles them separately. They
are a modification of the ADM equations, which have proven to be numerically stable and well
behaved. Another crucial problem is how to handle singularities arising in the evolved quanti-
ties on the finite valued numerical grid one uses to simulate the domain. Different approaches
have been developed in that attempt. The black hole excision technique tries to excise the
singularities from the grid, by usually excluding entire domains that are causally disconnected
from spacetime. This is accomplished by tracking the apparent horizon of a black hole and
excising everything inside it. However excision techniques lead to complicated grid setups and
furthermore introduce the need of imposing excision boundary conditions. This leads to diffi-
cult to solve stability problems for the numerical evolution scheme. Another concept of dealing
with singularities on the grid is the ’puncture approach’. One here uses different initial data
which is constructed by absorbing the singular terms in the black hole interior into an analytic
expression. These initial data sets are then evolved without excising regions of the grid at
all. While BSSN systems can evolve puncture initial data without major problems and benefit
valuably from not having to excise regions of the grid, so far nobody has achieved a working har-
monic evolution system that can handle puncture intital data without using excision techniques.

In this thesis I present a 3+1 splitted harmonic evolution system which I implemented in
order to investigate its ability to handle puncture initial data. It is based on the ADM vari-
ables lapse function α, shift vector β , 3-metric gab and the extrinsic curvature kab and uses 3+1
splitted harmonic gauge source functions. The thesis is composed in two major parts. First I
concentrate on Einstein’s Equations in numerical relativity. I briefly describe the derivation of
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(a) Snapshot of two inspiraling black holes. The colors
indicate the strength of the complex Weyl-component
Ψ4 which describes the gravitational radiation at future
null infinity scri

(b) Snapshot of a simulated supernova explosion. The
colors indicate the fluid density. On a plane below, the
complex Weyl-component Ψ4 is drawn.

Figure 1.1: Visualizations of simulation data.

the ADM equations in order to motivate the 3+1 formalism and describe two different harmonic
evolution systems. I compare a densitized system implemented by Béla Szilágyi against the
ADM based 3+1 splitted evolution system first described by Helmut Friedrich, which the work
presented here is based on. In the following section I describe the basic numerical techniques,
finite differencing stencils, dissipation operators and a decomposition of the metric components
I use in the code.
The second part then mainly focusses on the results obtained by running this code with different
black hole spacetime configurations using excision techniques. In the first section I concentrate
on results for single black holes. I first show the code’s stability for evolving single non spinning
black holes on long time scales and investigate the influence of different constraint damping
parameters on the evolution. Finally I present convergence tests for the ADM variables. In
the second section I focus on binary black holes. I present data and visualizations describing a
head-on collision of two non spinning black holes. I describe the merger of the apparent hori-
zons, extract the gravitational wave signal and investigate the time evolution of the harmonic
constraints. Furthermore I compare results for this same binary black-hole head-on-collision
with the ’densitized’ harmonic formulations described earlier.
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and Luciano Rezzolla for giving me the opportunity to work on this nice project. I would in
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2 The Einstein equations in Numerical
Relativity

In this section I will introduce the basic approaches used to evolve Einstein’s equations. First,
I will give a brief overview of 3+1 spacetime decomposition and the ADM equations commonly
used in Numerical Relativity which closely follows [1]. After that I will discuss further a special
class of evolution systems, namely the Generalized Harmonic Evolution systems. I will first
describe the Densitized Harmonic formulation and then present the Friedrich-Rendall evolution
equations on which the ’ADM Harmonic’ Code is based. Furthermore I will point out the gauge
choices and constraint adjustments I use for the Friedrich-Rendall system.

2.1 Foliation of spacetime

Einstein’s Equations unify space and time into the four-dimensional framework of spacetime.
But for the majority of astrophysically interesting problems like binary black-hole mergers one
cannot find analytical solutions to these equations due to the complexity involved. In order to
still tackle these questions one splits Einstein’s equations into space- and timelike parts and by
that recasts the equations into a ”3+1” formulation. One can then evolve initial data given on
an initial spatial slice along a timelike vector field. This splitting of Einstein equations is called
the Arnowitt-Deser-Misner (ADM) decomposition. A four dimensional space-time (M, gµν) is
foliated into three-dimensional non-intersecting spacelike hypersurfaces Σ of a scalar function t
which can later be identified with the time coordinate. The notation used here is the following:
Greek indices range over 0...3 whereas spatial components 1...3 are labeled with Latin indices.

The 1-form
Ω = dt (2.1.1)

is closed (dΩ = 0) and has the norm

|Ω|2 = gµν∇µt∇νt =: −α2, (2.1.2)

here α is the lapse function (strictly positive). This makes sure that the hypersurfaces Σ are
spacelike. Now the timelike unit normal vector nµ is defined as

nµ ≡ −αgµνΩν = −αgµν∇νt. (2.1.3)

nµ points in the direction of increasing t and by the four-dimensional metric gµν a spatial metric

hµν ≡ gµν + nµnν (2.1.4)

is induced on the hypersurfaces Σ. By that any four dimensional tensor can be decomposed
into spatial parts, which live on the hypersurfaces Σ, and timlike parts, which are normal to Σ.

5
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tν
Σ1

Σ0

t = 0

t = dt

nν

βi

αnν

Figure 2.1: The foliation of spacetime into spacelike hypersurfaces in the 3+1 decomposition.

Using the contraction operator

hµν = gµσhσν = gµν = δµν + nµnν (2.1.5)

the spatial part can be found and the timelike part is obtained by contracting with

Nµ
ν = −nµnν . (2.1.6)

The next step is to define the three-dimensional covariant derivative operator acting on a spatial
tensor, by projecting all indices of a four-dimensional covariant derivative into Σ:

DσT
µ
ν ≡ h δ

σ h
µ
ε h

ρ
ν ∇δT

ε
ρ. (2.1.7)

It can be easily shown that this definition of the derivative is compatible with the spatial metric,

Dσhµν = 0. (2.1.8)

This three-dimensional covariant derivative can also be expressed in terms of the three-dimensional
connection coefficients of the spatial metric, given by the following expression (with respect to
a coordinate basis):

Γσµν =
1

2
hσδ (hδµ,ν + hδν,µ − hµν,δ) (2.1.9)

Now the three-dimensional Riemann tensor associated with hij is defined by requiring that

2DµDνωσ = Rδ
σνµωδ, Rδ

σνµnδ = 0 (2.1.10)

for every spatial ωδ. In respect to a specific coordinate basis, the Riemann tensor can also be
obtained from

R δ
µνσ = Γδµσ,ν − Γδσν,µ + ΓεµσΓδεν − ΓενσΓδεµ. (2.1.11)

As in the four-dimensional case contracting the three-dimensional Riemann tensor gives the
three-dimensional Ricci-tensor

Rµν = Rσ
µσν (2.1.12)

6



2.1. FOLIATION OF SPACETIME

and one more contraction yields the three-dimensional Ricci scalar

R = Rµ
µ. (2.1.13)

The four-dimensional Riemann tensor Rδ
µνσ contains information about all the derivatives of

the four-dimensional metric. But Rδ
µνσ in contrast is a purely spatial object since it is obtained

from spatial derivatives of the metric only. From that it is clear that Rδ
µνσ can only describe

the curvature intrinsic to the slice Σ. In order to correctly depict all the information included
in Rδ

µνσ we need to introduce another tensor called extrinsic curvature. This tensor then
describes how the slice Σ is embedded in the spacetime M. The extrinsic curvature can be
defined as

Kµν ≡ −h σ
µ h

ρ
ν ∇(σnρ). (2.1.14)

Kµν is spatial and symmetric by construction and can alternatively be expressed in terms of
”acceleration” of normal observers aµ = nν∇νn

µ,

Kµν = −∇µnν − nµnν . (2.1.15)

Using aµnµ = 0 we find the trace of the extrinsic curvature to be

K ≡ gµνKµν = −∇µnµ (2.1.16)

Additionally the extrinsic curvature can be expressed in terms of the Lie derivative1 of the
spatial metric along the normal vector nν

Kµν = −1

2
Lnhµν (2.1.18)

Equation (2.1.18) illustrates more clearly the meaning associated with the extrinsic curvature.
It is an expression for the change of the spatial metric along the normal vector field, which we
can later identify as the flow of time. So basically Kµν is the time derivative of the spatial metric
gµν . Taking its symmetry properties into account Rδ

µνσ can be projected in three different ways.
These projections then lead to the three equations the ADM-derivation is based on. Projecting
all four indices into Σ leads (after some algebraic manipulations) to Gauss’s equation,

Rµνσρ +KµσKνρ −KµρKνσ = γεµγ
κ
νγ

ξ
σγ

χ
ρRεκξχ. (2.1.19)

Contracting three indices spatially and one with nµ yields the Codazzi equation

DµKνσ −DνKµσ = γενγ
κ
µγ

ξ
σn

χRεκξχ. (2.1.20)

1The Lie derivative is naturally defined by the manifold structure and differentiates a given tensor field along
a given vector field. It can be defined as follows:

Definition 2.1.1. The Lie derivative of a tensor field T with respect to X is [?], [?]

LXT|p = lim
t→0

1
t

(T|p − (φt)∗T|p) (2.1.17)

where φt : M → M is a local one-parameter group of diffeomorphisms (also called a ’flow’) mapping each
tensor field T at point p of the manifold M into (φt)∗T|φt(p). A flow is induced by the integral curve of X
at p and satisfies φ0(p) = xµ0 with xµ0 being the coordinate representation of the integral curve x(t = 0) of X
through p.

7



The Einstein equations in Numerical Relativity

And finally two spatial contractions and two contractions with nµ lead to Ricci’s equation

LnKµν = γενγ
ξ
µn

χnκRεκξχ −
1

α
DµDνα−Kσ

νKµσ, (2.1.21)

where the derivative of the lapse function entered through the identity

aµ = Dµlnα. (2.1.22)

Another useful relation that is later on used is

DµV
ν = γ ρ

µ ∇ρV
ν +KµνV

ρnν , (2.1.23)

which is true for every spatial vector V µ.

2.2 The ADM equations

In this section we will concentrate on the 3+1 decomposition of Einstein’s equations using
the identities obtained in the previous section. In general relativity the geometry of the four-
dimensional spacetime is governed dynamically by Einstein’s equations

Gµν ≡ Rµν −
1

2
Rgµν = 8πTµν , (2.2.1)

where Gµν is the Einstein tensor and Tµν the stress-energy tensor. To obtain the ADM equations
we will take projections of (2.2.1) into Σ and nµ and use the Gauss, Codazzi and Ricci equations
to eliminate the four-dimensional Ricci tensor Rµν . The ADM equations then will relate three-
dimensional curvature quantities to projections of the stress-energy tensor. We will obtain two
sets of equations: one determining the properties of gµν and Kµν on the slices Σ itself and one
set governing the dynamics of these quantities. To obtain the Hamiltonian constraint we
contract Gauss’s equation (2.1.19) twice with the spatial metric and insert (2.1.4) into it

2nµnν Gµν = R +K2 −KµνK
µν . (2.2.2)

By now defining the total energy density as measured by a normal observer nµ as

ρ := nµnνTµν (2.2.3)

and, using Einstein’s equations (2.2.1), we finally get

R +K2 −KµνK
µν = 16πρ. (2.2.4)

When contracting the Codazzi equation in a similar way once we get the Momentum con-
straint

DνK
ν
µ −DµK = 8πjµ, (2.2.5)

where
jµ = −γνµnρTνρ (2.2.6)

is the momentum density as measured by a normal observer nµ. These constraint equations
involve spatial quantities and their spatial derivatives only and so determine hµν and Kµν on

8



2.2. THE ADM EQUATIONS

each and every timeslice Σ. In fact they formulate the necessary integrability conditions for
the embedding of the spatial slices (Σ, hµν , Kµν) in the spacetime (M, gµν) itself. In order to
obtain evolution equations describing how initial data (hµν , Kµν) evolves from one time slice
to another, one combines (2.1.19) with Ricci’s equation (2.1.21). But first we have to note
that the Lie derivative along nµ is not a natural time derivative since by evaluating the scalar
product

nµΩµ = −αhµν∇νt∇µt = −α−1 (2.2.7)

we find that nµ is not dual to Ω. But by introducing the vector

tµ = αnµ + βµ (2.2.8)

we find that tµ actually is dual to Ω for any spatial shift vector βµ, since reevaluating the
scalar product yields

tµΩµ = tµ∇µt = −1. (2.2.9)

This implies that the Lie derivative along tµ actually is a natural time derivative because integral
curves x(t) of tµ are identical to x(t) ≡ t and hence directly parametized by t. Furthermore the
scalar product being independent of α assures all vectors tµ originating on one time slice Σ1

ending up on the same time slice Σ2. Additionally the Lie derivative of any spatial tensor along
tµ remains spatial. Now the lapse α and the shift βµ together determine the time evolution of
the coordinates from one time slice Σ to the next one. The lapse function prescribes the proper
time elapsed between time slices along the unit normal vector nµ, while the shift vector on the
other hand determines by how much the spatial coordinates are shifted in respect to the unit
normal vector (Fig. 2.1). Now rewriting (2.1.14) using this new vector tµ we obtain

Lthµν = −2αKµν + Lβhµν , (2.2.10)

the evolution equation for the spatial metric hµν . To find the evolution equation for the extrinsic
curvature Kµν we combine Ricci’s equation (2.1.21) together with Einstein’s equation (2.2.1)

LtKµν = −DµDνα + α(Rµν − 2KµρK
ρ
ν +KKµν)

−α8π

(
Sµν −

1

2
hµν(S − ρ)

)
+ LβKµν , (2.2.11)

where
Sµν = hµρhνσT

ρσ (2.2.12)

is the spatial projection of the stress-energy tensor with trace

S = hµνSµν . (2.2.13)

It is now time to introduce a suitable set of coordinates that reflects the 3+1 splitted spacetime.
We choose a basis of spatial vectors ei with i = 1, 2, 3 that span each slice Σ so that Ωµ(ei)

µ = 0.
Additionally we introduce a timelike basis vector (e0)

µ = tµ such that tµ = (1, 0, 0, 0). From
that it follows immediately that the Lie derivative along tµ reduces to a partial derivative with
respect to the time t. The covariant components of the normal vector nµ satisfy

ni = nµ(ei)
µ = αΩµ(ei)

µ = 0. (2.2.14)

9



The Einstein equations in Numerical Relativity

So zeroth components of contravariant tensors vanish, since contractions of the normal vector
with any spatial tensor give zero. It follows for the components of the shift vector

βµ = (0, βi). (2.2.15)

Using this we obtain the contravariant components of the normal vector as

nµ =
1

α
(1,−βi), (2.2.16)

and since nµnµ = −1 the covariant components are

nµ = (−α, 0, 0, 0). (2.2.17)

To obtain a coordinate expression for hµν we use hij = gij which follows directly from the
definition (2.1.4) and hµ0 = 0 which is a consequence of (2.2.14)

gµν =

(
−α−2 α−2βi

α−2βj γij − α−2βiβj

)
. (2.2.18)

The corresponding line element is

ds2 = −α2dt2 + γij(dx
i + βidt)(dxj + βjdt). (2.2.19)

Since hikhkj = δij is an isomorphism between the covariant and contravariant spatial tensor
bundle it serves as an index raising and lowering operator for spatial components. Now all
the information of a spatial tensor is encoded in its spatial components and we can therefore
express the constraint and evolution equations in spatial components only. Furthermore, since
in our coordinate system all zeroth components of contravariant, spatial tensors are zero, we
can restrict all contractions to spatial components. This yields for the connection coefficients

