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The development of hyperbolic formulations of Einstein’s equations has revolutionized our ability to
perform long-time, stable, accurate numerical simulations of strong field gravitational phenomena.
However, hyperbolic methods have seen relatively little application in one area of interest, type II critical
collapse, where the challenges for a numerical code are particularly severe. Using the critical collapse of a
massless scalar field in spherical symmetry as a test case, we study a generalization of the Baumgarte-
Shapiro-Shibata-Nakamura formulation due to Brown that is suited for use with curvilinear coordinates.
We adopt standard dynamical gauge choices, including 1+log slicing and a shift that is either zero or
evolved by a Gamma-driver condition. With both choices of shift we are able to evolve sufficiently close to
the black hole threshold to (1) unambiguously identify the discrete self-similarity of the critical solution,
(2) determine an echoing exponent consistent with previous calculations, and (3) measure a mass scaling
exponent, also in accord with prior computations. Our results can be viewed as an encouraging first step
towards the use of hyperbolic formulations in more generic type II scenarios, including the as yet
unresolved problem of critical collapse of axisymmetric gravitational waves.
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I. INTRODUCTION

In this paper we investigate the application of the
Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formu-
lation of Einstein’s equations [1,2], as well as the dynami-
cal coordinate choices typically associated with it, within
the context of critical gravitational collapse. The BSSN
formulation is a recasting of the standard 3þ 1 Arnowitt-
Deser-Misner (ADM) [3] equations that is known to be
strongly hyperbolic [4,5] and suitable for numerical stud-
ies. It has been widely used in numerical relativity and
provides a robust and stable evolution for the spacetime
geometry. Most notably, various implementations of this
formulation have allowed successful computation of
dynamical spacetimes describing binaries of gravitationally
compact objects [6–8]. The standard gauge choices in
BSSN—namely the 1þ log slicing condition [9] and the
Gamma-driver shift condition [10]—are partial differential
equations (PDEs) of evolutionary type. Furthermore, the
BSSN approach results in a set of so-called free evolution
equations, meaning that the Hamiltonian and momentum
constraints are only solved at the initial time. Thus, once
initial data have been determined, one only has to solve
time-dependent PDEs in order to compute the geometric
variables in the BSSN scheme. In particular, during the
evolution there is no need to solve any elliptic equations,
which in general could arise either from the constraints or
from coordinate conditions. This is advantageous since it
can be quite challenging to implement efficient numerical
elliptic solvers.

In addition to the BSSN approach, the numerical
relativity community has adopted the generalized harmonic
(GH) [11] formulation of Einstein’s equations, which is
also strongly hyperbolic and has performed very well in
simulations of compact binaries [8,12]. Like BSSN, the GH
formulation is of evolutionary type so that all of the metric
components satisfy time-dependent PDEs. It too uses
dynamical coordinate choices: in this case one needs to
provide a prescription for the evolution of the harmonic
functions defined by Hμ ≡□xμ.
Despite the tremendous success of these hyperbolic

formulations in evolving strongly gravitating spacetimes
containing black holes and neutron stars, they have not seen
widespread use in another area of strong gravity physics
typically studied via numerical relativity, namely critical
phenomena in gravitational collapse. First reported in [13]
and briefly reviewed below, critical phenomena emerge at
the threshold of black hole formation and present signifi-
cant challenges for thorough and accurate computational
treatment. The original observation of critical behavior as
well as many of the subsequent studies were restricted to
spherical symmetry (for a review, see [14,15]) and there is a
clear need to extend the work to more generic cases. In this
respect the BSSN and GH formulations would appear to be
attractive frameworks. However, it is not yet clear if these
hyperbolic formulations, in conjunction with the standard
dynamical gauge choices that have been developed, will
allow the critical regime to be probed without the develop-
ment of coordinate pathologies. Particularly notable in this
regard is an implementation of the GH formulation that was
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employed by Sorkin and Choptuik [16] to study the critical
collapse of a massless scalar field in spherical symmetry.
Despite extensive experimentation with a variety of coor-
dinate conditions, the code that was developed was not able
to calculate near-critical spacetimes: coordinate singular-
ities invariably formed once the critical regime was
approached. A natural question that then arises is whether
the BSSN formulation (including the standard dynamical
gauge choices used with it) is similarly problematic or
if it provides an effective framework to study critical
phenomena.
Here we begin the task of addressing this question by

revisiting the model of spherically symmetric massless
scalar collapse. We use a generalization of the BSSN
formulation due to Brown [17] that is well suited for use
with curvilinear coordinates. The choice of a massless
scalar field as the matter source has the great advantage that
the nature of the critical solution is very well known
[18–23], making it straightforward for us to determine if
and when our approach has been successful. We note that
although the calculations described below are restricted to
spherical symmetry our ultimate goal is to develop an
evolutionary scheme—including gauge choices—that can
be applied to a variety of critical phenomena studies in axial
symmetry and ultimately generic cases.
We now briefly review the main concepts and features of

black hole critical phenomena that are most pertinent to the
work in this paper. Full details and pointers to the extensive
literature on the subject may be found in review
articles [14,15].
Critical phenomena in gravitational collapse can be

described as a phase transition, analogous to that in a
thermodynamical system. Under certain assumptions, a
matter source coupled to the Einstein gravitational field will
evolve to one of two distinct final phases. On the one hand,
weak initial data will eventually disperse to infinity leaving
flat spacetime as the end state. On the other hand,
sufficiently strong data will develop significant self gravi-
tation and then collapse, resulting in a final phase which
contains a black hole. Quite generically, remarkable behav-
ior emerges at and near the transition between these phases,
and this behavior is precisely what we mean by the critical
phenomena in the system under consideration.
It transpires that there are two broad classes of critical

phenomena that can be distinguished by the behavior of the
black hole mass at threshold. The class of interest here,
known as type II, is characterized by infinitesimal mass at
the transition. Further, the black hole mass,MBH, satisfies a
scaling law:

MBH ∼ jp − p⋆jγ; ð1Þ

where p is an arbitrary parameter that controls the strength
of the matter source at the initial time, p⋆ is the parameter
value at threshold and the mass scaling exponent, γ, is a

constant that is independent of the choice of the initial data.
Type II behavior is also characterized by the emergence of a
unique solution at threshold which is generically self-
similar. In some cases, including the massless scalar field,
the self-similarity is discrete. Specifically, in spherically
symmetric critical collapse with discrete self-similarity
(DSS), as p → p⋆ we find

Z⋆ðρþ Δ; τ þ ΔÞ ∼ Z⋆ðρ; τÞ; ð2Þ

where Z⋆ represents some scale-invariant component
(function) of the critical solution. Here ρ≡ lnðrSÞ and τ≡
lnðTS − T⋆

SÞ are logarithmically rescaled values of the areal
radius, rS, and polar time, TS, respectively, and T⋆