Γijk =
1

2
hil (hlj,k + hlk,j − hjk,l) , (2.2.20)

and consequently the Ricci tensor is expressed

Rij =
1

2
hkl (hkj,il + hil,kj − hkl,ij − hij,kl)

+hkl
(
Γmil Γmkj − ΓmijΓmkl

)
. (2.2.21)

Finally we can now re-express the ADM equations in their simplified form: First the con-
straint equations read

R +K2 −KijK
ij = 16πρ Hamiltonian constraint (2.2.22)

DjK
j
i −DiK = 8πji momentum constraint. (2.2.23)

And second the evolution equations for hij and Kij become

∂thij = −2αKij +Diβj +Djβi, (2.2.24)

10



2.2. THE ADM EQUATIONS

∂tKij = −DiDjα + α(Rij − 2KikK
k
j +KKij)

−α8π(Sij −
1

2
hij(S − ρ))

+βkDkKij +KikDjβ
k +KkjDiβ

k. (2.2.25)

In these equations lapse α and shift βi are gauges. However lapse and shift determine how the
coordinates evolve from one slice Σ to another and special care must be taken to choose a gauge
that allows well-behaved and stable simulations in numerical relativity. For example we can
choose lapse profiles which effectly prevent spatial slices from touching singularities present in
black-hole spacetimes. In general it is crucial to successful simulations to choose appropriate
gauges for the problem. However the standard ADM formulation is not very well suited for
numerical relativity since it is only weakly hyperbolic and therefore not a well-posed problem.
Strong hyperbolicity is a desired feature, since existing mathematical theorems guarantee local
existence and uniqueness of bounded solutions that depend continuously on initial data (well-
posedness). In addition to that, stability theorems for discretized problems could be applied,
assuring stable evolution schemes. Therefore I will in the following section discuss in detail
another class of evolution systems, the Generalized Harmonic evolution systems.
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The Einstein equations in Numerical Relativity

2.3 Generalized Harmonic equations

Harmonic and generalized harmonic coordinates have from the very beginning played a key
role in understanding general relativity. Einstein himself already used harmonic coordinates
in analyzing different candidates for ’his’ theory of gravitation. Later on deDonder [22] then
used them to analyze the structure of general relativity and further extensive development
by Fock [23]and Choquet-Bruhat [24] gave the first well-posed version of the Cauchy problem
for the Einstein equations. The idea of generalizing harmonic coordinates by using arbitrary
coordinate functions, was first introduced by Friedrich[33]. Recently generalized harmonic co-
ordinates were used in the first successful numerical simulations of the final inspiral and merger
phase of binary black holes by Pretorius[30]. Generalized harmonic spacetime coordinates xµ

satisfy the curved space wave equation

Γµ = �xµ = ∇ν∇νxµ = F ν(xµ), (2.3.1)

where Γµ = gσνΓµνσ is the trace of the Christoffel symbol related to the metric gµν

Γνσ
µ =

1

2
(∂νgµσ + ∂σgµν − ∂µgνσ). (2.3.2)

The Ricci curvature tensor can in any coordinate system be written as

Rµν = −1

2
gσρ∂σ∂ρgµν +∇(µΓν) + gσρgδε(∂δgσµ∂εgρν − ΓµσδΓνρε). (2.3.3)

In vacuum now Einsteins equations Rµν = 0 can be written in harmonic coordinates as

gσρ∂σ∂ρgµν = 2gσρgδε(∂δgσµ∂εgρν − ΓµσδΓνρε). (2.3.4)

So choosing harmonic coordinates or generalized harmonic coordinates we can cast the principal
part of the Einstein equations into a second-order hyperbolic form or a first-order symmetric hy-
perbolic form. In the following sections I will in detail describe two evolution systems formulated
in generalized harmonic coordinates, the ’Densitized Harmonic’ [38] and the ’Friedrich-Rendall’
evolution system [34].

2.4 The ’Densitized Harmonic’ evolution system

This section closely follows [38] and describes the ’Densitized Harmonic’ evolution system.
As noted in the previous section in a generalized harmonic gauge [33], the coordinates xµ =
(t, xi) = (t, x, y, z, ) satisfy

−δaδaxµ = Γµ = F µ , (2.4.1)

where

Γµ := gρσΓµρσ = − 1√
−g

∂ν g̃
µν , (2.4.2)

with gauge source functions F µ(xρ, gρσ) (which may depend on the spacetime coordinates and
the metric) and with the Densitized 4-metric

g̃µν :=
√
−ggµν (2.4.3)

12



2.4. THE ’DENSITIZED HARMONIC’ EVOLUTION SYSTEM

playing the role of the basic evolution variable. In this harmonic formulation, the constraints
reduce to the gauge condition

Cµ := Γµ − F µ = 0 , (2.4.4)

and the evolution system is based upon the reduced Einstein tensor

Eµν := Gµν −∇(µΓν) +
1

2
gµν∇αΓα . (2.4.5)

Here Γν is treated formally as a vector in constructing the “covariant” derivative ∇µΓν . When
the constraints (2.4.4 ) are satisfied, this gives rise to a hyperbolic evolution system

Eµν = −∇(µF ν) +
1

2
gµν∇ρF

ρ. (2.4.6)

Provided the gauge source functions do not depend upon derivatives of the metric, they do not
enter the principle part of the system and do not affect its well-posedness or numerical stability.
The evolution system (2.4.6) takes the specific form of quasi-linear wave equations

∂ρ (gρσ∂σg̃
µν)− 2

√
−ggρσgτλΓµρτΓνσλ −

√
−g(∂ρg

ρσ)(∂σg
µν) + gρσ√

−g (∂ρg
µν)(∂σg)

+1
2
gµν
(

gρσ

2g
√
−g (∂ρg)(∂σg) +

√
−gΓτρσ∂τg

ρσ + 1√
−g (∂σg)∂ρg

ρσ

)
+2
√
−gδ(µF ν) −

√
−ggµνδρF ρ +

√
−gAµν = 0 , (2.4.7)

where we have included the possibility of a constraint-adjustment term

Aµν := CρAµνρ (xρ, gρσ, ∂τgρσ) , (2.4.8)

i.e., a term which vanishes when the constraints are satisfied and which does not affect the
principle part of the evolution system. In this system the constraints (2.4.4) are not explicitly
enforced during the evolution. Instead, we invoke the Bianchi identities which imply wave
equations of the homogeneous form

gρσ∂ρ∂σC
µ + Lµρσ ∂ρC

σ +Mµ
σC

σ = 0 , (2.4.9)

where the matrices L and M are functions of the metric and its first and second derivatives.

Given constraint-preserving initial and boundary conditions, the uniqueness of the solutions
to (2.4.9) guarantees that the harmonic constraints be conserved during the evolution. On the
other hand, constraint-preserving initial data also requires that the initial Cauchy data satisfy
the standard Hamiltonian and momentum constraints. Also, since the harmonic constraints
imply evolution equations for the lapse and shift, the only remaining free initial data in addition
to the usual Cauchy data (the 3-metric and extrinsic curvature of the Cauchy hypersurface)
are the initial choices of lapse and shift and of the gauge source functions. Note that an initial
choice of the gauge source functions is effectively equivalent to a choice in the initial evolution
of the lapse and shift.
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2.4.1 Constraint Adjustment and Damping

The constraint-adjustments used in this evolution system are those investigated by Babiuc[29]
and have the general form

Aµν := − a1√
−g

Cρ∂ρg̃
µν +

a2C
ρδρt

ε+ eστCσCτ
CµCν − a3√

−gtt
C(µδν)t , (2.4.10)

where the ai > 0 are adjustable parameters, eστ is the natural metric of signature (++++)
associated with the Cauchy slicing and ε is a small positive number chosen to ensure numeri-
cal regularity. The effects of these adjustments in suppressing long wavelength instabilities in
standardized tests for periodic boundary conditions have been discussed by Babiuc[29].
In particular, the first and second terms in the adjustments (2.4.10) have been shown to be
effective in suppressing constraint-violating nonlinear instabilities in shifted gauge-wave tests.
The third term in (2.4.10), on the other hand, was first considered in [35] and leads to constraint
damping in the linear regime. Although it has been used effectively by Pretorius [21, 30] in
black-hole simulations, it was not effective in the nonlinear regime of the shifted gauge-wave
test [29].
We also note that the work reported in [29] has shown that adjustments which scale quadrati-
cally with Cµ (or with higher powers) take effect too late to counter the growth of a constraint-
violating instability; and this has led to the specific form for the denominator of the second
term in (2.4.10).

2.4.2 Gauge Conditions

As noted earlier, the gauge source functions F µ may be chosen to be arbitrary functions of the
spacetime coordinates and metric. They can be viewed as differential gauge conditions on the
densitized metric. This serves two important purposes. Firstly, it allows for convergence tests
based upon a known spacetime, whose analytic metric gµν(0)(x

ρ) is specified in a non-harmonic
gauge, by choosing

F µ = − 1
√−g(0)

∂ν g̃
µν
(0) . (2.4.11)

Using these analytic gauge source functions, in combination with initial and boundary data con-
sistent with the analytic solution, gives rise to numerically evolved spacetimes that are identical
to the analytic solution up to discretization error. This is how the convergence tests reported
here have been carried out for the Schwarzschild spacetime expressed in (non-harmonic) Kerr-
Schild coordinates. Secondly, and most importantly, the gauge source functions can be used to
avoid gauge pathologies.

A major restriction for the form of the gauge source functions is that they cannot depend
on the derivatives of the metric. In particular, they cannot depend on the location or shape of
the MOTS and this is a problem when moving black holes are present, and where it is impor-
tant for the coordinates to be able to “respond” to the black hole motion. In our simulation of
binary black holes, we have used the gauge source function

F µ =
ω√
−g

(g̃tµ − ηtµ) , (2.4.12)
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where ηµν is the Minkowski metric and where ω = ω(xi) is a smooth, spherically symmetric,
time-independent weighting function with ω = 1 over most of the computational domain, but
with ω = 0 in some neighborhood of the outer boundary. When spatial derivatives are neglected
and ω = 1, the resulting gauge condition takes the simpler form

∂tg̃
tµ = −(g̃tµ − ηtν) , (2.4.13)

showing that it forces the densitized lapse and shift to relax to their Minkowski values.
In our first attempts at binary black hole simulations, we have found that this choice of gauge
source function keeps the lapse and shift under reasonable control. Similar choices of gauge
source functions have been used with success in other binary black hole simulations [21, 30].

2.4.3 Blended subluminal-superluminal evolution

The evolution system (2.4.7) consists of coupled quasi-linear wave equations whose numerical
stability is determined by the principle part. By the principle of frozen coefficients [45], the
stability analysis can be reduced to a consideration of the wave equation with shift. Although
finite difference approximations to the wave equation is a well studied problem, the compli-
cations introduced by a non-zero shift are peculiar to the black hole excision problem. This
was first recognized in [46], where it was suggested that the superluminal shift introduced by
tracking the excision boundary could be treated by implicit methods.

Subsequent studies established the stability of explicit finite-difference algorithms, with sec-
ond order accuracy, for the case of superluminal evolution. This was first achieved for the 1D
wave equation with shift

gtt∂2
t Φ + 2∂t∂xg

xtΦ + gxx∂2
xΦ = 0, (2.4.14)

in work by Calabrese [36] and Szilágyi [37]. The standard choice of energy for this system,

E(t) =
1

2

∫
dx
[
(−gtt(∂tΦ)2 + gxx(∂xΦ)2

]
, (2.4.15)

gives rise to a norm when the evolution direction ∂t is timelike. In that subluminal case,
summation by parts (SBP) can be used to establish stability of the semi-discrete approximation

gtt∂2
t Φ + 2gxtD0∂tΦ + gxxD+D−Φ = 0, (2.4.16)

where D+, D− and D0 are, respectively, the standard forward, backward and centered finite
difference approximations for ∂x. This ensures that the numerical error is controlled by an
estimate for the semi-discrete version of the energy norm E(t). For most ’Method of Lines’
time integrators, e.g. Runge-Kutta, this estimate extends to the fully discretized system. The
algorithm (2.4.16) has been extended to the 3D subluminal case to give a stable SBP boundary
treatment [27].

However, the algorithm (2.4.16) is unstable (and cannot be stabilized by Kreiss-Oliger type
dissipation) when the evolution is superluminal, i.e., when the shift is large enough so that ∂t
is spacelike and

gxx = hxx +
(gxt)2

gtt
< 0, (2.4.17)
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where hxx > 0 is the inverse to the spatial metric of the t = const Cauchy hypersurfaces. In
that case, when the energy E(t) is no longer a norm, stability can be based upon the positive
energy associated with the timelike normal nµ to the Cauchy hypersurfaces,

E(n) =
1

2

∫
dx

[
− 1

gtt
(gtt∂tΦ + gtx∂xΦ)2 + hxx∂2

xΦ

]
. (2.4.18)

As discussed in the 1D case [36, 37], the discretization

gtt(∂t +
gxt

gtt
D0)

2Φ + hxxD+D−Φ = 0. (2.4.19)

yields a stable second-order accurate superluminal algorithm. Stable superluminal evolution
algorithms for the 3D case have been given by Motamed [40], where the global stability of a
model black hole excision problem is treated.

Although a stable boundary treatment for the superluminal algorithm (2.4.19) has been pro-
posed [39], its extended stencil (due to the D2

0 operator) makes this complicated and an SBP
boundary version has not yet been formulated. For this reason we use the 3D version of the
subluminal algorithm (2.4.16) in the neighborhood of the outer boundary and blend it to the
superluminal algorithm (2.4.19) by introducing the vector

n̂µ = (gtt, wgit) (2.4.20)

and the evolution variable

Q̂ = n̂µ∂µΦ, (2.4.21)

where w(xi) is a spherically symmetric smooth blending function, with w = 0 near the outer
boundary and w = 1 (so that n̂µ = nµ) in the interior. It suffices to discuss the frozen coefficient
case in which the 1D wave equation (2.4.14) gives rise to the evolution system for Q̂ and Φ,

gtt∂tQ̂ = −(2gxt − n̂x)∂x(Q− n̂x∂xΦ)− gttgxx∂2
xΦ

gtt∂tΦ = Q̂− n̂x∂xΦ. (2.4.22)

Note that introduction of the auxiliary variable Q̂, which reduces the system to first-order in
time, introduces no associated constraints.

For a second-order accurate approximation, we discretize (2.4.22) according to

gtt∂tQ̂ = −(2gxt − n̂x)D0Q+ (2gxt − n̂x)n̂xD+D−Φ− gttgxxD+D−Φ

gtt∂tΦ = Q̂− n̂xD0Φ. (2.4.23)

In the neighborhood of the outer boundary, this reduces to the subluminal algorithm (2.4.16)
and in the interior where w = 1 it reduces to the superluminal algorithm (2.4.19). The har-
monic code uses a fourth-order accurate version of (2.4.23) in the interior region. An alternative
scheme for switching between stable subluminal and superluminal algorithms across the “arti-
ficial horizon” where det(gij) = 0 is given in [40].
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2.5 The ’ADM Harmonic’ evolution system

Defining χ by

χµν =
1

2
Lnhµν . (2.5.1)

we can write the constraint equations on a spacelike hypersurface (2.2.4) and (2.2.5) in a slightly
different form

0 = ZH = R− χabχab + (χ a
a )2 − 2λ− 2κρ (2.5.2)

and
0 = ZM

b = Daχ
a
b −Dbχ

a
a + κjb, (2.5.3)

with ρ = nµnνTµν and jµ = −nµhρνTµρ.

Now the evolution equations written in terms of χab and not substituting the Lie derivatives
Lβhab and Lβχab yield

∂thab = 2αχab + Lβhab (2.5.4)

∂tχab = −α (Rab + χ c
c χab − 2χacχ

c
b )

+DaDbα + Lβχab

+α

(
λhab + κ

(
Tab −

1

2
Thab

))
. (2.5.5)

Solving (2.5.4) for χab and inserting it into (2.5.5) leads to a second order system for hab of the
form

1
α2

[
∂2
t − βc∂c∂t − βc∂t∂c + βcβd∂c∂d

]
hab

−hcd (∂c∂dhab + ∂a∂bhcd − ∂a∂chbd − ∂b∂chad)

− 2

α

[
∂a∂bα−

(
hc(a∂b)∂tβ

c − βdhc(a∂b)∂dβc
)]

= terms of lower order in hab, α, β
c. (2.5.6)

While the induced constraint equations on a given hypersurface is unique we have a huge
freedom to modify the evolution equations. By using the constraints and choosing specific
lapse and shift functions we can try to bring the principal part of (2.5.6) into a suitable form.
Assuming S to be some spacelike hypersurface and xa coordinates on some open subset U of S
one can always find coordinates xν

′
on some neighborhood of U in M with x0′

= 0 , xa
′

= xa

such that the Christoffel coefficients of g in these coordinates satisfy

Γµ
′
(xν

′
) = F µ′

(xν
′
), (2.5.7)

with Γµ
′

= gλ
′ρ′

Γµ
′

λ′ρ′ and F µ′
= F µ′

(xν
′
) being four smooth real functions defined in R4. We

can write the four-dimensional Ricci tensor in the form

Rµν = −1

2
gσρgµν,σρ +∇(µΓν)

+Γηλµgηδg
λρΓδρν + 2Γλδηg

δρgλ(µΓην)ρ, (2.5.8)
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where

Γν = gµνΓ
µ and ∇µΓν = ∂µΓν − ΓλµνΓλ.

If we now consider the Γν as given functions, the Einstein equations form a set of wave equations
for lapse, shift and the spatial metric. Writing the four dimensional Christoffel symbols in terms
of the 3+1 splitted spacetime quantities we get

∂tα− βc∂cα = α2 (χ+ nνΓ
ν) , (2.5.9)

∂tβ
a − βc∂cβa = α2 (γa −Dalogα− haνΓν) . (2.5.10)

From these equations we see that the gauge source functions Γν may fix the evolution of lapse
and shift. We now want obtain a set of wave equations for lapse α , shift βc and 3-metric hab,
which will then act as the basic equations of the evolution system: First we use (2.5.4) to get

D2hab = 2αDχab + 2χabα
2(χ+ nνΓ

ν) +D
[
hc(a∂b)β

c
]
, (2.5.11)

with D ≡ (∂t − βc∂c).

We write the three-dimensional Ricci tensor in terms of the spatial metric and its connection
coefficients

Rab = −1

2
hcdhab,cd +D(aγb) + γdcahfdh

ceγfeb + 2γdceh
cfhd(aγ

e
b)f , (2.5.12)

where

γa = habh
cdγbcd = hcd(hac,d −

1

2
hcd,a). (2.5.13)

Using this and (2.5.5) we get

1
2α2D

2hab −α
[
χab(nνΓ

ν)− γ(ab)cγ
c − χaχb + χcγ(ab)c −D(ahb)νΓ

ν + hcνΓ
νγ(ab)c

+2χ(aγb) − 2χ(ahb)νΓ
ν +

1

2
hcdhab,cd + γdcahfdh

ceγfeb + 2γdceh
cfhd(aγ

e
b)f + 2χacχ

c
b

]
− 1

α

[
2hd(aβ

c
,b)β

d
,c + hcdβa,cβ

b
,d

]
− 4χc(aβ

c
,b) − α(λhab + κ(Tab −

1

2
Thab))

= 0, (2.5.14)

where χa ≡ 1
α
Daα.

With

−gµνhab,µν =
1

α2
D2hab + (γc − χc − hcνΓν)hab,c − hcdhab,cd, (2.5.15)
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(2.5.9), and again (2.5.4) we finally get

−gµν∂µ∂νhab =
2

α2
χab (∂tα− Lβα) +

2

α2
DaαDbα

− 2D(a

[
hb)ch

c
νΓ

ν
]

+
4

α3
D(aαhb)c

(
∂tβ

c − βd∂dβc
)

+
4

α2

(
∂(bβ

c
)
∂tha)c +

2

α2
hd(a

(
∂b)β

c
) (
∂cβ

d
)

− 2

α2

(
∂(bβ

c
)
Lβha)c −

2

α2

(
∂(bβ

c
)
βd
(
∂dha)c

)
+ 4χacχ

c
b − 2χabχ− 2γdcahfdg

ceγfeb − 4γdceh
cfhd(aγ

e
b)f

+ 2λhab + 2κ

(
Tab −

1

2
Thab

)
=: Sab,

(2.5.16)

which is a wave equation for the spatial metric hab.

Using (2.5.13), (2.5.4) and (2.5.3) we get

(∂t − βc∂c)2γa = −βa,d + 2χdaDdα + hdeβa,de + αDaχ

+2ακja − χDaα− 2αχedγade. (2.5.17)

Together with (2.5.9), (2.5.10) and again (2.5.4) this yields the wave equation for the shift
vector

1

α2
(∂t − βc∂c)2 βa − hde∂d∂eβa = 2ακja + 4

(
χad − χhad

)
Ddα

− 2α
(
χed − χhed

)
γade − (∂dβ

a) γd

+ (∂dβ
a)Ddlogα

+ 2αnνΓ
ν [γa −Dalogα− haνΓν ]

− 2αχhaνΓ
ν −Da (αnνΓ

ν)

− (∂t − βc∂c) (haνΓ
ν)

=: Sa − hde∂d∂eβa.

(2.5.18)

Combining (2.5.1) and (2.5.10) yields

1
α2 (∂t − βc∂c)2α = (∂t − βc∂c)χ+ 2αχ2 + 4αχnνΓ

ν

+2α(nνΓ
ν)2 + α(∂t − βc∂c)(nνΓν). (2.5.19)

Now taking the trace of (2.5.5) and using (2.5.4) together with (2.5.3) we furthermore get

(∂t − βc∂c)χ = DaD
aα− α

(
χabχ

ab − λ+ κ
1

2
(ρ+ habTab)

)
, (2.5.20)
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which when plugged into (2.5.19) leads to a wave equation for the lapse

1

α2
(∂t − βc∂c)2 α−DaD

aα = −α
[
χabχ

ab − λ+
κ

2
(2ρ+ T )

− 4χnνΓ
ν − 2 (nνΓ

ν)2 − 2χ2

]
+

(∂t − βc∂c) (nνΓ
ν)

=: S −DaD
aα

(2.5.21)

Now equations (2.5.16),(2.5.18) and (2.5.21) form a set of wave equations for the metric com-
ponents, the shift vector and the lapse function. The following evolution system is based these
equations.

In order to bring our evolution system in a form of first-order in time and second-order in
space we introduce additional auxiliary variables. These quantities obey an extra set of evolu-
tion equations besides the ones already in place for lapse α, shift βi and spatial metric hab. In
the following section we use a modified definition of the unit normal vector to the time slices
~n, where we include a weighting factor (0 < w ≤ 1).

nν =
1

α
(δν0 − wβν) , (2.5.22)

to ensure that nµ remains timelike everywhere. The weight w is a function w = w(xi) (∂tw = 0
but ∂iw 6= 0) that vanishes near the outer boundary and is unity in the interior of the domain.

The auxiliary variables are defined using Lie-derivatives along the normal vector nµ

A := Lnα = nµ∂µα =
1

α
∂tα−

w

α
βi∂iα (2.5.23)

Ai := Lnβi = nµ∂µβ
i − βh∂hni

=
1

α
∂tβ

i − w

α2
βh∂hαβ

i +
1

α
βh∂hwβ

i
(2.5.24)

Aij :=
1

2
Lngij =

1

2
[nµ∂µgij + giµ∂jn

µ + gµj∂in
µ]

=
1

2

[
1

α
∂tgij −

w

α
βh∂hgij

− 1

α2
(gixβ

x + giyβ
y + gizβ

z) ∂jα

+ gih

(
w

α2
∂jαβ

h − 1

α
∂jwβ

h − w

α
∂jβ

h

)
− 1

α2
(gxjβ

x + gyjβ
y + gzjβ

z) ∂iα

+ ghj

(
w

α2
∂iαβ

h − 1

α
∂iwβ

h − w

α
∂iβ

h

)]
.

(2.5.25)
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Now the evolution equations of the ADM variables are expressed in terms of the definition
of the corresponding auxiliary variables A, Ai and Aij.

∂tα = αA+ wβi∂iα (2.5.26)

∂tβ
i = αAi +

w

α
βh∂hαβ

i − βh∂hwβi (2.5.27)

∂tgij = 2αAij − α[nh∂hgij + giµ∂jn
µ + gµj∂in

µ]

= 2αAij + wβh∂hgij

+
1

α
(gixβ

x + giyβ
y + gizβ

z) ∂jα

− gih
(w
α
∂jαβ

h − ∂jwβh − w∂jβh
)

+
1

α
(gxjβ

x + gyjβ
y + gzjβ

z) ∂iα

− ghj
(w
α
∂iαβ

h − ∂iwβh − w∂iβh
)
.

(2.5.28)

To obtain an equation governing the time evolution of A we first expand the box operator
in (2.5.21)

1

α2
(∂t − βc∂c)2 α =

1

α2

[
∂t∂t − (∂tβ

c) ∂c − βc∂t∂c

− βc∂c∂t + βc
(
∂cβ

d
)
∂d + βcβd∂c∂d

]
α,

(2.5.29)

which yields an expression for ∂t∂tα in terms of its source terms

∂t∂tα =

[
(∂tβ

c) ∂c + βc∂t∂c

+ βc∂c∂t − βc
(
∂cβ

d
)
∂d − βcβd∂c∂d

]
α + α2DaD

aα + α2S +Btt.

(2.5.30)

Applying the operator ∂t to (2.5.23) we get

∂tA = ∂tn
µ∂µα + nµ∂t∂µα

= − 1

α2
∂tα∂tα +

1

α
∂t∂tα

+
w

α2
∂tαβ

i∂iα−
w

α
∂tβ

i∂iα−
w

α
βi∂t∂iα,

(2.5.31)

using (2.5.30) to substitute for the second time derivative of the lapse. We see that thus is the
explicit evolution equation for A.

Expanding the box operator in (2.5.22) we get:

1

α2
(∂t − βc∂c)2 βa =

1

α2

[
∂t∂t − (∂tβ

c) ∂c − βc∂t∂c

− βc∂c∂t + βc
(
∂cβ

d
)
∂d + βcβd∂c∂d

]
βa.

(2.5.32)
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This then yields the expression

∂t∂tβ
a =

[
(∂tβ

c) ∂c + βc∂t∂c

+ βc∂c∂t − βc
(
∂cβ

d
)
∂d − βcβd∂c∂d

]
βa

+ α2hde∂d∂eβ
a + α2Sa +Bta,

(2.5.33)

which when plugged into ∂tA
i results in the evolution equation for Ai

∂tA
i = − 1

α2
∂tα∂tβ

i +
1

α
∂t∂tβ

i +
2

α3
(∂tα)wβh (∂hα) βi

− w

α2

(
∂tβ

h
)

(∂hα) βi − w

α2
βh (∂t∂hα) βi

− w

α2
βh (∂hα) ∂tβ

i − 1

α2
(∂tα) βh (∂hw) βi

+
1

α

(
∂tβ

h
)

(∂hw) βi +
1

α
βh (∂hw)

(
∂tβ

i
)
.

(2.5.34)

Expanding the left hand side of (2.5.23) we get

−gµν∂µ∂νhab =
1

α2

[
∂t∂t − 2βi∂i∂t + βiβj∂i∂j

]
hab − hij∂i∂jhab, (2.5.35)

which we use to substitute for ∂t∂thab

∂t∂thab =

[
2βi∂i∂t − βiβj∂i∂j

]
hab + α2hij∂i∂jhab + α2Sab +Bab (2.5.36)

22



2.5.1 GAUGE SOURCE FUNCTIONS

in ∂tAij

∂tAij =
1

2

[
(∂tn

µ) ∂µhij + nµ∂t∂µhij + (∂thiµ) ∂jn
µ

+ hiµ∂t∂jn
µ + (∂thµj) ∂in

µ + hµj∂t∂in
µ

]
=

1

2
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− 1

α2
(∂tα) ∂thij +

1

α
∂t∂thij

+
w

α2
(∂tα) βh∂hhij −

w

α

(
∂tβ

h
)
∂hhij

− w

α
βh∂t∂hhij +

2

α3
(∂tα)hit∂jα

− 1

α2
(∂thit) ∂jα−

1

α2
hit∂t∂jα

+ 2

[
∂th(ih

(
w

α2
∂j)αβ

h − 1

α
∂j)wβ

h − w

α
∂j)β

h

)
+ h(ih

(
−2w

α3
(∂tα) ∂j)αβ

h +
w

α2

(
∂t∂j)α

)
βh

+
w

α2

(
∂j)α

)
∂tβ

h +
1

α2
(∂tα)

(
∂j)w

)
βh

− 1

α

(
∂j)w

)
∂tβ

h +
w

α2
∂j)β

h − w

α
∂t∂j)β

h

)]]

(2.5.37)

to obtain the evolution equation for Aij. The extra source terms Bµν are constraint adjustment
terms, which weuse to control the propagation of constraint violating modes. We will in detail
discuss the constraint adjustment technique in section 2.5.2.

2.5.1 Gauge source functions

As we have seen from (2.5.9) and (2.5.10) we can try to influence the time evolution of lapse and
shift by specifying proper gauge source functions. To better match the nature of the evolution
system which is in 3+1 splitted form already, we also use 3+1 splitted gauge source functions

(nνΓ
ν) (xν) = F (xν) (2.5.38)

(haνΓ
ν) (xν) = F a(xν), (2.5.39)

whose expression in terms of lapse α and shift βi are obtained from (2.5.9) and (2.5.10)

(nνΓ
ν) =

1

α2
(∂tα− βa∂aα)− χ (2.5.40)

(haνΓ
ν) = − 1

α2

(
∂tβ

a − βb∂bβa
)
− γa −Dalogα. (2.5.41)

In order to control the evolution of lapse and shift, we introduce evolution equations for the
gauge source functions. Their evolution then is mostly governed by our choice of source terms

1

α2
(∂t − βc∂c)2 (nνΓ

ν)−DaD
a (nνΓ

ν) = S nF (2.5.42)
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1

α2
(∂t − βc∂c)2 (haνΓ

ν)− hde∂d∂e (haνΓ
ν) = S hF a. (2.5.43)

As for the evolution system for the ADM-variables we again introduce auxiliary variables to
cast the evolution system into a coupled first order form:

(A nF ) := LnnνΓν = nµ∂µnνΓ
ν =

1

α
∂tnνΓ

ν − w

α
βi∂inνΓ

ν (2.5.44)

(A hF )i := LnhiνΓν = nµ∂µh
i
νΓ

ν − hhνΓν∂hni

=
1

α
∂t
(
hiνΓ

ν
)
− w

α
βh∂hh

i
νΓ

ν − hhνΓν∂hni.
(2.5.45)

First the evolution equations for the gauge source functions themselves

∂t (nνΓ
ν) = α(A nF ) + wβi∂i (nνΓ

ν) (2.5.46)

and

∂t
(
hiνΓ

ν
)

= α(A hF )i +
w

α
βh∂hα

(
hiνΓ

ν
)
−

βh∂hw
(
hiνΓ

ν
)
.