S is the
accumulation time at which the central singularity asso-
ciated with the DSS solution forms. TS has been normal-
ized so that it measures proper time at the origin. As with γ,
the echoing (rescaling) exponent, Δ, is a universal constant
for a specific matter source; i.e. it is independent of the
form of the initial data.
Another feature of type II collapse, intimately related to

the self-similarity of the critical solution, is that the
curvature can become arbitrarily large: in the limit of
infinite fine-tuning, p → p⋆, a naked singularity forms.
Furthermore, the echoing behavior (2) results in the
development of fine structure in the solution around the
center of the scaling symmetry. Observing this structure
and measuring the echoing exponent Δ associated with it
requires a code that can reliably evolve solutions very close
to the critical spacetime and that provides sufficient
numerical resolution in the vicinity of the accumulation
point ðrS; TSÞ ¼ ð0; T⋆

SÞ.
As mentioned above, most studies of critical phenomena

have assumed spherical symmetry. This is particularly so
for the case of type II behavior where the resolution
demands dictated by the self-similarity of the critical
solutions make multidimensional work extremely computa-
tionally intensive. As far as we know, the only work in
spherical symmetry to have used a purely evolutionary
approach based on the BSSN or GH forms of the Einstein
equations is [16] which, as we have noted, was not
successful in isolating the critical solution.1 In axisymmetry
there have been two investigations of type II collapse of
massless scalar fields [25,26], and several of type II
collapse of pure gravitational waves (vacuum) [27–31].
Of these, only Alcubierre et al.’s [28] and Sorkin’s [31]
calculations of vacuum collapse adopted hyperbolic for-
malisms, and only the scalar field calculations—which
employed a modified ADM formulation and partially
constrained evolution—were able to completely resolve
the critical behavior, including the discrete self-similarity of

1However, see [24] for an investigation of type II behavior in
the collapse of a scalar field in 2þ 1 anti–de Sitter spacetime that
employs an ad hoc free evolution scheme.

ARMAN AKBARIAN AND MATTHEW W. CHOPTUIK PHYSICAL REVIEW D 92, 084037 (2015)

084037-2



the critical solutions. In the fully three-space dimension
(3D) context there have also been a few studies of type II
collapse to date. Perhaps most notable is the recent work of
Healy and Laguna [32] which used a massless scalar field
as a matter source and the BSSN formulation with standard
dynamical gauge choices. The authors were able to observe
the mass scaling (1) with a measured γ ≈ 0.37 consistent
with calculations in spherical symmetry. However, they
were not able to conclusively see the discrete self-similarity
of the critical solution; in particular they could not
accurately measure the echoing exponent, Δ. This short-
coming was attributed to a lack of computational resources
rather than a breakdown of the underlying methodology,
including the coordinate conditions that were adopted.
Finally, there have been two attempts to probe the black
hole threshold for the collapse of pure gravitational waves
in 3D [33,34]. Both employed a BSSN approach with, for
the most part, standard dynamical gauge choices. In both
cases problems with the gauge apparently precluded
calculation near the critical point (although resolution
limitations may also have been an issue) and neither the
mass scaling nor the echoing exponent could be estimated
in either study.
We can thus summarize the state of the art in the use of

hyperbolic formulations for the study of type II critical
collapse as follows: to our knowledge there has been no
implementation of a fully evolutionary scheme, based on
either BSSN or GH, that has allowed for evolution
sufficiently close to a precisely critical solution to allow
the unambiguous identification of discrete self-similarity
(or continuous self-symmetry for that matter). Again, and
particularly in light of the experience of [16], the key aim of
this paper is to investigate the extent to which it is possible
to use a BSSN scheme to fully resolve type II solutions. A
major concern here is the appropriate choice of coordinate
conditions, not least since dynamical gauge choices can be
prone to the development of gauge shocks and other types
of coordinate singularities [35,36]. Such pathologies could,
in principle, prevent a numerical solver from evolving the
spacetime in or near the critical regime.
Now, as Garfinkle and Gundlach have discussed in detail

[37], an ideal coordinate system for numerical studies of
type II collapse is one which adapts itself to the self-
similarity: for the DSS case this means that the metric
coefficients and relevant matter variables are exactly
periodic in the coordinates in the fashion given by (2).
Clearly, if the coordinate system is adapted, then other than
at the naked singularity—which is inaccessible via finite-
precision calculations—it should remain nonsingular dur-
ing a numerical evolution. One can then argue that ensuring
that the numerical scheme has adequate resolution will be
the key to successful simulation of the critical behavior. At
the same time, it is also clear that there will be coordinate
systems which do not necessarily adapt but which none-
theless remain nonsingular during critical collapse, at least

over some range of scales, and which are therefore
potentially useful for numerical calculations. We will see
below that there is strong evidence that the coordinate
systems we have used belong to the latter class, and weaker
evidence that they do adapt to the self-similarity.
Another potential source of problems, which is not

specific to hyperbolic formulations, relates to our restric-
tion to spherical symmetry. As is well known, the singular
points of curvilinear coordinate systems, r ¼ 0 in our case,
can sometimes require special treatment to ensure that
numerical solutions remain regular there. In critical col-
lapse the highly dynamical nature of the solution near r ¼ 0
might naturally be expected to exacerbate problems with
regularity. In the work described below we have paid
special attention to the ability of our approach to both fully
resolve the near-critical configuration and maintain regu-
larity of the solution at the origin.
The remainder of this paper is organized as follows: in

Sec. II we review the generalized BSSN formulation and
display the equations of motion for our model system.
Section III expands the discussion of the issue of regularity
at the coordinate singularity point, describes the numerical
approach we have adopted, and provides details concerning
the various tests and diagnostics we have used to validate
our implementation. In Sec. IV we present results com-
puted using two distinct choices for the shift vector and
provide conclusive evidence that the generalized BSSN
formulation is capable of evolving in the critical regime in
both cases. Section V contains some brief concluding
remarks, and further details concerning the BSSN formal-
ism in spherical symmetry and the scalar field equations of
motion are included in Appendixes A and B, respectively.
We adopt units where the gravitational constant and the
speed of light are both unity: G ¼ c ¼ 1.

II. EQUATIONS OF MOTION

The dynamical system we intend to study in the critical
collapse regime is a real, massless scalar field, Ψ, self
gravitating via Einstein’s equations,

Gμν ¼ 8πTμν: ð3Þ

Here, Tμν is the energy-momentum tensor associated with
the minimally coupled Ψ:

Tμν ¼ ∇μ∇νΨ −
1

2
gμν∇ηΨ∇ηΨ; ð4Þ

and the evolution of the scalar field is given by

∇μ∇μΨ ¼ 0: ð5Þ

The time development of the geometry is then given by
recasting Einstein’s equations as an evolution system based
on the usual 3þ 1 expression for the spacetime metric:
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ds2 ¼ −α2dt2 þ γijðdxi þ βidtÞðdxj þ βjdtÞ: ð6Þ

Here, the 3-metric components, γij, are viewed as the
fundamental dynamical geometrical variables and the lapse
function, α, and shift vector, βi, which encode the coor-
dinate freedom of general relativity, must in general be
prescribed independently of the equations of motion.