(2.5.47)

Now we obtain the equations controlling the time evolution of the auxilary variables by using
their definitions (2.5.44) and (2.5.45)

∂t(A nF ) = ∂tn
µ∂µ (nνΓ

ν) + nµ∂t∂µ (nνΓ
ν)

= − 1

α2
∂tα∂t (nνΓ

ν) +
1

α
∂t∂t (nνΓ

ν)

+
w

α2
∂tαβ

i∂i (nνΓ
ν)− w

α
∂tβ

i∂i (nνΓ
ν)− w

α
βi∂t∂i (nνΓ

ν)

(2.5.48)

with

∂t∂t (nνΓ
ν) =

[
(∂tβ

c) ∂c + βc∂t∂c

+ βc∂c∂t − βc
(
∂cβ

d
)
∂d − βcβd∂c∂d

]
(nνΓ

ν)

+ α2DaD
a (nνΓ

ν) + α2S nF.

(2.5.49)

For (A hF )i we find

∂t(A hF )i = − 1

α2
∂tα∂t

(
hiνΓ

ν
)

+
1

α
∂t∂t

(
hiνΓ

ν
)

+

w

α2
(∂tα) βh∂h

(
hiνΓ

ν
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− w

α

(
∂tβ

h
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(
hiνΓ

ν
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−

w

α
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hiνΓ

ν
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(
hhνΓ

ν
)
∂hn

i −
(
hhνΓ

ν
)
∂h∂tn

i,

(2.5.50)
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with

∂t∂t
(
hiνΓ

ν
)

=

[
(∂tβ

c) ∂c + βc∂t∂c

+ βc∂c∂t − βc
(
∂cβ

d
)
∂d − βcβd∂c∂d

] (
hiνΓ

ν
)

+ α2hde∂d∂e
(
hiνΓ

ν
)

+ α2S hF i.

(2.5.51)

Although having this evolution system for the gauge source functions already in place to allow
for future development the results presented in this thesis were all obtained using gauge source
functions of a pure harmonic form

(nνΓ
ν) (xν) = F (xν) = 0 (2.5.52)

(haνΓ
ν) (xν) = F a(xν) = 0. (2.5.53)

2.5.2 Constraint adjustment

We include the constraint adjustment terms Bµν in the evolution system. These are terms that
vanish when the constraints are satisfied and which do not effect the principal part of the evo-
lution system, but successfully damp exponential growth in the constraints which might occur
during evolution. The constraint adjustment terms we actually use were orignally proposed
by Babiuc, Szilágyi and Winicour for standardized tests for periodic boundary conditions. We
translated these adjustments to match our evolution system. The adjustment terms are of the
following form

Aµν = − a1√
−g
Cα∂αg̃µν (2.5.54)

+
a2Cα∇αt

ε+ eρσCρCσ
CµCν (2.5.55)

− a3√
−gtt
C(µ∇ν)t, (2.5.56)

where ε is a small positive number and ai > 0 are positive adjustable parameters.

eρσ = gρσ −
2

gtt
(∇ρt)∇σt (2.5.57)

is the natural metric of signature (+ + ++) associated with the Cauchy slicing. The adjust-
ments (2.5.54) and (2.5.55) were effective in suppressing nonlinear instabilities in the shifted
gauge wave tests. The adjustment (2.5.56) leads to constraint damping in the linear regime
and has been used effectively by Pretorius in black hole simulations but was not effective in the
nonlinear shifted gauge wave test.

To apply these terms to our evolution equations we have to first lower both incides of the
adjustment terms using the four-dimensional metric gµν and subtract the trace A = gµνA

µν to
translate from the densitized formulation to our non-densitized formulation

Aµν = gµσgνρA
σρ − 1

2
gµνA. (2.5.58)
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Now we use the following combination of the Aµν ’s to obtain the Bµν ’s we actually include as
extra source terms in our evolution equations

Btt = −αβiβjAij + 2α(gijβ
jβkgilAikl + gijβ

jgikAtk) (2.5.59)

Bti = −2α2(βjgikAkj + gijAtj) (2.5.60)

Bij = −2α2Aij. (2.5.61)

26



3 Numerical Implementation

3.1 Finite differencing scheme and operators

The code solves the finite-difference equations on a Cartesian grid with finest resolution ∆xi =
h, using a cubic outer boundary and with excision boundaries for each black hole. Vertex-
centered mesh refinement is applied using the Carpet driver [31], within the framework of
the Cactus computational toolkit [32]. The time evolution is carried out by the method of
lines using a third- or fourth-order Runge-Kutta scheme, with a fifth-order spatial prolongation
and a second-order time interpolation to provide fine-grid boundary data at mesh-refinement
boundaries. While the bulk of the code uses fourth-order accurate centered difference operators
to approximate spatial derivatives, in a neighborhood of the outer boundary I approximate the
spatial derivatives by diagonal norm SBP difference operators of fourth-order interior accuracy
and of second-order accuracy at the boundary. More specifically, on a grid xI = x0 + ih with
boundary at x0, these operators, as described by Mattsson and Nordström [43], are

(∂xf)i=1 →
1

h

(
1

2
f[2] −

1

2
f[0]

)
, (3.1.1)

(∂xf)i=2 →
1

h

(
− 4

43
f[4] +

59

86
f[3] −

59

86
f[1] +

4

43
f[0]

)
, (3.1.2)

(∂xf)i=3 →
1

h

(
− 4

49
f[5] +

32

49
f[4] −

59

98
f[2] +

3

98
f[0]

)
, (3.1.3)

and

(∂2
xf)i=1 →

1

h2

(
f[2] − 2f[1] + f[0]

)
, (3.1.4)

(∂2
xf)i=2 →

1

h2

(
− 4

43
f[4] +

59

43
f[3] −

110

43
f[2] +

59

43
f[1] −

4

43
f[0]

)
, (3.1.5)

(∂2
xf)i=3 →

1

h2

(
− 4

49
f[5] +

64

49
f[4] −

118

49
f[3] +

59

49
f[2] −

1

49
f[0]

)
. (3.1.6)

For grid points at the outer boundary, on the other hand, all components of the auxiliary
variables A, Ai, Aij are updated using a flat-spacetime, homogeneous Sommerfeld boundary
condition. With the outer boundary located in the weak-field regime, a Sommerfeld condition
applied to A, Ai, Aij is equivalent to setting the Sommerfeld derivative of α, βi and gij to the
value of this Sommerfeld derivative at t = 0, as determined by the initial data. (By implica-
tion, our boundary algorithm is compatible with the initial data.) This boundary condition is
effective in maintaining numerical stability. However, it is not constraint-preserving and is a
prime target for future code improvement. In the part of the computational domain near the
outer boundary where w = 0, the evolution algorithm for A, Ai, Aij and α, βi and gij reduces
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to a fourth-order version of the subluminal evolution algorithm for evolving the wave equation
with shift discussed in [40]. This algorithm is known to be unstable in the region where the
shift is superluminal (e.g. near the excision boundary). In this superluminal region, I set w = 1
so that the definition of the auxiliary variables α, βi and gij becomes the Lie derivative of the
corresponding evolution variables in the normal direction to the Cauchy hypersurfaces, which
stabilizes the algorithm. A more detailed discussion of this subluminal-superluminal blending
is discussed in 2.4.

3.2 Conformal decomposition of the metric for finite
differencing

In order to avoid NaN values resulting from applying the finite differencing operators to the
metric components near singularities I decompose the metric gij in a conformal factor Ψ4 ≡ g

1
3

and a resulting (conformally flat) metric g̃ij

g̃ij = g−
1
3 gij, (3.2.1)

where g ≡ det(gij) is the determinant of gij. From that I can obtain the expression for the first
order derivative

∂agij = g̃ij∂ag
1
3 + g

1
3∂ag̃ij, (3.2.2)

with

∂ag
1
3 = g

1
3∂a

(
ln g

1
3

)
. (3.2.3)

Here I take the derivative of the conformal factor g
1
3 with respect to its logarithm to avoid

very big numerical values of the derivative operators. Now for derivatives of second order I can
obtain the expression

∂a∂bgij = g̃ij∂a∂bg
1
3 + (∂bg

1
3 )(∂ag̃ij)

+(∂ag
1
3 )(∂bg̃ij) + g

1
3∂a∂bg̃ij, (3.2.4)

where I again use the derivative of the logarithm to obtain

∂a∂bg
1
3 = g

1
3 (∂aln g

1
3 )(∂bln g

1
3 ) + g

1
3∂a∂bln g

1
3 . (3.2.5)

This technique helps in handling puncture initial data in the areas near the actual ’puncture
location’. We tested this method to obtain the derivatives by evolving the same initial data set
once with ordinary derivates and once with derivatives obtained by this conformal decomposi-
tion of the metric. We see good agreement of the two methods for testbeds with exact solutions
and for numerical initial data sets.

3.3 Numerical Dissipation

Another important ingredient of this code is numerical dissipation. We find this essential in
keeping the algorithm stable in the neighborhood of the excision domain. In addition, this is
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also helpful in killing off high-frequency noise generated at the mesh-refinement boundaries. In
the interior of the grid, numerical dissipation is added at O(h5) in the form

∂2
t α→ ∂2

t α +
1

64
h5
∑
i

εi(D+iD−i)
3∂tα

∂2
t β

i → ∂2
t β

i +
1

64
h5
∑
i

εi(D+iD−i)
3∂tβ

i

∂2
t gij → ∂2

t gij +
1

64
h5
∑
i

εi(D+iD−i)
3∂tgij (3.3.1)

where D±i are the forward and backward difference operators in the xi direction and εi is a
smooth weighting function. In the neighborhood of a face of the outer boundary with normal
in the x-direction, I set εx = 0 so that the dissipation applies only in the tangential directions.
In carrying out convergence tests for a Schwarzschild black hole, I choose εi = 0.2 outside the
apparent horizon (AH) and εi = 2 inside the AH (except for a transition region). In the two
black hole simulations, I choose εi = 1 outside the AH and εi = 2 inside the AH.

3.4 Boundary conditions

Our evolution domain has a timelike outer boundary and a smooth, spacelike excision boundary
inside each MOTS. The harmonic evolution system, in the second-order form (2.4.7), consists of
quasilinear wave equations whose characteristics are identical to the null directions determined
by the metric. As a result, all characteristics leave the spacelike excision boundaries and no
boundary conditions are necessary (or allowed). At the timelike outer boundary, any dissipative
boundary condition for the wave equation with shift leads to a well-posed initial-boundary
value problem (IBVP). Such dissipative boundary conditions were first worked out in the one-
dimensional (1D) case [36, 37, 39] and general results for the 3D case have been discussed
recently in [27, 40]. For a boundary with normal in the +x direction, such dissipative boundary
conditions have the form

[(1− κ)∂t + κgzρ∂ρ] g̃
µν = qµν , 0 ≤ κ ≤ 1, (3.4.1)

for each component g̃µν , where qµν is the boundary data. The choice κ = 0 gives a Dirich-
let condition and κ = 1 gives a Neumann condition. Dirichlet and Neumann conditions are
marginally dissipative in the sense that they are purely reflective for modes with qµν = 0. A
strictly dissipative Sommerfeld-type condition arises when κ is chosen so that the derivative in
the left hand side of (3.4.1) lies in the outgoing null direction.
In order for the IBVP to be constraint preserving, the boundary data qµν must be assigned
to enforce a homogeneous, dissipative boundary condition on the constraints Cµ. Then, with
proper initialization, the uniqueness of solutions to eqs. (2.4.9) ensures that the constraints are
satisfied throughout the evolution. The first proposal for such constraint-preserving boundary
conditions for the harmonic system consisted of a combination of 3 Dirichlet and 7 Neumann
conditions on the components of g̃µν [26]. However, numerical studies [27] showed that these
Dirichlet-Neumann boundary conditions were effective in carrying the signal off the grid but
that their marginally dissipative nature reflected the noise and gave poor results in highly non-
linear tests.
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The first example of strictly dissipative constraint-preserving boundary conditions which would
in principle allow numerical error to leave the grid, was given for a tetrad formulation of the
Einstein equations by Friedrich and Nagy [41]. Constraint-preserving boundary conditions of
the Sommerfeld type which lead to a well-posed IBVP for the non-linear harmonic formulation
have subsequently been formulated [42]. These Sommerfeld-type boundary conditions have
been incorporated in a numerical code which gives vastly superior performance in nonlinear
test problems than the Dirichlet-Neumann scheme [28]. However, I have not yet implemented
these condition here; instead I have used a naive version of Sommerfeld boundary conditions
which not only is not constraint-preserving but whose numerical implementation is only second-
order accurate. In addition, as explained further in Sect. 3.1, the code uses summation-by-parts
(SBP) difference operators which are fourth-order accurate in the interior but only second-order
accurate in the vicinity of the outer boundary.

3.5 Moving Excision

The excision algorithm is driven by the apparent horizon finder algorithm [14, 15]. Strictly
speaking, this algorithm searches for MOTS, regardless of whether these are apparent horizons
or not. We recall that MOTS are defined as smooth, compact 2-dimensional surfaces whose
outgoing normal null geodesics have zero expansion. With respect to a 3 + 1 foliation, the
apparent horizon is defined as the 3-dimensional hypersurface traced out by the outer bound-
ary of the trapped region in each time slice. If sufficiently smooth, the apparent horizon is
foliated by MOTS. A smooth spacelike boundary is used to excise a region inside each MOTS,
resulting in a jagged boundary in the Cartesian grid. The excision boundary is chosen to be
centered inside the MOTS and scaled in coordinate size to be 0.7 the size of the MOTS in
evolutions presented. We keep the same interior evolution stencil near the excision boundary
by introducing the necessary ghost points. Because the dissipation operator (3.3.1) would re-
quire an excessive number of ghost points I replace it with a third-order form h3(D+iD−i)

2 near
the excision boundary. Values at the required ghost points are supplied by an extrapolation
scheme which was proved to be stable for the case of a boundary aligned with the grid [40]. We
have generalized this to the case of a generic smooth boundary in a Cartesian grid following
the “embedded-boundary” method developed by Kreiss and Petersson [44] for formulating a
stable Neumann condition. More specifically, I construct a vector vi by taking the flat-space
displacement from the centroid of the excised region to the current position, and require that∑

i(v
iD±i)

3α = 0∑
i(v

iD±i)
3βi = 0∑

i(v
iD±i)

3gij = 0 (3.5.1)

and ∑
i(v

iD±i)
3A = 0∑

i(v
iD±i)

3Ai = 0∑
i(v

iD±i)
3Aij = 0 (3.5.2)

where the one-sided differences D±i correspond to the sign of vi. The extrapolation conditions
(3.5.1 and 3.5.2) are applied iteratively at the points near the boundary until the full stencil of
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ghost points is updated.

Extra care needs to be paid to the identification of ghost points when the excision domain is
moving across the grid. In particular, grid-points that become interior points at tN := t0 +N∆t
but were ghost points at tN−1 need to be treated as ghost points, i.e., the excision algorithm
must fill them with extrapolated values during the time-integration from tN−1 to tN . However,
when evolving from tN to tN+1, these same grid-points need no longer be treated as ghost points
and can then be labeled as evolution points.

31



Numerical Implementation

3.6 Convergence tests

In this section I present data describing the convergence behavior of the ADM variables for a
shifted gauge wave testbed. The wavelength for this test was chosen to be λ = 1.0M . The outer
boundary for this test setup was located at 2M and I have run this tests for 1M of evolution
time. The test was run with periodic boundary conditions and the error was calculated using
the known analytic solution. First I show the L2 norm of the error compared to the analytic
solution for two different resolutions h = 0.02M and h = 0.01M . In addition I present the
convergence rates as functions of time t for selected ADM variables as a result of a three-level
convergence test with resolutions h = 0.04M , h = 0.02M and h = 0.01M .

Figures 3.1 - 3.3 show the L2 norm of the errors with respect to the analytic solution for
α, βx and gxx for the two different resolutions h = 0.04M and h = 0.02M . I see clean second
order convergence for the quantities but for gxx where I see an area of lower convergence rate
between 0.5M and 0.9M.
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Figure 3.1: Difference between low resolution error εlow and high resolution error εhigh for α.
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Figure 3.3: Difference between low resolution error εlow and high resolution error εhigh for gxx.
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Figures 3.4 - 3.6 now show the convergence rate for α, βx and gxx at point (1.08, 1.0, 1.0) on
the Cartesian grid over evolution time. In the first timesteps I see a rapidly varying convergence
rate, which is due to the truncation error still influencing the convergence rate. After a few
timesteps I then see a constant convergence factor of 4. This reflects the fourth-order accurate
stencils for finite differencing in the interior region of the grid. For late timesteps, the effects
of the only second order accurate boundary stencils start to affect the convergence rate also at
this point in the central region of the grid setup.
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Figure 3.4: Convergence rate c for the lapse function α at x = 1.08,y = 1.0,z = 1.0.
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Figure 3.5: Convergence rate c for βx at x = 1.08,y = 1.0,z = 1.0.
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4 Evolutions of single black holes

In this chapter I present results obtained for the ’ADM Harmonic’ evolution system when used
to evolve single black holes. To test the stability of the evolution equations and the numerical
evolution system in general I evolve puncture initial data sets for long time scales (1000 M ) and
monitor the constraint violations as well as properties of the horizon itself to show the stability,
robustness and validity of the results obtained. I present an analysis of different parameters
for the constraint adjustment terms and their impact on the constraint violations in long term
evolutions. Furthermore I investigate highly spinning black holes (dimensionless spin parameter
up to 0.9). First I show the angular momentum conservation for these spinning black holes for
the BSSN evolution system of the numerical relativity group of the Albert-Einstein-Institute
and later compare this with results obtained by using the ’ADM Harmonic’ evolution system.
In the last section of this chapter I show the convergence behavior of the ’ADM Harmonic’
evolution system for evolving puncture initial data single black holes to validate the results
presented.

4.1 Stability tests and different constraint damping
parameters

The initial data setup used for the results presented in this section consists of one Brill-Lindquist
black-hole located in the origin of the Cartesian grid. The black hole mass is 1.0M. The outer
boundaries for this setup are located at 204.80M. I use eight levels of mesh refinement with a
grid step of h(n) = 2.56 · 2−n, n = 0, ...., 8 resulting in a grid-step of h = 2.56M for the coarsest
grid and h = 0.02M for the finest one. I adjust the refinement levels in order to keep the in
the beginning growing apparent horizon well inside the finest grid. After 10.240M the finest
refinement level is dropped and the grid structure is kept unchanged. The simulations are all
run with reflection symmetries in the x = 0,y = 0 and z = 0 planes using pure harmonic gauge
source functions (i.e. nνΓ

ν = 0 = haνΓ
ν).

Figure 4.1 shows the time evolution of the minimum radius of the apparent horizon over
the whole evolution time of 1000M and in an inset zooms in on the first 50M of time evolution
time. We see the minimum radius growing from 0.5M to nearly 1.1M and then after some
oscillations settling down to 1M. In the late stage of the evolution we see a mass loss of approx-
imatly five percent which is probably due to resolution effects. The growth in the minimum
radius we see in the beginnig is an effect of our choice of coordinates (i.e. the choice of pure
harmonic gauge source functions).
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Figure 4.1: Minimum radius of the apparent horizon during the first 50M of evolution time.
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4.1. STABILITY TESTS AND DIFFERENT CONSTRAINT DAMPING PARAMETERS

(a) Apparent horizon at t = 0M. (b) Apparent horizon at t = 1.280M.

(c) Apparent horizon at t = 2.560M. (d) Apparent horizon at t = 5.120M

(e) Apparent horizon at t = 10.240M. (f) Apparent horizon at t = 50.176M

Figure 4.2: Visualizations of single black hole apparent horizon evolution.

39



Evolutions of single black holes

Figure 4.2 shows the time evolution of the apparent horizon shape over the first 50M of
evolution time. We again see the previously mentioned growth in radius due to gauge choice
effects reaching its maximum at 5.120M. After that the horizon radius settles down to 1M and
remains constant over the timescale presented here.
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Figure 4.3: L2 norm of the harmonic constraints components

Figure 4.3 shows the L2 norms of the harmonic constraints components respectively for the
time evolution of the described initial data set. This simulation was carried out up to 1000 to
test the robustness of the implemented evolution system. I see no sign of instability for this
simulation. At t = 200M (one crossing time for the grid setup chosen) we see the non-constraint
preserving boundary conditions starting to hit the norms. After that we see the constraint
violations basically staying in constant until 1000M. In order to test the effectiveness of the
constraint damping terms (described in detail in 2.5.2) I first compare the implemented terms
against terms suggested and used by Pretorius (ref paper) and then investigate the influence of
different constraint adjustment term coefficients a2 and a3 itself.
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Figure 4.4: L2 norm of the harmonic constraints for AEIHarmonic damping terms.
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Figure 4.5: Difference in the L2 norms of the harmonic constraints between Pretorius and
AEIHarmonic damping terms
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Figure 4.4 shows the harmonic constraints for the densitized harmonic damping terms with
an initial choice of the parameters of a2 = 1.0 = a3. Figure 4.5 then shows the difference
in the harmonic constraints between the damping terms suggested by Pretorius and the ones
implemented in the densitized harmonic evolution system. I find both being effective in damping
exponential growing modes in the constraints.
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Figure 4.6: L2 norm of the harmonic constraints time component for different constraint damp-
ing parameters a2 and a3
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Figure 4.7: L2 norm of the harmonic constraints y component for different constraint damping
parameters a2 and a3
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Figures 4.6 and 4.7 show the impact of different parameter choices for the AEIHarmonic con-
straint damping terms two and three. In principle all parameter choices that we have tried lead
to a stable evolution and a successful damping of the otherwise happening exponential growth
in the constraint violations. Bigger parameter values show not surprisingly a more effective
damping of the constraint violations. The choice of a2 = 1.0 = a3 for this parameter study
surprisingly shows a different behavior for the constraint violations. I haven’t had time to inves-
tigate this issue further for this thesis althoug this aspect is very interesting. However still all
parameter choices I studied here show the desired damping of otherwise exponentially growing
modes. Nearly all simulations presented here were run with the initial choice of a2 = a3 = 1.0
and a1 = a4 = 0 for the constraint damping parameters. The choice of a1 = a4 = 0 was only
motivated by time saving reasons since we found the parameter choice of a2 = a3 = 1.0 already
effective in damping the exponential growth in the constraints.

In this chapter I have carried out evolutions of single black holes using the ADM harmonic
evolution code and demoinstrated that they are stable and accurate.
I have studied different constraint damping terms and demonstrated that are comparable in
damping exponentially growing modes in the constraints.
In addition various values of constraint dampoing parameters haven been tested and I find that
a value of a2 = 1.5 = a3 is optimal to keep the constraint violation at a minimal level.
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5 Evolution of binary black holes

In this section I present results obtained for a head-on collision of two black holes with the
ADM Harmonic evolution code. I investigate the merger of the horizons and the constraint
violations. Furthermore I compare the achieved results against the same simulation done with
the ’Densitized Harmonic’ evolution code.

5.1 Head-on black hole collision: ’ADM Harmonic’ vs.
’Densitized Harmonic’

The initial data setup used for this test consists of two equal mass non-spinning Brill-Lindquist
black holes located at (0,0,1.16) and respectively (0,0,-1.16) on the z-axis of the Cartesian grid.
The masses of the black holes are 0.5M each. The outer boundaries for this test setup are
located at 144M. I carried out the test using nine levels of mesh refinement with a grid step
of h(n) = 3.2 · 2−n, n = 0, ...., 8 resulting in a grid-step of h = 3.2M for the coarsest grid and
h = 0.0125M for the finest one. The grid setup is chosen such that no movement of the refine-
ment levels is necessary since both black holes are contained within the bounding box of the
finest grid. The simulation is run wth refleciton symmetries in the x = 0,y = 0 and z = 0 planes
using pure harmonic gauge source functions (i.e. nνΓ

ν = haνΓ
ν = 0 for the ’ADM Harmonic’

formulation and F ν = 0 for the ’Densitized Harmonic’ formulation). After the merger of the
apparent horizons, when the final horizon has reached an ellipsoidal shape with maximum and
minimum radii satisfying rmin/rmax > 0.6, the finest refinement level is dropped. This is rea-
sonable since the coordinate radius of the final apparent horizon is more than two times that
of the two original individual horizons. Both simulations show no obvious signs of instability.

Figures 5.1 and 5.2 present snapshots at different time steps during the evolution of the head-on
collision run. We see first the initial configuration with two individual black holes located at
±1.16M on the z-axis. The next snapshot shows both individual horizons at t = 4.080M . We
see the horizons growing in size due to gauge effects (e.g. the coordinates chosen) and getting
closer together. After that the common horizon is already found at t = 4.400M but still also
the two individual ones are present. After t=5.380M the individuals horizons are lost. We then
see the common horizon evolve in shape from a peanut like configuration shortly after merger
to its spherical end shape rather quickly.
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(a) Individual apparent horizons at t = 0M. (b) Individual apparent horizons at t = 4.080M.

(c) Individual apparent horizons and the common ap-
parent horizon at t = 4.400M.

(d) Individual apparent horizons and the common ap-
parent horizon at t = 4.480M

Figure 5.1: Visualization of the horizons for the head-on collision.
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5.1. HEAD-ON BLACK HOLE COLLISION: ’ADM HARMONIC’ VS. ’DENSITIZED
HARMONIC’

(a) Individual apparent horizons and the common ap-
parent horizon at t = 5.238M

(b) Individual apparent horizons and the common ap-
parent horizon at t = 5.840M

(c) The common apparent horizon at t = 66M (d) The common apparent horizon at t = 66M

Figure 5.2: Visualizations of head on collision 2.
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Figure 5.3: z-position of the individual apparent horizons before merger.

Figure 5.3 shows the z-coordinate of the center of the original individual horizons before
merger (around 5M ). Since this simulation was run in octant symmetry only the location of
the horizon on the positive part of the z-axis is shown here. This describes the behavior of the
second horizon in the negative z-octant as well. The green line represents the result obtained
using the ’ADM Harmonic’ formulation and the blue one the ’Densitized Harmonic’ formulation
results. One sees the horizon centers initially at 1.16M starting to come closer together ever
faster with elapsed time until they merge between 5M and 6M. During this time a common
apparent horizon has already formed. I see very good agreement between the two formulations
for the time evolution of this quantity.

Figure 5.4 presents the mean radius (rmean = (rmin + rmax)/2) of the final common ap-
parent horizon formed during merger as a function of time t. The oscillations shortly after
merger indicate ellipsoidal distortions of the horizon shape. Directly after merger the common
black hole is in an excited state. This is reflected in the shape of the horizon. The horizon
then settles down rather quickly ( in the first 50M after merger) to a spherical shape which
indicates that the final black hole is in the end a non-spinning one. The horizon shapes and
their time evolution are represented in more detail in figures 5.1 and 5.2. Again I see very good
agreement for the results achieved with the two different harmonic formulations.

Figures 5.5 and 5.6 show the behavior of ratio of the circumferences of different planes through
the final apparent horizon over time. Both the xz/xy-plane and the yz/xy-plane circumference
ratio indicate a measure for the spin of the final apparent horizon. Both figures show the ratio
of the circumferences settling down to one after some early oscillations. That indicates the
formed final apparent horizon settling down to a non-spinning state after some quasi-normal
ringing.
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Figure 5.4: Mean radius of the common apparent horizon after merger.
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Figure 5.5: ratio of xz/xy-plane circumferences of the common apparent horizon after merger.
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Figure 5.6: ratio of yz/xy-plane circumferences of the common apparent horizon after merger.
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5.1. HEAD-ON BLACK HOLE COLLISION: ’ADM HARMONIC’ VS. ’DENSITIZED
HARMONIC’

I use the constraint equations 2.5.9 and 2.5.10 posed on the spatial hyper-surfaces to estimate
the error of the numerical evolution. This is done by comparing the gauge source functions
computed by using the constraint equations 2.5.40 and 2.5.41 against their definition nνΓ

ν =
0 = h a

ν Γν itself. Then the constraint violations give a measure for the accuracy of the numerical
evolution scheme. Figures 5.7 now show the infinity norms of the harmonic constraint violations
of both the ’ADM Harmonic’ and the ’Densitized Harmonic’ evolution system. I see a similar
behavior with progressing time evolution. The peak in the constraint violation between 5M and
6M reflects the merger of the two black holes with strong changes in the metric components and
thus also stronger constraint violations during this time. Both runs are not using constraint
preserving boundary conditions. The infinity norms of the constraint violations show that the
maximum error is not affected by that, which is the expected behavior for this kind of boundary
conditions. The infinity norm of the constraint violations is basically staying constant after
50M. This reflects the final black hole after some quasi normal ringing settling down to its non-
spinning end configuration. Figure 5.8 then show the differences in the constraint violations
between the ’ADM’- and ’Densitized’ Harmonic formulations. I here see again the biggest
differences at time of merger.
I see that the constraint violations are of the same order for the two codes, except for a short
peak at merger time, where the Densitized Harmonic formulation is two orders of magnitude
larger.
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Figure 5.7: Infinity norms of the harmonic constraints
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Figure 5.8: Difference between ’ADM’ and ’Densitized’ Harmonic formulations for the infinity
norms of the harmonic constraints.
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Figure 5.9: Zerilli waveform for the head-on collision extracted at R = 60M .
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Figure 5.10: Difference in the Zerilli waveform for the head-on collision extracted at R = 60M
between the ’ADM’ and ’Densitized’ Harmonic formulations.

Figure 5.9 shows the l = 2, m = 2, even parity multipole of the Zerilli function Q+
20 ex-

tracted at R = 60M . I see a well captured quasi-normal ringing after the merger of the final
black hole. Fig. 5.10 shows the difference in the l = 2, m = 2, even parity multipole of
the Zerilli function Q+

20 between the ’ADM’- and ’Densitized’ harmonic formulations. I see
good agreement between the two different evolution systems with a relative difference of three
percent in amplitude.
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Evolution of binary black holes

In this chapter I have carried out evolutions of a binary black hole head-on collision using
the ’ADM Harmonic’ evolution code and demonstrated that they are stable and accurate.
I have studied horizon porperties and showed that they are comparable to the ’Densitized
Harmonic’ evolution code. In addition I have compared and showed good agreement for the
constraint violations and the gravitaional wave signal extracted between the ’ADM Harmonic’
and ’Densitized Harmonic’ evolution codes.
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6 Concluding remarks

6.1 Summary and general remarks

In this thesis I have presented an harmonic evolution system formulated in the ADM variables.
For this I rederived and implemented the evolution equations and discussed the auxiliary vari-
ables I introduced to reduce the system to first order in time. In order to test the accuracy of
the evolution system I have run convergence tests using a shifted gauge wave testbed for which
an analytic solution already has been implemented. I was able to show that the ADM variables
converge to the analytical solution in that case. To damp exponential growth in the constraints
and allow for stable evolution in the case of black holes present I have implemented, tested and
compared different constraint damping terms. I could show that all constraint damping terms
I invetigated work effectively for the evolutions presented in this thesis. Furthermore I had to
apply dissipation operators to my the right hand sides of the evolution equations to successfully
kill high frequency noise arising in the evolution of black hole initial data.
I could show that the evolution system is able to evolve single black holes successfully on long
time scales and shows no sign of instability. In addition I have compared results achieved for a
hean-on black-hole collision with a densitized harmonic evolution system implemented by Bela
Szilagyi and found very good agreement in the black-hole horizon properties, the constraint
violations and the extracted gravitational waveform.