A. Generalized BSSN

We now summarize the BSSN formulation of Einstein’s
equations and describe how it can be adapted to curvilinear
coordinates. Readers interested in additional details are
directed to [38] for a more pedagogical discussion.
In the standard ADM formulation [3,39], the dynamical

Einstein equations are rewritten as evolution equations for
the 3-metric and the extrinsic curvature fγij; Kijg. The first
difference between the BSSN formulation and the ADM
decomposition is the conformal rescaling of the ADM
dynamical variables:

γij ¼ e4ϕ ~γij; ð7Þ

Kij ¼ e4ϕ ~Aij þ
1

3
γijK; ð8Þ

where eϕ is the conformal factor, ~γij is the conformal

metric, ~Aij is the conformally rescaled trace-free part of the
extrinsic curvature and K ¼ γijKij is the trace of the

extrinsic curvature. Here by fixing the trace of ~Aij, and
the determinant of the conformal metric, the set of primary
ADM dynamical variables transforms to the new set:

fγij; Kijg → fϕ; ~γij; K; ~Aijg; ð9Þ

in the BSSN formulation.
In the original BSSN approach, the conformal metric ~γij

is taken to have determinant ~γ ¼ 1. However this choice is
only suitable when we adopt coordinates in which the
determinant of the flat-space metric reduces to unity. This is
the case, of course, for Cartesian coordinates but is not
so for general curvilinear systems. For instance, the flat
3-metric in spherical coordinates,

ds2 ¼ dr2 þ r2dθ2 þ r2sin2θdϕ2; ð10Þ

has determinant γ
∘ ¼ r4sin2θ. Recently, Brown [17] has

resolved this issue by introducing a covariant version of the
BSSN equations—the so-called generalized BSSN formu-
lation, which we hereafter refer to as G-BSSN—in which
the primary dynamical variables are tensors so that the
formulation can be adapted to non-Cartesian coordinate
systems. In G-BSSN we no longer assume that the
conformal 3-metric has determinant one. Rather, ϕ
becomes a true scalar and for its dynamics to be determined

a prescription for the time evolution of the determinant of
~γij must be given. In the following this will be done by
requiring that the determinant be constant in time.
Another main difference between the ADM decompo-

sition and BSSN is that the mixed spatial derivative terms
occurring in the 3-Ricci tensor are eliminated through the
definition of a new quantity, ~Γk:

~Γk ≡ ~γij ~Γk
ij; ð11Þ

which becomes an additional, independent dynamical
variable. Note that ~Γi is not a vector as it is coordinate
dependent. To extend this redefinition so that it is well
suited for all coordinate choices, in G-BSSN we define

~Λk ≡ ~γijð ~Γk
ij − Γ

∘ k
ijÞ ¼ ~Γk − Γ

∘ k
ij ~γ

ij; ð12Þ

where Γ
∘ k
ij denotes the Christoffel symbols associated with

the flat metric. This definition makes this so-called con-
formal connection, ~Λi, a true vector and it becomes a
primary dynamical variable in G-BSSN.
We now summarize the G-BSSN equations, referring the

reader to [40] for more details, including a full derivation.
We begin by defining ∂⊥, the time derivative operator
acting normally to the t ¼ const. slices:

∂⊥ ≡ ∂t − L~β; ð13Þ

where L~β denotes the Lie derivative along
~β. We then have

∂⊥ϕ ¼ −
1

6
αK þ σ

1

6
~Dkβ

k; ð14Þ

∂⊥ ~γij ¼ −2α ~Aij − σ
2

3
~Aij

~Dkβ
k; ð15Þ

∂⊥K ¼ −γijDjDiαþ α

�
~Aij

~Aij þ 1

3
K2

�
þ 4πðρþ SÞ;

ð16Þ

∂⊥ ~Aij ¼ e−4ϕ½−DiDjαþ αðRij − 8πSijÞ�TF

þ αðK ~Aij − 2 ~Ail
~Al

jÞ − σ
2

3
~Aij

~Dkβ
k; ð17Þ

∂⊥ ~Γi ¼ −2 ~Aij∂jαþ ~γlj∂j∂lβ
i

þ 2α

�
~Γi
jk
~Akj −

2

3
~γij∂jK þ 6 ~Aij∂jϕ − 8π ~γijSj

�

þ σ

3
½2 ~Γi ~Dkβ

k þ ~γli∂lð ~Dkβ
kÞ�: ð18Þ

Here, a superscript TF denotes the trace-free part (with
respect to the 3-metric γij) of a tensor, and ~Di is the

ARMAN AKBARIAN AND MATTHEW W. CHOPTUIK PHYSICAL REVIEW D 92, 084037 (2015)

084037-4



covariant derivative associated with the conformal metric
~γij. Additionally, the quantity σ is an adjustable parameter
that is discussed below and typically is either 0 or 1. Note
that all the Lie derivatives in the G-BSSN equations operate
on true tensors and vectors of weight 0. For instance,

L~β
~Aij ¼ βk∂k

~Aij þ ~Aik∂jβ
k þ ~Akj∂iβ

k: ð19Þ

Furthermore, in G-BSSN, rather than evolving (18), the
redefined conformal connection, ~Λi, is evolved via

∂t
~Λk ¼ ∂t

~Γk − Γ
∘ k
ij∂t ~γ

ij; ð20Þ

where the time derivative ∂t ~γ
ij is eliminated using (15). In

Eq. (17), Rij denotes the 3-Ricci tensor associated with γij
and can be written as the sum

Rij ¼ Rϕ
ij þ ~Rij; ð21Þ

where Rϕ
ij is given by

Rϕ
ij ¼ −2 ~Di

~Djϕ− 2~γij ~D
k ~Dkϕþ 4 ~Diϕ ~Djϕ− 4~γij ~D

kϕ ~Dkϕ;

ð22Þ

and ~Rij is the 3-Ricci tensor associated with the conformal
metric:

~Rij ¼ −
1

2
~γlm∂m∂l ~γij þ ~γkði∂jÞ ~Γk þ ~Γk ~ΓðijÞk

þ ~γlmð2 ~Γk
lði ~ΓjÞkm þ ~Γk

im
~ΓkljÞ: ð23Þ

The matter fields ρ, S, Si and Sij are defined by

ρ ¼ nμnνTμν; ð24Þ

S ¼ γijSij; ð25Þ

Si ¼ −γijnμTμj; ð26Þ

Sij ¼ γiμγiνTμν; ð27Þ

where nμ is the unit normal vector to the t ¼ const slices.
As mentioned previously, we need to prescribe dynamics

for the determinant of ~γij to have a complete set of
equations of motion for the G-BSSN dynamical variables.
One approach is to fix the determinant to its initial value by
demanding that