6.2 Future outlook

One of the primary motivations to implemented the presented evolution system was to investi-
gate its ability to evolve puncture initial data without using excision techniques. I investigated
the effects of different numerical approaches which seemed promising. Although I haven’t been
able to successfully evolve puncture initial data in general I have found some insights which
motivate future development. Additionally the choice of gauge source functions, the implemen-
tation of constraint-preserving SBP (summation by parts) boundary conditions leave room for
future development and improvement of the code.
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7 Deutsche Zusammenfassung (German
summary)

Es öffnet sich ein neues Fenster zum Universum. Nachdem Gravitationswellendetektoren wie
GEO600 (Deutschland), VIRGO (Italien), und LIGO (USA) in Betrieb gegangen sind, wird es
vielleicht schon bald moeglich sein Gravitationswellensignale von extremen kosmischen Ereignis-
sen, wie dem Verschmelzen von schwarzen Löchern und Neutronensternen oder dem Kollabieren
von Sternenkernen (Supernovae) aufzunehmen und zu klassifizieren. Dadurch hofft man neue
Einsichten in die Rolle der Gravitation als eine der fundamentalen Wechselwirkungen in der
Natur und über die Entwicklung unseres Universums ganz allgemein zu erlangen. Da Gravitati-
onswellensignale generell allerdings eine sehr schwache Amplitude haben, ist es ein kompliziertes
und schwieriges Vorhaben Gravitationswellenformen überhaupt nachzuweisen. Deswegen ist ei-
nes der Hauptziele der numerischen Relativitätstheorie die Ereignisse wie das Verschmelzen
von schwarzen Löchern oder Supernovae zu simulieren und die zu erwartenden Wellenformen
vorherzusagen.

Allerdings stellte sich heraus, dass die numerische Evolution der Einstein Gleichungen mit
wesentlich mehr Schwierigkeiten verbunden ist, als ursprünglich angenommen. Die Model-
lierung eines Binärsystems bestehend aus zwei verschmelzenden schwarzen Löchern in einer
Vakuum-Raumzeit induziert schwerwiegende numerische Probleme und ist deswegen zu ei-
ner der Hauptherausforderungen der numerischen Relativitaetstheorie geworden. Die Einstein
Gleichungen, ein System gekoppelter, quasi-linearer partieller Differentialgleichungen (PDEs),
können in unterschiedlichen Formulierungen ausgedrückt werden. In den sogenannten harmo-
nischen Formulierungen werden durch die Wahl von speziellen Eichfunktionen die Evolutions-
gleichungen für die Metrikkomponenten in die Form von Wellengleichungen gebracht. Diese
Formulierung der Gleichungen besitzt aus der mathematischen Analyse bekannte und vorteil-
hafte Stabilitäts- und Wohldefiniertheitseigenschaften. Bis jetzt wurden diese harmonischen
Gleichungen durch die direkte Diskretisierung der vierdimensionalen Raumzeitmannigfaltigkeit
gelöst und evolviert. Die BSSN (Baumgarte, Shapiro und Shibata, Nakamura) Formulierung
hingegen basiert auf dem 3+1 Formalismus, bei dem die Raumzeit in Zeit- und Raumantei-
le aufgespaltet wird und diese dann separat behandelt werden. Die BSSN Formulierung ist
eine Modifikation und Weiterentwicklung der ADM-Gleichungen (Arnowitt, Deser, Misner),
die zwar numerisch stabil, aber nicht optimal für die Evolution sind. Ein weiteres Problem
ist das Verfahren mit dem man Singularitäten, die in den Evolutionsvariablen auftreten, auf
dem endlichen numerischen Gitter, welches benutzt wird um die Simulationsdomäne zu dis-
kretisieren, behandelt. Hier haben sich verschiedene Verfahren entwickelt. In einer Herange-
hensweise, der Ausschneide-Methode, wird die Singularität aus dem Gitter ausgeschnitten,
genauer man schneidet eine von der Raumzeit kausal unabhängige Region aus (z.B. die Re-
gion innerhalb eines Ereignishorizonts eines schwarzen Lochs). Dafür muss man die Evolution
dieses Horizonts beobachten, um zu jeder Zeit die richtige Region auszuschneiden. Allerdings

57



Deutsche Zusammenfassung (German summary)

führt diese Technik zu komplizierten Gitterkonfigurationen und man muss für den Rand der
ausgeschnittenen Region extra Randbedingungen wählen. Dieses kann zu Instabilitäten in der
numerischen Evolution führen und verlangsamt diese. Ein anderer Ansatz ist die sogenannte
’Moving-Punctures’-Methode. Hierfür werden Anfangsdaten benutzt, bei denen die singulären
Terme innerhalb des Ereignishorizonts in einen analytischen Ausdruck absorbiert werden. Diese
Anfangsdaten werden dann ohne Ausschneidetechniken evolviert. Während die BSSN Evoluti-
onssysteme ’Puncture’-Anfangsdaten ohne größere Probleme evolvieren können und stark davon
profitieren keine weiteren Ausschneidetechniken anwenden zu müssen, ist es bis jetzt noch nicht
gelungen ’Puncture’-Anfangsdaten in einem harmonischen Evolutionssystem zu evolvieren.

In der vorliegenden Arbeit präsentiere ich ein harmonisches Evolutionssystem, dass im 3+1
Formalismus formuliert ist, und untersuche seine Fähigkeiten Puncture-Anfangsdaten zu evol-
vieren. Es ist auf den ADM Variablen lapse Funktion α, shift Vektor β, 3-Metrik gab und der
äußeren Krümmung kab basiert und benutzt Eichquellfunktionen, die ebenfalls im 3+1 For-
malismus implementiert sind. Diese Arbeit besteht aus zwei Teilen. Im ersten Teil beschreibe
ich die Einstein Gleichungen und ihre Formulierungen für die numerische Relativitätstheorie.
Ich beschreibe kurz die ADM-Gleichungen, um den 3+1 Formalismus zu motivieren und kon-
zentriere mich im Folgenden darauf zwei harmonische Evolutionssysteme zu beschreiben. Ich
vergleiche ein vier-dimensionales ’Densitized’ harmonisches Evolutionssystem, implementiert
von Bela Szilagyi, mit dem im 3+1 Formalismus formulierten Evolutionssystem auf dem diese
Arbeit basiert, zuerst beschrieben von Helmut Friedrich. In einem weiteren Kapitel beschreibe
ich die grundlegenden numerischen Techniken, die finiten Differenzen- und Dissipationsopera-
toren sowie eine Zerlegung der Metrikkomponenten für die finiten Differenzenoperatoren, die
ich in der Implementierung des Evolutionssystems benutze.
Im zweiten Teil der Arbeit konzentriere ich mich auf die Präsentation der erzielten Ergebnisse.
Ich beschreibe Ergebnisse für verschiedene Vakuum-Raumzeit Systeme bestehend aus einzel-
nen und binären schwarzen Löchern. Im ersten Kapitel konzentriere ich mich auf Ergebnisse,
die ich bei der Simulation von einzelnen schwarzen Löchern erzielt habe. Zuerst analysiere ich
die Stabilität und Robustheit des implementierten Evolutionssystems für die Langzeitevolution
von einzelnen schwarzen Löchern ohne Drehimpuls und untersuche den Einfluss von verschie-
denen Parameterm für die ’Constraint-Damping’-Technik. Die ’Constraint-Damping’-Technik
ist hierbei essentiell um mit diesem Evolutionssystem Vakuum-Raumzeitkonfigurationen mit
schwarzen Löchern hinreichend lange zu simulieren. Weiterhin zeigen die Resultate, dass die
’Constraint-Damping’-Technik in einem Parameterbereich um Größenordnung 1 effektiv für ei-
ne große Anzahl an Parameterwerten ist.
Im zweiten Abschnitt dieses Teils präsentiere ich Daten und Visualiserungen für eine Frontal-
kollision von zwei schwarzen Löchern ohne Drehimpuls. Ich beschreibe die Verschmelzung der
Ereignishorizonte, extrahiere das Gravitationswellensignal und untersuche die Zeitentwicklung
der harmonischen ’Constraints’. Zur Validierung der erzielten Ergebnisse vergleiche ich diese mit
den Ergebnissen für die identische Anfangsdatenkonfiguration, evolviert mit dem ’Densitized’
harmonischen Evolutionssystem. Ich sehe hierbei eine sehr gute Übereinstimmung zwischen den
beiden unabhängig formulierten und implementierten Evolutionssystemen, was die Richtigkeit
der Ergebnisse untermauert.
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8 Appendix A

8.1 The Method of Lines

The method of lines (MoL) [2], [3] involves the separate discretization of space and time which
enables one to independently analyze the stability properties of the time evolution scheme
with the same spatial finite difference operator S. This method therefore allows for different
discretization techniques of the time integration and the spatial difference scheme. The time
integration is usually done with finite differences, whereas the spatial discretization can be of
any kind of finite difference, finite element or even spectral method [4] techniques. It is most
common to split the time derivatives in a system of PDEs to first-order, and since MoL is
equivalent to transforming the PDEs to ordinary differential equations ODEs, we can apply
ODE integrators like the iterative Crank-Nicholson or the Runge-Kutta scheme. To illustrate
the idea, we consider the semi-discrete system in which only the time derivative is discretized
and the spatial derivatives are left continuous. Let u be an array of dynamical fields and S a
continuous spatial differential operator. The evolution of u can be written as

∂tu = S(u) (8.1.1)

The continuous flow of time is then replaced by a succession of discrete time instants {tn}, and
we label un = u(tn). The Euler step (forward time difference) is a first-order scheme and can
be used as a simple approximation. It reads

un+1 = un + ∆tS(tn, un) (8.1.2)

Since the Euler step is an insufficient approximation and is also unconditional unstable [2] in
most cases, we need better approximations. A scheme that is sufficient in most cases is the
classical fourth-order Runge-Kutta scheme

k1 = S(tn−1, un−1)

k2 = S

(
tn−1 +

∆t

2
, un−1 +

∆t

2
k1

)
k3 = S

(
tn−1 +

∆t

2
, un−1 +

∆t

2
k2

)
k4 = S(tn−1 + ∆t, un−1 + ∆t k3)

un = un−1 +
∆t

6
(k1 + 2k2 + 2k3 + k4) +O(∆t5). (8.1.3)

Of course, the time integrator should have at least the same accuracy as the spatial discretiza-
tion. Otherwise, the overall accuracy would be limited by the time integrator. Another im-
portant issue is the fact that not all time integrators provide an (un)conditional stable scheme.
By means of Fourier mode analysis [2] of the discretized PDE, one can determine the stability
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regions of a given time integrator scheme and decide whether it provides a stable scheme or
not. For example, the wave equation fails to work with the Euler step or with a second-order
Runge-Kutta scheme [5].

In Cactus, MoL is implemented in the thorn MoL. One only needs to provide the spatial differ-
ence operator, i.e. the RHS of (8.1.1). The ODE time integration is then carried out by MoL.
Supported integration schemes include iterative Crank-Nicholson (ICN) with N iterations1 and
Runge-Kutta (RK) up to fourth order.

8.2 Convergence

Convergence is a necessary criterion for any numerical approximation to be a reasonable ap-
proximation to a continuum solution. In the limit of a vanishing grid size ∆x,∆t → 0, the
approximation should result in a continuum solution. Every numerical approximated system
should therefore be tested for convergence, since the order of the truncation (or approximation)
error is a measure of accuracy of a given scheme [2], [6] and can help to assure a bug-free
code. There are two ways of showing convergence. If one knows the analytical solution of a
given problem, one can make use of the 2-level convergence check. If the analytical solution is
unknown, one can still test for convergence with the 3-level convergence check.
Let us suppose the solution v to a PDE is reasonably smooth. We can then Taylor-expand it
around a gridpoint xi in order to estimate the function in xi−1 = xi− h and xi+1 = xi + h. We
get

vi−1 = vi − v′ih+
1

2
v′′i h

2 − 1

6
v′′′i h

3 +
1

24
v

(4)
i h4 +O(h5) (8.2.1)

vi+1 = vi + v′ih+
1

2
v′′i h

2 +
1

6
v′′′i h

3 +
1

24
v

(4)
i h4 +O(h5). (8.2.2)

(8.2.3)

Inserting these expressions into a difference approximation of a given spatial derivative operator,
one can determine its order of accuracy. Let us take, for example, the centered difference
approximation to ∂x applied tp a function v. We have

vi+1 − vi−1

2h
= v′i +

1

6
v′′′i h

2 +O(h4). (8.2.4)

We can see here that the difference approximation is second-order accurate, since terms of
higher order are truncated. If higher order errors a negligible, i.e. if we are in the convergent
regime, we would expect that by doubling the number of gridpoints, i.e. decreasing the gridsize
h by one half, the truncation error should decrease by a factor of 4. By knowing the analytical
solution u, we therefore expect [5]

v2h − u = C(2h)2 = 4Ch2

vh − u = Ch2

1Using a fixed number of iterations misses the idea of iterating until a previously defined accuracy is reached.
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where the constant C is independent of the grid resolution h and only depends on u. More
generally, we consider higher order schemes by

v2h − u = C(2h)α = 2αChα

vh − u = Chα, (8.2.5)

where α is the order of accuracy of the difference approximation. A fourth-order scheme should
therefore decrease the error by a factor of 16 when reducing the gridstep h by one half. We
call this scaling factor between the error of both resolutions the convergence rate Q (in other
sections also called C, but here we want to avoid confusion with the constant C).

If the analytical solution is not known, one can still use the 3-level convergence test. It re-
quires to run a given problem at least at 3 different grid resolutions, e.g. h, 2h and 4h. With
negligible higher-order errors, we expect [5]

v4h = u+ C(4h)α = u+ 4αChα

v2h = u+ C(2h)α = u+ 2αChα

vh = u+ Chα.

We get

v4h − v2h = 2α(v2h − vh). (8.2.6)

The convergence rate for a second-order scheme (α = 2) should therefore be Q = 4 and for a
fourth-order scheme (α = 4) Q = 16. It is possible to consider the convergence rate pointwise,
i.e. at each gridpoint of the coarsest grid, or to take the discretized version of the L2-norm

‖v‖2 =
√
h
∑N

i=0 v
2
i with which the convergence rate at any given timestep can be written as

[?]

Q(t) =
‖v4h − v2h‖2
‖v2h − vh‖2

, or Q(t) =
‖v2h − u‖2
‖vh − u‖2

(8.2.7)

If the finite difference scheme is converging, we should find in the limit of infinite resolution [?]

lim
h→0

Q(t) = 2α. (8.2.8)

By using MoL, one can discretize the time integration and the spatial derivatives separately.
In order to maintain the accuracy of the spatial difference scheme, it is clear that the accuracy
of the time integrator should at least be of the same order.

8.3 Well-posedness

Well-posedness is a reasonable requirement for any given Cauchy initial (boundary) value prob-
lem (IBVP). Roughly speaking, it states that a well-posed problem should have a solution, that
this solution is unique and that it should depend continuously on the problem’s data. For a
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given system of PDEs, an IBVP on the domain x ∈ [0, 1] is given by

ut = P

(
x, t,

∂

∂x
,
∂2

∂x2
, ...

)
u + F, t ≥ t0,

u(x, t0) = f(x)

L0

(
t,
∂

∂x
,
∂2

∂x2
, ...

)
u(0, t) = g0, L1

(
t,
∂

∂x
,
∂2

∂x2
, ...