∂t ~γ ¼ 0: ð28Þ

This is the so-called Lagrangian option and is associated
with the choice σ ¼ 1 in the equations. Another option is to
define the determinant to be constant along the normal

direction to the time slices, which can be implemented by
requiring ∂⊥ ~γ ¼ 0. This is usually referred to as the
Lorentzian option, and is associated with the choice
σ ¼ 0. Here we choose (28), i.e. σ ¼ 1.
Note that in the G-BSSN equations the divergence of the

shift vector,

~Dkβ
k ¼ 1ffiffiffi

~γ
p ∂kð

ffiffiffi
~γ

p
βkÞ; ð29Þ

no longer reduces to ∂kβ
k since the determinant of the

conformal metric ~γij is not necessarily 1, but by virtue of
the choice (28) is equal to that of the initial background flat
metric in the chosen curvilinear coordinates.
As usual, when setting initial data for any given

evolution of the coupled Einstein-matter equations we
must solve the Hamiltonian and momentum constraints.
In terms of the G-BSSN variables these are

H≡ ~γij ~Di
~Djeϕ −

eϕ

8
~Rþ e5ϕ

8
~Aij ~Aij

−
e5ϕ

12
K2 þ 2πe5ϕρ ¼ 0; ð30Þ

Mi ≡ ~Djðe6ϕ ~AjiÞ − 2

3
e6ϕ ~DiK − 8πe6ϕSi ¼ 0: ð31Þ

B. G-BSSN in spherical symmetry and gauge choices

In spherical symmetry a generic form of the conformal
metric ~γij is given by

~γij ¼

0
B@

~γrrðt; rÞ 0 0

0 r2 ~γθθðt; rÞ 0

0 0 r2 ~γθθðt; rÞsin2θ

1
CA: ð32Þ

Similarly, a suitable ansatz for the traceless extrinsic
curvature is

~Aij ¼

0
B@

~Arrðt; rÞ 0 0

0 r2 ~Aθθðt; rÞ 0

0 0 r2 ~Aθθðt; rÞsin2θ

1
CA: ð33Þ

The shift vector and ~Λi have only radial components:

βi ¼ ½βðt; rÞ; 0; 0�; ð34Þ

~Λi ¼ ½ ~Λðt; rÞ; 0; 0�: ð35Þ

Given (32)–(35), the G-BSSN equations become a set of
first order evolution equations for the seven primary
variables
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fϕðt; rÞ; ~γrrðt; rÞ; ~γθθðt; rÞ; Kðt; rÞ;
~Arrðt; rÞ; ~Aθθðt; rÞ; ~Λðt; rÞg:

These are coupled to the evolution equation (5) for the
scalar field and constrained by the initial conditions
(30)–(31). The explicit expressions for the full set of
equations of motion are given in Appendix A.
To fix the time slicing we implement a nonadvective2

version of the 1þ log slicing condition3:

∂tα ¼ −2αk: ð36Þ
For the spatial coordinates we either choose a zero shift,

βi ¼ 0; ð37Þ

or use what we will term the Gamma-driver condition:

∂tβ
i ¼ μ ~Λi − ηβi: ð38Þ

Here, μ and η are adjustable parameters which we set to
μ ¼ 3=4 and η≃ 1=ð2MADMÞ, where MADM is the total
mass of the system measured at infinity (see Sec. III D 1).
We emphasize that (38) is not the usual Gamma-driver
equation used in the standard BSSN approach,

∂tβ
i ¼ μ~γi − ηβi; ð39Þ

but since it is a natural extension of the above to the
G-BSSN case we have opted to use the same nomenclature.
In the rest of this paper, we frequently refer to the shift
vector evolved via (38) as βG. Explicitly, in spherical
symmetry βG is defined by

∂tβ
Gðt; rÞ ¼ μ ~Λðt; rÞ − ηβGðt; rÞ: ð40Þ

III. NUMERICS

We use a second order finite differencing method to
discretize Eqs. (14)–(17) and (20). Further, the equations of
motion are transformed to a compactified radial coordinate
that we denote by ~r and which is defined in terms of the
original coordinate r by

r ¼ e~r − eδ þ R∞

R∞ − ~r
−

R∞

R∞ − δ
; ð41Þ

where δ and R∞ are parameters with typical values δ≃ −12
and R∞ ≃ 3. It is straightforward to verify the following:
(1) the radial domain r ¼ ð0;∞Þmaps to the computational
domain ~r ¼ ðδ; R∞Þ; (2) the derivative dr=d~r decreases
toward the origin (~r≃ δ), so that a uniform grid on ~r is a
nonuniform grid on r with approximately 103 times more
resolution close to the origin relative to the outer portion of
the solution domain, ~r≃ 2 (r≃ 10), where the support of
the scalar field is initially concentrated; (3) the parameter δ
can be used to adjust the resolution near the origin;
specifically, decreasing δ increases the resolution near
r ¼ 0. For notational simplicity, however, in the following
we omit the explicit dependence of the fields on ~r and
denote the spacetime dependence of any dynamical vari-
able X as previously: Xðt; rð~rÞÞ≡ Xðt; rÞ.
We use a finite difference grid that is uniform in ~r and

analytically transform all r-derivative terms in the equa-
tions of motion to their ~r-coordinate counterparts prior to
finite differencing.
We also developed a Maple-based toolkit [41] that

automates the process of discretizing an arbitrary derivative
expression. This toolkit handles boundary conditions and
generates a pointwise Newton-Gauss-Seidel solver in the
form of Fortran routines for a given set of time-dependent
or elliptic PDEs. The calculations in this paper were all
carried out using this infrastructure.

A. Initialization

The matter content is set by initializing the scalar field to
a localized Gaussian shell:

Ψð0; rÞ ¼ p exp

�
−
ðr − r0Þ2

σ2r

�
; ð42Þ

where p, r0 and σr are parameters. Note that here r is the
noncompactified radial coordinate which is related to the
compactified coordinate ~r via (41). A typical initial profile
for the scalar field in our calculations has σr ≃ 1, r0 ≃ 10,
and p of order 10−1. We use the overall amplitude factor p
as the tuning parameter to find critical solutions. We
initialize the conformal metric (32) to the flat metric in
spherical symmetry,

~γrrð0; rÞ ¼ ~γθθð0; rÞ ¼ 1; ð43Þ

and initialize the lapse function to unity,

αð0; rÞ ¼ 1: ð44Þ

We also demand that the initial data be time symmetric,

~Arrð0; rÞ ¼ ~Aθθð0; rÞ ¼ Kð0; rÞ ¼ 0; ð45Þ

2The terminology nonadvective derives from the absence of an
advective term, βj∂j, on the left-hand side of Eqs. (36) and (38).
We note that we also experimented with the advective versions of
the equations. The results were very similar to those for the
nonadvective case; in particular, near-critical solutions exhibiting
echoing and scaling could also be obtained.

3The reader can easily check that in the case of zero shift, the
lapse choice given by (36) combined with (14) implies
∂tðα − ϕ=12Þ ¼ 0. In Cartesian coordinates ϕ=12≡ ln γ, so this
last equation gives α − ln γ ¼ cð~xÞ, where the function cð~xÞ is
time independent. The choice cð~xÞ ¼ 1 then yields an algebraic
expression for the lapse, α ¼ 1þ ln γ, which is the origin of the
terminology “1þ log slicing.”
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βð0; rÞ ¼ ~Λð0; rÞ ¼ 0; ð46Þ

∂tΨðt; rÞjt¼0 ¼ 0; ð47Þ

which means that the momentum constraint (31) is trivially
satisfied. This leaves the Hamiltonian constraint (30) which
is solved as a two-point boundary value problem for the
conformal factor at the initial time,

ψðrÞ≡ eϕð0;rÞ: ð48Þ

The outer boundary condition for ψ,

ψðrÞjr¼∞ ¼ 1; ð49Þ

follows from asymptotic flatness, while at r ¼ 0 we have

∂rψðrÞjr¼0 ¼ 0 ð50Þ

since ψðrÞmust be an even function in r for regularity at the
origin.

B. Boundary conditions

Due to the fact that the metric has to be conformally flat
at the origin we have

~γrrðt; 0Þ ¼ ~γθθðt; 0Þ: ð51Þ

Further, since we are using the Lagrangian choice, σ ¼ 1,
the determinant of ~γij must at all times be equal to its value
at the initial time, so

~γrr ~γ
2
θθ ¼ 1: ð52Þ

From these two results we have

~γrrðt; 0Þ ¼ ~γθθðt; 0Þ ¼ 1: ð53Þ

Using (53) and (15) it is then easy to see that we must also
have

~Arrðt; 0Þ ¼ ~Aθθðt; 0Þ ¼ 0: ð54Þ

As is usual when working in spherical coordinates, many
of the boundary conditions that must be applied at r ¼ 0
follow from the demand that the solution be regular there.
Essentially, the various dynamical variables must have
either even or odd “parity” with respect to expansion in
r as r → 0. Variables with even parity, typically scalars or
diagonal components of rank-2 tensors, must have vanish-
ing radial derivative at r ¼ 0, while odd parity functions,
typically radial components of vectors, will themselves
vanish at the origin.

Applying these considerations to our set of unknowns
we find

∂r ~γrrðt; rÞjr¼0 ¼ ∂r ~γθθðt; rÞjr¼0 ¼ 0; ð55Þ

∂r
~Arrðt; rÞjr¼0 ¼ ∂r

~Aθθðt; rÞjr¼0 ¼ 0; ð56Þ

βðt; 0Þ ¼ ~Λðt; 0Þ ¼ 0; ð57Þ

∂rKðt; rÞjr¼0 ¼ ∂rϕðt; rÞjr¼0 ¼ ∂rΨðt; rÞjr¼0 ¼ 0: ð58Þ

We use Eqs. (53)–(54) and (57) to fix the values of the
functions at the origin and a forward finite differencing of
(58) to update K, ϕ and Ψ at r ¼ 0. Further, we apply a
forward finite differencing of (55)–(56) to update the values
of the function at the grid point next to the origin. The
1þ log condition (36) can be used directly at r ¼ 0. Again,
we emphasize that all of the r-derivative terms of the
boundary conditions described above are analytically trans-
formed to the numerical coordinate, ~r, before the equations
are finite differenced.
Since we are using compactified coordinates, all the

variables are set to their flat spacetime values at the outer
boundary r ¼ ∞:

~γrr ¼ ~γθθ ¼ eϕ ¼ α ¼ 1 at∶ ðt;∞Þ; ð59Þ

~Arr ¼ ~Aθθ ¼ K ¼ ~Λ ¼ β ¼ Ψ ¼ 0 at∶ ðt;∞Þ: ð60Þ

Here, we emphasize that spatial infinity, r ¼ ∞, corre-
sponds to the finite compactified (computational) coordi-
nate point ~r ¼ R∞.

C. Evolution scheme and regularity

We implemented a fully implicit, Crank-Nicolson [42]
finite differencing scheme to evolve the system of G-BSSN
equations. The precise form of the continuum equations
used is given in Appendix A and all derivatives, both
temporal and spatial, were approximated using second-
order-accurate finite difference expressions.
During an evolution the correct limiting behavior of the

spatial metric components must be maintained near r ¼ 0
to ensure a regular solution. For example, the limiting
values of the conformal metric components ~γrr and ~γθθ are
given by

~γrrðt; rÞ ¼ 1þOðr2Þ; ð61Þ

~γθθðt; rÞ ¼ 1þOðr2Þ: ð62Þ

If the discrete approximations of the metric functions do
not satisfy these conditions, then irregularity will manifest
itself in the divergence of various expressions such as the
Ricci tensor component (A12)
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Rrr ¼ 2
~γrr − ~γθθ
r2 ~γθθ

þ � � � ; ð63Þ

which should converge to a finite value at the origin if
conditions (61)–(62) hold.
One approach to resolve potential regularity issues is to

regularize the equations [16,40,43], by redefining the
primary evolution variables, so that the equations become
manifestly regular at the origin. Another approach is to use
implicit or partially implicit methods [44]. As recently
shown by Montero and Cordeo-Carrion [45], such schemes
can yield stable evolution without the need for explicit
regularization. Baumgarte et al. [46] also adopted a similar
approach—using a partially implicit scheme without regu-
larization—in an implementation of the G-BSSN formu-
lation in spherical polar coordinates.
Asmentioned, our implementation is fully implicit andwe

have also found that our generalized BSSN equations can be
evolved without any need for regularization at the origin,
even in strong gravity scenarios where the spacetime metric
has significant deviations from flatness near the origin.
That said, we also experimented with other techniques

aimed at improving regularity. For example, using the
constraint equation (52) and the fact that ~Aij is trace free,

~Arr

~γrr
þ 2

~Aθθ

~γθθ
¼ 0; ð64Þ

we can compute ~γθθ and ~Aθθ in terms of ~γrr and ~Arr,
respectively, rather than evolving them. However, when we
did this we found no significant improvement in regularity
relative to the original scheme.
Finally, to ensure our solutions remain smooth on the

scale of the mesh we use fourth order Kreiss-Oliger
dissipation [47] in the numerical solution updates.