)
u(1, t) = g1, (8.3.1)

where u = (u1, ..., um) is a set of dynamical fields, P =
∑p

ν=0A(xν , t)
∂ν

∂xν
is a differential

operator of order p with smooth coefficients A, L0 and L1 are differential operators usually of
order r < p − 1 that incorporate the boundary conditions, and F is a forcing function. This
results in the following definition for homogeneous boundary conditions F = g0 = g1 = 0 [2]

Definition 8.3.1. The problem (8.3.1) with F = g0 = g1 = 0 is well-posed if, for every
f ∈ C∞ that vanishes in a neighborhood of x = 0, 1, it has a unique solution that satisfies the
estimate

‖u(, t)‖ ≤ Keα(t−t0)‖u(, t0)‖ (8.3.2)

where K and α do not depend on f and t0.

For general inhomogeneous boundary data, we have

Definition 8.3.2. The problem (8.3.1) is strongly well-posed if it is well-posed and instead
of (8.3.2), the solution satisfies the estimate

‖u(, t)‖2 ≤ K(t, t0)

(
‖u(, t0)‖+

∫ t

t0

(‖F (, τ)‖2 + |g0(τ)|2 + |g1(τ)|2)dτ
)

(8.3.3)

K(t, t0) is supposed to be a function that is bounded in every finite time interval, i.e. ∞ >
‖K(t, t0)‖∞ and does not depend on the data.

In particular cases, stronger estimates might be obtained such that the functional growth in
each step can even be suppressed entirely. It is important to note, that not the PDE itself is
well-posed (or ill-posed), but rather the entire problem including initial and boundary data.

8.4 Overview of stability analysis

Analyzing the numerical stability properties of any finite difference scheme is an important
issue for numerical approximations to PDEs and is the discrete analogue of well-posedness.
Stability analysis helps to determine whether a given difference scheme can principally run for
ever or ’blows up’ and ’crashes’. ’Blow-ups’ usually occur because exponentially growing modes
develop which ultimately lead to overflow errors.
A general difference approximation of a linear system of PDEs can be written as [2]

Q−1u
n+1 =

q∑
σ=0

Qσu
n−σ, n = q, q + 1, ...

uσ = f (σ), σ = 0, 1, ..., q (8.4.1)
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where the Qσ are difference operators. By assuming that Q−1 is uniformly bounded2 and has a
uniformly bounded inverse Q−1

−1 as grid and time stepsize h, k → 0, we can advance the solution
step by step in time. For simplicity, I restrict myself to the case q = 0, which means that the
discretized time scheme only involves the current and next timelevel. A more general discussion
can be found in [2], although the following statements do not lose any validity.
We can rewrite (8.4.1) as

un+1 = Q(tn)un, n = 0, 1, ...

u0 = f , (8.4.2)

where Q(tn) = Q−1
−1Q0 and f defines the initial data on the initial timestep. The discrete

solution operator can be defined as

un = Sh(tn, tν)u
ν . (8.4.3)

We then have the following definition:

Definition 8.4.1. Given the constants αS, C and KS, the difference approximation (8.4.2) is
called stable for h ≤ h0, if for all h the discrete operator norms satisfy

‖Q−1
−1‖h ≤ C, ‖Sh(tn, tν)‖h ≤ KSeαS(tn−tν). (8.4.4)

The stability requirement results in the estimate

‖un‖h ≤ K(tn)‖f‖h, K(tn) = KSeαStn , (8.4.5)

stating that the growth of the solution at later times is bounded by the initial data times
some exponential factor. We allow here for an exponential factor in order to factor in possible
exponential solutions. However, in specialized cases where the continuum problem contains no
exponentially growing solutions, more restrictive definitions might be used, and the functional
growth might even be suppressed entirely.

For practical purposes, a more refined stability definition is useful.

Definition 8.4.2. Suppose the continuous solution operator S(t, t0) is bounded by the estimate

‖S(t, t0)‖op ≤ Keα(t−t0). (8.4.6)

2

Theorem 8.4.1. (5th principle of linear functional analysis: principle of uniformly boundedness) [?]
Let (V, ‖ · ‖V ), (W, ‖ · ‖W ) be normed K-vectorspaces, S ⊆ V a set of second category in (V, τ‖·‖V

) and
F ⊆ L(V,W ). Then it is equivalent:

1. ∀s ∈ S : sup {‖f(s)‖W | f ∈ F} <∞
(i.e. F is pointwise bounded in S)

2. sup {‖f‖op | f ∈ F} <∞
(i.e. F is bounded in (L(V,W ), ‖ · ‖op))
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A difference approximation is then said to be strictly stable if in addition to (Definition
8.4.1), we have

‖Sh(tn, t0)‖h ≤ KSeαS(tn−t0) (8.4.7)

where
αS ≤ α +O(k). (8.4.8)

This provides for difference operators that are of order k, because it is possible to show [2]
that perturbations to a difference operator of order k, e.g. un+1 = (Q0 + k1)un automatically
satisfy (Definition 8.4.1) if their unperturbed part satisfies (Definition 8.4.1). But this may
lead to an unwanted behaviour, since terms of order k can indeed play an important role for
stability. The functional growth of (8.4.6) and (8.4.7) can be adapted to the problem, resulting
in a more restrictive estimate.
Different analysis techniques exist, where the most popular certainly is the Fourier mode
analysis. Using the Method of Lines, the stability properties of the PDE can be analyzed in
two steps. First, the semi-discretized PDE in space is being transformed to Fourier space, i.e.
the spatial difference operators are applied to the Fourier modes of form ξ exp(iωhxj), where ξ
is the amplitude of the Fourier mode, ω is the wave number, h is the grid spacing and j is the
index of the grid point. For example, with the discrete Fourier mode ûj = ξ exp(iωhxj), the
centered finite difference operator approximating ∂/∂x becomes

D̂0ûj =
ξ exp(iωhx(j+1))− ξ exp(iωhx(j−1))

2h
= ξ exp(iωhxj)i

sin(ωh)

h
. (8.4.9)

Solving then the Fourier-transformed PDE (which in the semi-discretized sense is an ODE)

∂tû = Q̂û (8.4.10)

reveals whether we get solutions of type

û = eλt, Re(λ) = 0, (8.4.11)

where the λ are the eigenvalues of Q̂.

It is a necessary condition for stability that these eigenvalues satisfy

|λ| ≤ eαSk. (the von Neumann condition). (8.4.12)

An ODE method will then yield a stable evolution if the λk lie within the method’s region of
stability. It is beyond the scope of this section to describe how these regions can be determined,
but it is clear for the case (8.4.11) that it should encompass parts of the imaginary axis. In this
case, the Euler step or low-order RK schemes fail to give an (un-)conditional stable scheme,
since they have stability regions tangent to the imaginary axis at the origin.
Another technique is the energy method [2]. It provides another way of proving stability and
is simpler to apply than Fourier analysis in cases of PDEs with non-constant coefficients. In
this approach, no transformations will be used and the calculations are carried out in physical
space. Instead, we construct a suitable norm such that the growth in each step will not exceed
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n+ 1

n

i− 2 i− 1 i i+ 1 i+ 2

P

(a) Suppose a problem like the wave equation.
In a correct discretization, the theoretical (gray
triangle) is enclosed by the numerical domain of
dependence (dashed triangle). Here, the differ-
ence scheme approximates the value at P with
a spatial stencil that spans over the grid points
i− 1, i, i+ 1.

n+ 1

n

i− 2 i− 1 i+ 1 i+ 2

P

i

(b) Incorrect discretization, e.g. for an advection
equation. The theoretical domain of dependence
(triangle on the left between the straight line and
the dashed one in the middle) does not coincide
with the numerical one (dashed triangle on the
right). A correct discretization would involve i−
1, i (upwind scheme) instead of i, i+1 (downwind
scheme).

Figure 8.1: Two examples of the theoretical domain of dependence and the numerical domain
of dependence. It becomes apparent that, since the numerical domain of depen-
dence has to enclose the theoretical domain of dependence and is therefore usually
bigger, a-causal information from outside the theoretical domain of dependence
can influence the simulation. This effect will grow for very stretched stencils.

eαk. With the help of this method, we can construct difference schemes that are strictly stable.

Another necessary condition for numerical stability is the Courant-Friedrich-Lewy (CFL)
condition, stating that the numerical domain of dependence should always contain the theo-
retical domain of dependence (fig. 8.1). The theoretical domain of dependence of the value of
a solution at one point only depends on the characteristic lines crossing through that point. In
other words, the largest characteristic speed vmax along every given direction ni cannot exceed
the corresponding numerical speed

vmax < niv
i
num, vinum =

s∆xi

∆t
, (8.4.13)

where s is the stencil width, i.e. the maximum number of points involved in a difference scheme
along any direction [3].
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9 Appendix B

9.1 The Cactus computational toolkit

Cactus is an open source problem-solving environment [7], [8], [9] that incorporates different
programming languages such as C/C++ and Fortran. Its primary application is for large-scale
grid-computations, and it is heavily parallelized to allow for data distribution and processing
across multiple cluster-nodes of a supercomputer. It is designed to run on different architectures
and is being collaboratively developed and maintained between different groups across the world
(AEI, LSU and others).

Cactus is made up of a core module (the ’flesh’) which connects to application modules
(’thorns’) that can overtake various tasks like I/O, MoL time integration, mesh-refinement
(Carpet [10], [11]), multipatch infrastructure (GZPatchSystem [12]) or horizon finding [13] -
just to enumerate a few. Self-written (physics-)thorns can then interact with other thorns
and process or calculate grid-data for a given problem. The flesh itself provides a message
passing interface (MPI) [16], [17] parallelization infrastructure with variable types (grid func-
tions/arrays) that are ready to be distributed across multiple processors with local memory1,
i.e. that are not necessarily sharing one common memory block2. Furthermore, the ’flesh’
handles the scheduling of the various thorns that are supposed to be compiled-in and activated
for a specific task. There are a number of so-called schedule bins that are being executed dur-
ing runtime, e.g. CCTK INITIAL for routines that are supposed to run on the initial step like
providing initial data or CCTK EVOL for evolution routines which is being looped through until
the final time is reached.

The thorns can be written in any of both, C/C++ or Fortran. It is even possible to have a
mixture of C/C++ or Fortran code within one single thorn. A collection of thorns is called an
’arrangement’.

After compilation of Cactus, single thorns can be inherited from inside Cactus by consigning
a parameter (par-)file upon execution. These par-files specify which thorns shall be activated
during this run and let the user set up the grid’s ∆x,∆t, the time integrator if the MoL thorn
is being used, start- and end-time and other parameters that are thorn-specific.

9.1.1 An example of Cactus scheduling

To illustrate the idea of Cactus scheduling, I have extracted the Cactus screen output on
startup. Schedule bins are marked in squared brackets. The various routines of activated
thorns display a short description of them beginning with the thorn’s name. This output has

1The AEI’s own cluster ’Peyote’ [18] is made up of 195 dual-CPU nodes with a total memory of 1132 GB and
9x1.5 terabytes of disk space. It develops a total speed of 706 gigaflops. Further examples of computers
with distributed memory include IBM Blue Gene, Cray T3E series or Beowulf-clusters (PCs connected via
Ethernet).

2Such as Enterprise 10.000 or SUN’s Fire 15k
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been generated during one of the single black hole runs to test the stability of the evolution
system.

--------------------------------------------------------------------------------

10

1 0101 ************************

01 1010 10 The Cactus Code V4.0

1010 1101 011 www.cactuscode.org

1001 100101 ************************

00010101

100011 (c) Copyright The Authors

0100 GNU Licensed. No Warranty

0101

--------------------------------------------------------------------------------

Cactus version: 4.0.b16

Compile date: Jul 31 2007 (18:17:30)

Run date: Jul 31 2007 (19:13:48+0200)

Run host: node084.damiana.admin

Working directory: /data34/moesta/pe_d2_a23

Executable: cactus_hadm-0(mpi:3761@node084)

Parameter file: /data34/moesta/pe_d2_a23/pe_d2_a23.par

--------------------------------------------------------------------------------

Activating thorn Cactus...Success -> active implementation Cactus

Activation requested for

--->IOUtil<---

Activating thorn IOUtil...Success -> active implementation IO

Activation requested for

--->LocalInterp AEILocalInterp<---

Activating thorn AEILocalInterp...Success -> active implementation AEILocalInterp

Activating thorn LocalInterp...Success -> active implementation LocalInterp

Activation requested for

--->Carpet CarpetLib CarpetInterp CarpetReduce CarpetSlab CarpetIOHDF5<---

Activating thorn Carpet...Success -> active implementation Driver

Activating thorn CarpetInterp...Success -> active implementation interp

Activating thorn CarpetIOHDF5...Success -> active implementation IOHDF5

Activating thorn CarpetLib...Success -> active implementation CarpetLib

Activating thorn CarpetReduce...Success -> active implementation reduce

Activating thorn CarpetSlab...Success -> active implementation Hyperslab

Activation requested for

--->NaNChecker<---

Activating thorn NaNChecker...Success -> active implementation NaNChecker

Activation requested for

--->Boundary CartGrid3D CoordBase SymBase<---

Activating thorn Boundary...Success -> active implementation boundary

Activating thorn CartGrid3D...Success -> active implementation grid

Activating thorn CoordBase...Success -> active implementation CoordBase

Activating thorn SymBase...Success -> active implementation SymBase

Activation requested for

--->CarpetRegrid<---

Activating thorn CarpetRegrid...Success -> active implementation CarpetRegrid

Activation requested for

--->Time<---

Activating thorn Time...Success -> active implementation time

Activation requested for

--->MoL<---

Activating thorn MoL...Success -> active implementation MethodOfLines

Activation requested for

--->CarpetIOBasic<---

Activating thorn CarpetIOBasic...Success -> active implementation IOBasic

Activation requested for

--->CarpetIOScalar<---

Activating thorn CarpetIOScalar...Success -> active implementation IOScalar

Activation requested for

--->CarpetIOASCII<---

Activating thorn CarpetIOASCII...Success -> active implementation IOASCII

68



9.1.1 AN EXAMPLE OF CACTUS SCHEDULING

Activation requested for

--->ADMBase SpaceMask StaticConformal IDAnalyticBH<---

Activating thorn ADMBase...Success -> active implementation ADMBase

Activating thorn IDAnalyticBH...Success -> active implementation idanalyticbh

Activating thorn SpaceMask...Success -> active implementation SpaceMask

Activating thorn StaticConformal...Success -> active implementation StaticConformal

Activation requested for

--->SphericalSurface AHFinderDirect<---

Activating thorn AHFinderDirect...Success -> active implementation AHFinderDirect

Activating thorn SphericalSurface...Success -> active implementation SphericalSurface

Activation requested for

--->AHUtil AHTracker<---

Activating thorn AHTracker...Success -> active implementation AHTracker

Activating thorn AHUtil...Success -> active implementation AHUtil

Activation requested for

--->AHUtil HADManalysis HADMevol HADMgauge HADMidata HADMvars HarmonicFD<---

Warning: thorn AHUtil already active

Activating thorn HADManalysis...Success -> active implementation HADManalysis

Activating thorn HADMevol...Success -> active implementation HADMevol

Activating thorn HADMgauge...Success -> active implementation HADMgauge

Activating thorn HADMidata...Success -> active implementation HADMidata

Activating thorn HADMvars...Success -> active implementation HADMvars

Activating thorn HarmonicFD...Success -> active implementation HarmonicFD

Activation requested for

--->AbigelExcision AHUtil Fortran ExcisionMask<---

Warning: thorn AHUtil already active

Activating thorn AbigelExcision...Success -> active implementation AbigelExcisionDist