D. Tests

This section documents various tests we have made to
validate the correctness of our numerical solver as well as
the consistency of the finite differencing method used to
evolve the system of G-BSSN equations. We use a variety
of diagnostic tools, including monitoring of the constraint
equations, convergence tests of the primary dynamical
variables, and a direct computation to check if the metric
and matter fields calculated via the G-BSSN formulation
satisfy the covariant form of Einstein’s equations. All of the
calculations were performed using the 1þ log slicing
condition (36) and either β ¼ 0 or β ¼ βG where βG

satisfies the Gamma-driver condition (40).

1. Constraints and conserved quantities

We monitor the evolution of the constraint equa-
tions (30)–(31) during a strongly gravitating evolution
where the nonlinearities of the equations are most pro-
nounced. As demonstrated in Fig. 1(a), at resolutions

FIG. 1. Results from various tests that verify the accuracy and
consistency of our numerical solver and the finite differencing
method used to integrate the equations. (a) The evolution of the
l2-norm [root mean square (RMS) value] of the Hamiltonian
constraint. The norm is plotted for three different resolutions h,
h=2 and h=4 corresponding to Nr ¼ 512, 1024 and 2048,
respectively. The data for the Nr ¼ 1024 and Nr ¼ 2048 curves
have been rescaled by factors of 4 and 16, respectively, and the
overlap of the three lines thus signals the expected second order
convergence to zero of the constraint deviation. We observe
similar convergence properties for the momentum constraint as

well as the constraint equation (12) for ~Λi, and the constraint (64)

for the trace of ~Aij. Additionally, since the operator used to
evaluate the residual of the Hamiltonian constraint is distinct from
that used in the determination of the initial data, the test also
validates the initial data solver. (b) Conservation of the ADM
mass during the evolution of strong initial data. Here the
deviation of the mass from its time average is plotted for three
different resolutions. Higher resolution values have again been
rescaled so that overlap of the curves demonstrates Oðh2Þ
convergence to 0 of the deviation of the total mass. (c) The
convergence factor defined in (68) for three of the primary BSSN

variables: ~γrr, K, and ~Aθθ. In the limit h → 0 we expect all curves
to tend to the constant 4. The plot thus provides evidence for
second order convergence of all of the values throughout the
evolution. All of the other primary BSSN variables as well as the
dynamical scalar field quantities demonstrate the same conver-
gence. (d) Direct verification that the metric found by numerically
solving the BSSN equations satisfies Einstein’s equations in their
covariant form. Here the tr component of the residual Eμ

ν defined
in (72) is plotted for three different resolutions. Once more,
higher resolution values have been rescaled so that overlap of the
curves signals the expectedOðh2Þ convergence of the residuals to
0. All of the plots correspond to evolution of strong subcritical
initial data with 1þ log slicing. For (a)–(b) the shift vector was
set to 0, while in (c)–(d) it was evolved using the Gamma-driver
condition (i.e. β ¼ βG).
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typical of those used in our study, the Hamiltonian
constraint is well preserved during such an evolution
and, importantly, the deviations from conservation con-
verge to zero at second order in the mesh spacing as
expected.
The total mass content of the spacetime seen at spatial

infinity (the ADM mass) is a conserved quantity. Here,
using the G-BSSN variables the Misner-Sharp mass func-
tion is given by

MðrÞ¼ r~γ1=2θθ e2ϕ

2

�
1−

~γθθ
~γrr

�
1þ r

∂r ~γθθ
2~γθθ

þ2r
∂reϕ

eϕ

�
2
�
: ð65Þ

The total mass, MADM, can be evaluated at the outer
boundary,

MADM ≡Mðr ¼ ∞Þ: ð66Þ

The deviation of the total mass from its time average is
plotted in Fig. 1(b); as the resolution of the numerical grid
increases the variations converge to zero in a second order
fashion.

2. Convergence test

Asmentioned inSecs. III A and III C,we implemented our
code using second order finite differencing of all spatial and
temporal derivatives. Denoting any continuum solution
component by qðt; XÞ, where X is the spatial coordinate,
and a discrete approximation to it computed at finite differ-
ence resolution, h, by qhðt; XÞ, to leading order in h we
expect

qhðt; XÞ ¼ qðt; XÞ þ h2e2½q�ðt; XÞ þ � � � : ð67Þ
Fixing initial data, we perform a sequence of calculations
with resolutions h, h=2 and h=4 and then compute a
convergence factor, Cðt; qÞ, defined by

Cðt; qÞ ¼ ∥qhðt; XÞ − qh=2ðt; XÞ∥2
∥qh=2ðt; XÞ − qh=4ðt; XÞ∥2

; ð68Þ

where ∥ · ∥2 is the l2 norm, i.e. the RMS value. It is
straightforward to argue from (67) that, for sufficiently small
h, Cðt; qÞ should approach 4 if the solution is converging at
second order. The values of the convergence factor for a
selection of dynamical variables are plotted for a strong-data
evolution in Fig. 1(c) and provide clear evidence that the
solution is second order convergent throughout the time
evolution.

3. Direct validation via Einstein’s equations

A direct method to test the fidelity of our numerical
solver involves the evaluation of a residual based on the
covariant form of Einstein’s equations. We start with a
reconstruction of the four-dimensional metric in spherical
symmetry,

ds2 ¼ ð−α2 þ β2a2Þdt2 þ 2a2βdtdrþ a2dr2 þ r2b2dΩ2;

ð69Þ

using the primary G-BSSN variables, ~γij and ϕ. In
particular, a and b are simply given by

aðt; rÞ ¼ e4ϕðt;rÞ ~γrrðt; rÞ; ð70Þ

bðt; rÞ ¼ e4ϕðt;rÞ ~γθθðt; rÞ: ð71Þ

We then check to see if the metric (69) satisfies the
covariant Einstein equations (3) to the expected level of
truncation error. Specifically, defining the residual

Eμ
ν ≡Gμ

ν − 8πTμ
ν; ð72Þ

and replacing all derivatives in Gμ
ν with second order finite

differences, we expect Eμ
ν to converge to zero as Oðh2Þ as

h → 0.4 Precisely this behavior is shown in Fig. 1(d). This
is a particularly robust test of our implementation since the
nontrivial components of the covariant Einstein equations
are quite complicated and, superficially at least, algebrai-
cally independent of the BSSN equations. For instance, the
tr component of the residual (72) is given by

Et
r ¼

2β

rα2

�∂ra
a

− 2
∂rb
b

þ ∂rα

α

�

þ 2β

α2

�
−
∂2
rb
b

þ ∂ra∂rb
ab

−
ð∂rΨÞ2

2
þ ∂rα∂rb

αb

�

þ 2

α2

�∂t∂rb
b

þ ∂rΨ∂tΨ
2

−
∂ta∂rb
ab

−
∂tb∂rα

αb

�

þ 2

rα2

�
−
∂ta
a

þ ∂tb
b

�
ð73Þ

and depends on all of the dynamical variables of the
system. The observed convergence of the residual is only
plausible if (1) our G-BSSN equations (14)–(18) have been
correctly derived from the covariant Einstein equations,
(2) we have discretized the geometric and matter equations
properly, and (3) we have solved the full set of discretized
equations correctly.

E. Finding black hole threshold solutions

The strength of the initial data can be set by adjusting the
amplitude of the scalar field, p, in (42). For weak enough
initial data (small enough p), the matter shell will reach the
origin and then disperse, with the final state being a flat
spacetime geometry. Strong enough initial data, on the
other hand (large enough p), result in a matter

4Although it is not crucial for the usefulness of this test, we
discretize the Eμ

ν using a difference scheme that is distinct from
the one used in the main code.
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concentration in the vicinity of the origin which is
sufficiently self gravitating that a black hole forms.
Using a binary search, we can find the threshold initial
data, defined by p ¼ p⋆, for which p < p⋆ results in
dispersal while p > p⋆ yields black hole formation. At any
stage of the calculation, the binary search is defined by two
“bracketing” values, pl and ph, such that evolutions with
p ¼ pl and p ¼ ph result in dispersal and black hole
formation, respectively. It is convenient to define the
amount of parameter tuning that has occurred by the
dimensionless quantity

δp≡ ph − pl

pl
: ð74Þ

The dispersal case can be detected easily as the scalar
field leaves the vicinity of the origin and the geometry
approaches flat spacetime. To detect black hole formation,
we use an apparent horizon finder to locate a surface r ¼
const on which the divergence of the outgoing null rays
vanishes. We first define the divergence function

Θ ¼ qμν∇μkν; ð75Þ

where qμν is the induced metric on the constant r surface. In
spherical symmetry with metric (69) we have

qμν ¼ diagð0; 0; r2b2; r2b2sin2θÞ; ð76Þ

where kμ is the null outgoing vector given by

kμ ¼
1ffiffiffi
2

p ½aβ − α; a; 0; 0�: ð77Þ

Therefore, (75) becomes

Θ ¼
ffiffiffi
2

p

rb

�
r
α
∂tðbÞ þ

�
1

a
−
β

α

�
∂rðrbÞ

�
: ð78Þ

The formation of an apparent horizon5 is signaled by the
value of the function Θ crossing zero at some radius and
modulo cosmic censorship implies that the spacetime
contains a black hole. We note that since the focus of
our work was on the critical (threshold) solution we made
no effort to continue evolutions beyond the detection of
trapped surfaces.

IV. RESULTS

In this section we describe results from two sets of
numerical experiments to study the efficacy of the G-BSSN
formulation in the context of critical collapse. Again, our
calculations use the standard 1þ log slicing condition for

the lapse, and a shift which is either zero or determined
from the Gamma-driver condition.

A. Zero shift

We first perform a collection of numerical experiments
where the shift vector is set to zero. As described in
Sec. III E, in principle we can find the black hole threshold
solutionp≃ p⋆ using a binary search algorithmwhich at any
stage is defined by two values pl and ph, with pl < p < ph,
and where pl corresponds to dispersal (weak data) while ph
corresponds to black hole formation (strong data).
As discussed in the introduction, the massless scalar

collapse model has a very well-known critical solution, and
we summarize the features most relevant to our study here.
The threshold configuration is discretely self-similar with
an echoing exponent measured from the first calculations to
be Δ ≈ 3.44 [13]. Following the original studies, Gundlach
[18] showed that the construction of the precisely discretely
self-similar spacetime could be posed as an eigenvalue
problem, the solution of which led to the more accurate
value Δ ¼ 3.4439� 0.0004. This estimate was sub-
sequently improved by Martin-Garcia and Gundlach to
Δ ¼ 3.445452402ð3Þ [23].
The original calculations determined a value γ ≈ 0.37 for

the mass-scaling exponent [13]; further work based on
perturbation theory gave γ ≈ 0.374 [19,22]. Here it is
important to note that, as pointed out independently by
Gundlach [19] and Hod and Piran [20], the simple power
law scaling (1) gets modified for discretely self-similar
critical solutions to

lnM ¼ γ ln jp − p⋆j þ cþ fðγ ln jp − p⋆j þ cÞ; ð79Þ

where f is a universal function with period Δ and c is a
constant depending on the initial data. This results in the
superposition of a periodic wiggle in the otherwise linear
scaling of lnM as a function of ln jp − p⋆j.
Finally, Garfinkle and Duncan [21] pointed out that near-

critical scaling is seen in physical quantities other than the
mass and, dependent on the quantity, in the subcritical as
well as supercritical regime. In particular they argued that
in subcritical evolutions the maximum central value,Rmax,
of the four-dimensional Ricci scalar, R, defined by

Rmax ≡max
t
Rð0; tÞ; ð80Þ

should satisfy the scaling

Rmax ∼ jp − p⋆j−2γ; ð81Þ

where the factor −2 in the scaling exponent can be deduced
from the fact that the curvature has units of length−2. For
the discretely self-similar case this scaling law is also
modulated by a wiggle with period Δ=ð2γÞ, which for the
massless scalar field is about 4.61.

5Technically a marginally trapped surface—the apparent
horizon being the outermost of these.
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Using initial data given by (42) we tune p so that it is
close to the critical value: typically this involves reducing
the value of δp defined by (74) so that it is about 10−12,
which is a few orders of magnitude larger than machine
precision. Our implementation includes code that actively
monitors the dynamical variables for any indications of
coordinate singularities or other pathologies which could
cause the numerical solver to fail. Provided that such
pathologies do not develop, we expect to observe features
characteristic of critical collapse—discrete self-similarity
and mass scaling in particular—to emerge as p → p⋆.
One way the discrete self-similarity of the critical

solution is manifested is as a sequence of echoes—
oscillations of the scalar field near the origin such that
after each oscillation the profile of the scalar field is
repeated but on a scale expðΔÞ smaller than that of the
preceding echo [see Eq. (2)]. The oscillations are similarly
periodic in the logarithmic time scale lnðT⋆ − TÞ, where T
is the proper time measured at the origin,