Activating thorn ExcisionMask...Success -> active implementation ExcisionMask

Activating thorn Fortran...Success -> active implementation Fortran

--------------------------------------------------------------------------------

if (recover initial data)

Recover parameters

endif

Startup routines

[CCTK_STARTUP]

Carpet: Multi-model Startup routine

Carpet: Startup routine

AEILocalInterp: register CCTK_InterpLocalUniform() interpolation operators

IOUtil: Startup routine

CarpetIOBasic: Startup routine

CarpetIOHDF5: Startup routine

CarpetIOScalar: Startup routine

CarpetInterp: Startup routine

CarpetReduce: Startup routine

CartGrid3D: Register GH Extension for GridSymmetry

CoordBase: Register a GH extension to store the coordinate system handles

CarpetIOASCII: Startup routine

LocalInterp: register LocalInterp’s interpolation operators

MoL: Startup banner

SymBase: Register GH Extension for SymBase

Startup routines which need an existing GH

[CCTK_WRAGH]

ADMBase: Set up GF symmetries

Boundary: Register boundary conditions that this thorn provides

AbigelExcision: register symmetry properties of local GFs

CartGrid3D: Register coordinates for the Cartesian grid

GROUP SymBase_Wrapper: Wrapper group for SymBase

GROUP SymmetryRegister: Register your symmetries here

CartGrid3D: Register symmetry boundaries

SymBase: Print symmetry boundary face descriptions

HADMvars: Set symmetries for ADM Harmonic grid functions

MoL: Set up the MoL bookkeeping index arrays

MoL: Set the flag so it is ok to register with MoL

GROUP MoL_Register: The group where physics thorns register variables with MoL

HADMevol: register our (state vector,RHS) groups with MoL for evolution

MoL: Report how many of each type of variable there are

SpaceMask: Set grid symmetries for mask

SpaceMask: Set grid symmetries for emask (compatibility mode)
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AHTracker: set CarpetRegrid parameters as requested

Parameter checking routines

[CCTK_PARAMCHECK]

ADMBase: Check consistency of parameters

AbigelExcision: check parameters

Boundary: Check dimension of grid variables

CarpetRegrid: Check Parameters

CartGrid3D: Check coordinates for CartGrid3D

HADMevol: check parameters

IDAnalyticBH: Construct parameters for analytic black hole solutions

MoL: Basic parameter checking

Initialisation

[CCTK_BASEGRID]

ADMBase: Set the shift_state variable to 0

CartGrid3D: Set up ranges for spatial 3D Cartesian coordinates

CartGrid3D: Set up spatial 3D Cartesian coordinates on the GH

AHTracker: initialize local variables

AHUtil: reset variables

GROUP AbigelExcision_InitialGroup: initalize excision algorithm

AbigelExcision: initalize excision algorithm

AbigelExcision: set up local grid-layout information

CarpetIOASCII: Initialisation routine

CarpetIOBasic: Initialisation routine

CarpetIOHDF5: Initialisation routine

CarpetIOScalar: Initialisation routine

GROUP MaskBase_SetupMask: Set up the weight function

CarpetReduce: Initialise the weight function

GROUP SetupMask: Set up the weight function (schedule other routines in here)

CarpetReduce: Set up the outer boundaries of the weight function

CarpetReduce: Set up the weight function for the restriction regions

AHFinderDirect: setup data structures

AHFinderDirect: save apparent horizon(s) into Cactus variables

ExcisionMask: initialize mask variables

HADMvars: weight function for A’s

SpaceMask: Initialise mask to zero

SpaceMask: Set old style mask to one

SphericalSurface: Calculate surface coordinate descriptors

SymBase: Check whether the driver set up the grid consistently

Time: Initialise Time variables

Time: Set timestep based on Courant condition (courant_static)

if (NOT (recover initial data AND recovery_mode is ’strict’))

[CCTK_INITIAL]

StaticConformal: Set the conformal_state variable to 0

GROUP ADMBase_InitialData: Schedule group for calculating ADM initial data

IDAnalyticBH: Construct initial data for Brill Lindquist black holes

GROUP ADMBase_InitialGauge: Schedule group for the ADM initial gauge condition

ADMBase: Set the lapse to 1 at all points

ExcisionMask: initialize mask variables

GROUP HADM_group_for_gauge: set gauge functions

HADMgauge: set gauge functions zero

HADMidata: Set Aalp, Abetai and Aij

HADMidata: apply boundary conditions to the HADM initial data

HADMvars: initialize dissipation weight to its outer value

MoL: Initialise the step size control

MoL: Ensure the correct time and timestep are used - initial

GROUP ADMBase_PostInitial: Schedule group for modifying the ADM initial data, such as e.g. adding n

oise

[CCTK_POSTINITIAL]

AHFinderDirect: import the excision mask

AHFinderDirect: find apparent horizon(s) after this time step

AHFinderDirect: store apparent horizon(s) into spherical surface(s)

AHFinderDirect: save apparent horizon(s) into Cactus variables

AHFinderDirect: set mask(s) based on apparent horizon position(s)

CarpetIOHDF5: Close all filereader input files

GROUP HADM_group_for_analysis: Calculating the Constraint Violation

GROUP HADM_group_for_gauge: set gauge functions

HADMgauge: set gauge functions zero

HADManalysis: Calculating the Constraint Violation

HADManalysis: Calculating the kij from the Aij
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HADManalysis: apply boundary conditions to analysis quantities

MoL: A bad routine. Fills all previous timelevels with data copied from the current.

GROUP MoL_PostStep: Ensure that everything is correct after the initial data have been set up

GROUP AbigelExcision_ExcisionGroup: distributed excision group

AbigelExcision: reset own GFn values

AbigelExcision: set up local grid-layout information

AbigelExcision: set up mask of points used by excision

AbigelExcision: fill excised points with dummy values

AbigelExcision: distributed excision algorithm

HADMevol: apply boundary conditions to the HADM state vector

GROUP MoL_OldBdry_Wrap: Wrapper group, do not schedule directly into this group

MoL: Store and change dt

GROUP MoL_OldStyleBoundaries: Place old style boundary routines here

MoL: Reset dt

[CCTK_POSTSTEP]

AHFinderDirect: import the excision mask

AHFinderDirect: find apparent horizon(s) after this time step

AHFinderDirect: store apparent horizon(s) into spherical surface(s)

AHFinderDirect: save apparent horizon(s) into Cactus variables

AHFinderDirect: set mask(s) based on apparent horizon position(s)

ExcisionMask: check if the mask needs to be initialized

AbigelExcision: excision on initial slice (active only if cctk_iteration=0)

GROUP ExcisionMask_SetMask: set horizon mask (post-step)

GROUP ExcisionMask_OldMask: old mask group

ExcisionMask: create old copy of emask

GROUP ExcisionMask_NewMask: new mask group

ExcisionMask: check if the current algorithm needs to be skipped

ExcisionMask: reset excision mask state and counter

ExcisionMask: set up horizon mask for excision

ExcisionMask: perform various reductions for excision mask

NaNChecker: Reset the NaNChecker::NaNsFound counter

NaNChecker: Check for NaNs and count them in NaNChecker::NaNsFound

NaNChecker: Output NaNChecker::NaNmask and take action according to NaNChecker::action_if_found

SpaceMask: Ensure that all mask values are legal

SphericalSurface: Set surface radii

GROUP SphericalSurface_HasBeenSet: Set the spherical surfaces before this group, and use it afterwa

rds

endif

if (recover initial data)

[CCTK_RECOVER_VARIABLES]

[CCTK_POST_RECOVER_VARIABLES]

AHFinderDirect: import horizon data from Cactus variables

AHFinderDirect: import the excision mask

AHFinderDirect: find apparent horizon(s) after this time step

AHFinderDirect: store apparent horizon(s) into spherical surface(s)

AHFinderDirect: save apparent horizon(s) into Cactus variables

AHFinderDirect: set mask(s) based on apparent horizon position(s)

AHTracker: set up some variables after recovery

ExcisionMask: set up excision mask

GROUP MaskBase_SetupMask: Set up the weight function

CarpetReduce: Initialise the weight function

GROUP SetupMask: Set up the weight function (schedule other routines in here)

CarpetReduce: Set up the outer boundaries of the weight function

CarpetReduce: Set up the weight function for the restriction regions

AbigelExcision: post-recovery excision setup

endif

if (checkpoint initial data)

[CCTK_CPINITIAL]

endif

if (analysis)

[CCTK_ANALYSIS]

CarpetLib: Print timing statistics if desired

CarpetLib: Print memory statistics if desired

endif

Do periodic output of grid variables

do loop over timesteps

Rotate timelevels

iteration = iteration + 1

t = t+dt
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[CCTK_PRESTEP]

HADMvars: weight function for dissipation

HADMvars: obtain maximum of dissipation weight

HADMvars: normalize dissipation weight

[CCTK_EVOL]

MoL: Initialise the step size control

while (MoL::MoL_Stepsize_Bad)

GROUP MoL_Evolution: A single Cactus evolution step using MoL

GROUP MoL_StartStep: MoL internal setup for the evolution step

MoL: Set the counter for the ODE method to loop over

MoL: Ensure the correct time and timestep are used

GROUP MoL_PreStep: Physics thorns can schedule preloop setup routines in here

MoL: Ensure the data is in the correct timelevel

while (MoL::MoL_Intermediate_Step)

GROUP MoL_Step: The loop over the intermediate steps for the ODE integrator

MoL: Initialise the RHS functions

GROUP MoL_CalcRHS: Physics thorns schedule the calculation of the discrete spatial operator i

n here

GROUP HADM_group_for_gauge: set gauge functions

HADMgauge: set gauge functions zero

HADMevol: calculate RHS of the HADM system

GROUP MoL_PostRHS: Modify RHS functions

HADMevol: add dissipation to the HADM variables

GROUP MoL_RHSBoundaries: Any ’final’ modifications to the RHS functions (boundaries etc.)

MoL: Updates calculated with the efficient Runge-Kutta 3 method

MoL: Alter the counter number

MoL: If necessary, change the time

GROUP MoL_PostStep: The group for physics thorns to schedule boundary calls etc.

GROUP AbigelExcision_ExcisionGroup: distributed excision group

AbigelExcision: reset own GFn values

AbigelExcision: set up local grid-layout information

AbigelExcision: set up mask of points used by excision

AbigelExcision: fill excised points with dummy values

AbigelExcision: distributed excision algorithm

HADMevol: apply boundary conditions to the HADM state vector

GROUP MoL_OldBdry_Wrap: Wrapper group, do not schedule directly into this group

MoL: Store and change dt

GROUP MoL_OldStyleBoundaries: Place old style boundary routines here

MoL: Reset dt

MoL: If necessary, change the timestep

end while

MoL: Restoring the Save and Restore variables to the original state

MoL: Control the step size

end while

GROUP HADM_group_for_analysis: Calculating the Constraint Violation

GROUP HADM_group_for_gauge: set gauge functions

HADMgauge: set gauge functions zero

HADManalysis: Calculating the Constraint Violation

HADManalysis: Calculating the kij from the Aij

HADManalysis: apply boundary conditions to analysis quantities

[CCTK_POSTSTEP]

AHFinderDirect: import the excision mask

AHFinderDirect: find apparent horizon(s) after this time step

AHFinderDirect: store apparent horizon(s) into spherical surface(s)

AHFinderDirect: save apparent horizon(s) into Cactus variables

AHFinderDirect: set mask(s) based on apparent horizon position(s)

ExcisionMask: check if the mask needs to be initialized

AbigelExcision: excision on initial slice (active only if cctk_iteration=0)

GROUP ExcisionMask_SetMask: set horizon mask (post-step)

GROUP ExcisionMask_OldMask: old mask group

ExcisionMask: create old copy of emask

GROUP ExcisionMask_NewMask: new mask group

ExcisionMask: check if the current algorithm needs to be skipped

ExcisionMask: reset excision mask state and counter

ExcisionMask: set up horizon mask for excision

ExcisionMask: perform various reductions for excision mask

NaNChecker: Reset the NaNChecker::NaNsFound counter

NaNChecker: Check for NaNs and count them in NaNChecker::NaNsFound

NaNChecker: Output NaNChecker::NaNmask and take action according to NaNChecker::action_if_found

SpaceMask: Ensure that all mask values are legal
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SphericalSurface: Set surface radii

GROUP SphericalSurface_HasBeenSet: Set the spherical surfaces before this group, and use it afterward

s

if (checkpoint)

[CCTK_CHECKPOINT]

CarpetIOHDF5: Evolution checkpoint routine

endif

if (analysis)

[CCTK_ANALYSIS]

CarpetLib: Print timing statistics if desired

CarpetLib: Print memory statistics if desired

endif

Do periodic output of grid variables

enddo

Termination routines

[CCTK_TERMINATE]

CarpetIOHDF5: Termination checkpoint routine

MoL: Free the MoL bookkeeping index arrays

Shutdown routines

[CCTK_SHUTDOWN]

Routines run after restricting:

[CCTK_POSTRESTRICT]

HADManalysis: apply boundary conditions to analysis quantities

HADMevol: skip outer boundary algorithm for this scheduling bin

GROUP MoL_PostStep: Ensure that everything is correct after restriction

GROUP AbigelExcision_ExcisionGroup: distributed excision group

AbigelExcision: reset own GFn values

AbigelExcision: set up local grid-layout information

AbigelExcision: set up mask of points used by excision

AbigelExcision: fill excised points with dummy values

AbigelExcision: distributed excision algorithm

HADMevol: apply boundary conditions to the HADM state vector

GROUP MoL_OldBdry_Wrap: Wrapper group, do not schedule directly into this group

MoL: Store and change dt

GROUP MoL_OldStyleBoundaries: Place old style boundary routines here

MoL: Reset dt

Routines run after changing the grid hierarchy:

[CCTK_POSTREGRID]

SpaceMask: Initialise mask to zero

GROUP AbigelExcision_InitialGroup: re-initialize excision

AbigelExcision: initalize excision algorithm

AbigelExcision: set up local grid-layout information

GROUP MaskBase_SetupMask: Set up the weight function

CarpetReduce: Initialise the weight function

GROUP SetupMask: Set up the weight function (schedule other routines in here)

CarpetReduce: Set up the outer boundaries of the weight function

CarpetReduce: Set up the weight function for the restriction regions

CartGrid3D: Set Coordinates after regridding

ExcisionMask: initialize mask variables

SpaceMask: Set mask to one

HADManalysis: apply boundary conditions to analysis quantities

HADMevol: skip outer boundary algorithm for this scheduling bin

HADMvars: weight function for A’s

HADMvars: initialize dissipation weight to its outer value

GROUP MoL_PostStep: Ensure that everything is correct after regridding

GROUP AbigelExcision_ExcisionGroup: distributed excision group

AbigelExcision: reset own GFn values

AbigelExcision: set up local grid-layout information

AbigelExcision: set up mask of points used by excision

AbigelExcision: fill excised points with dummy values

AbigelExcision: distributed excision algorithm

HADMevol: apply boundary conditions to the HADM state vector

GROUP MoL_OldBdry_Wrap: Wrapper group, do not schedule directly into this group

MoL: Store and change dt

GROUP MoL_OldStyleBoundaries: Place old style boundary routines here

MoL: Reset dt
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AHFinderDirect: set mask(s) based on apparent horizon position(s)

GROUP ExcisionMask_SetMask: set horizon mask (post-regrid)

GROUP ExcisionMask_NewMask: new mask group

ExcisionMask: check if the current algorithm needs to be skipped

ExcisionMask: reset excision mask state and counter

ExcisionMask: set up horizon mask for excision

ExcisionMask: perform various reductions for excision mask

GROUP ExcisionMask_OldMask: old mask group

ExcisionMask: create old copy of emask

--------------------------------------------------------------------------------
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