TðtÞ≡
Z

t

0

αðt̂; 0Þdt̂; ð82Þ

and T⋆ is the accumulation time at which the singularity
forms (always at r ¼ 0). Furthermore, viewed at the origin,
the oscillations of the scalar field occur at a fixed amplitude
of about 0.61 (with our units and conventions for the
Einstein’s equations). As shown in Fig. 2, when we tune the
initial data to the critical value, the central value of scalar
field exhibits oscillatory behavior and the amplitude is
close to the expected value. The anticipated periodicity in
logarithmic time is also apparent with a measured
Δ ¼ 3.43� 0.02, in agreement with previous results. We
thus have strong evidence that the evolution has indeed
approached the critical regime and that the measured
oscillations are true echoes rather than numerical artifacts.
Evidence that our code correctly captures the expected

critical scaling behavior (81) ofRmax is presented in Fig. 3.
We find γ ¼ 0.38� 0.01, consistent with previous calcu-
lations. We note that we can measure scaling from our
computations up to ln jp−p⋆j ¼−29 (or jp−p⋆j≈10−13).
However, in Fig. 3 we have excluded the last few values
closest to the critical point from both the plot and the linear
fit: specifically, we truncate the fit at ln jp − p⋆j ¼ −25.
The rationale for this is that we use the largest subcritical
value of p as an approximation to the critical value p⋆
rather than, for example, implementing a multiparameter fit
that includes p⋆ as one of the parameters. Our estimate of
p⋆ thus has an intrinsic error of e−29 ≈ 10−13 and by fitting
to data with ln jp − p⋆j ≥ −25we render the error in the p⋆
estimate essentially irrelevant. We note that consistent with
the early observations of the robustness of mass scaling in
the model [13], measuring the exponent γ can be achieved
by moderate tuning, in this case ln jp − p⋆j ≈ −9, (i.e.
δp ≈ 10−3). However, to be able to observe the echoing

exponent (the oscillations around the fitting line, for
example) we need to tune much closer to the critical value.
The echoing behavior of the critical solution is also

reflected in the geometry of spacetime and the matter
variables other than the scalar field. Figure 4 shows the
radial profile of the G-BSSN variable ϕ at an instant close
to the accumulation time T⋆. As seen in this plot, fine
structure develops in the function in the near-critical
regime. Observe that from the definition (7) and the choice
(28), the scalar ϕ is the ratio of the determinant of the

3-metric, γ, to the determinant of the flat metric, γ
∘
:

ϕ ¼ 1

12
lnðγ=γ∘Þ: ð83Þ

The radial matter density, dm=dr ¼ r2ρ, is a convenient
diagnostic quantity for viewing near-critical evolution.

FIG. 2. Echoing behavior in the scalar field for a marginally
subcritical evolution with δp ≈ 10−12. The main plot displays the
central value of the scalar field versus a logarithmically scaled
time parameter, lnðTf − TÞ, where T is central proper time and Tf

is the approximate value of that time when near-critical evolution
ceases and the total dispersal of the pulse to infinity begins. This
particular scaling is chosen solely to more clearly demonstrate the
evolution of the central value of Ψ during the critical phase
through to dispersal. Note that our choice of abscissa means that
evolution proceeds from right to left. The inset also plots Ψ at
r ¼ 0 but now in the “natural” logarithmic time coordinate τ≡
lnðT⋆ − TÞ where T⋆ is the “accumulation time” at which the
solution becomes singular and which has been estimated based
on the positions of the extrema in Ψ. The amplitude of the scalar
field at the origin oscillates between ð−0.61; 0.61Þ, consistent
with the calculations reported in [13]. The data yield an echoing
exponent of Δ ¼ 3.43� 0.02 which is in agreement with the
value Δ ¼ 3.445452402ð3Þ Martin-Garcia and Gundlach have
computed by treating the computation of the precisely critical
solution as an eigenvalue problem [23].
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Snapshots of this function from a typical marginally
subcritical calculation are shown in Fig. 5: the echoing
behavior is clearly evident in the sequence. The number of
echoes is dependent on the degree to which the solution has
been tuned to criticality. In this case, where δp ¼ 10−12, we
expect and see about four echoes (last frame of the figure).
Here we note that each of the echoes in dm=dr corresponds
to half of one of the scalar field oscillations shown in Fig. 2
(where the inset shows about 2 1

2
full cycles).

Figure 6(a) plots the central matter density ρðt; 0Þ for a
marginally supercritical calculation. In accord with the self-
similar nature of the near-critical solution, the central
density grows exponentially with time. Figure 6(b) is a
snapshot of the extrinsic curvature at the critical time t ≈ t⋆
while Fig. 6(c) shows the dynamics of the central value of
the lapse function and compares it with α from the
calculations performed with β ¼ βG described in the next

section. Figure 6(d) displays the profile of the lapse at the
critical time.
We note that we have not fully resolved the critical

behavior in the sense of having tuned p to the limit of
machine precision, δp ≈ 10−16, which would capture
roughly two additional echoes in the threshold solution
(one full echo in the scalar field). In principle, by settingNr
sufficiently large we could almost certainly do so since
there are no indications that our method would break down
at higher resolution and closer to criticality. However, we
estimate that the required computing time for a complete
critical search would increase from weeks to several
months and we have thus not done this. Ultimately, a
more effective approach to enhancing the resolution would
be to incorporate a technique such as adaptive mesh
refinement into our solver.
The results displayed in Figs. 2–6 provide strong

evidence that the coordinate system consisting of 1þ
log lapse and zero shift remains nonsingular in the critical
regime, at least for the range of scales probed for
δp ≈ 10−12. Additionally, the approximate periodicity in
lnðrÞ that can be seen, for example, in

ffiffiffi
r

p
ϕ0 (Fig. 4) and

dm=dr (Fig. 5) suggests that the coordinates may be
adapting to the self-similarity. Whether or not this is
actually the case is a matter requiring further study.

FIG. 3. The maximum central value, Rmax, of the four-dimen-
sional Ricci scalar, R, attained during subcritical evolution as a
function of the logarithmic distance ln jp − p⋆j of the tuning
parameter from the critical value. As first observed in [21] the
Ricci scalar scales as R ∼ jp − p⋆j−2γ , where γ is the universal
mass-scaling exponent in (1). The value γ ¼ 0.38� 0.01 com-
puted via a least squares fit is in agreement with the original
calculations [13] as well as many other subsequent computations.
We note that the oscillations of the data about the linear fit are
almost certainly genuine, at least in part. As discussed in the text,
we expect a periodic wiggle in the data with period
Δ=ð2γÞ ≈ 4.61. Performing a Fourier analysis of the residuals
to the linear fit we find a peak at about 4 with a bandwidth of
approximately 1, consistent with that expectation. As described in
more detail in the text, although we have data from computations
with ln jp − p⋆j < −25, we do not include it in the fit. The naive
method we use to estimate p⋆ means that the relative uncertainty
in p − p⋆ grows substantially as p → p⋆ so that inclusion of the
data from the most nearly critical calculations will corrupt the
overall fit.

FIG. 4. Discrete self-similarity of the geometry of spacetime in
the black hole threshold evolution previously discussed in Fig. 2.
Here, the G-BSSN variable ϕ is plotted as a function of the
computational radial coordinate ~r at the accumulation time t⋆. Note
that from (83)ϕmeasures the deviation of the determinant of the 3-
metric from that of a flat metric. The inset graph is the radial
derivative of ϕ scaled by

ffiffiffi
r

p
to highlight the formation of fine

structure in the geometry of the critical solution. The approximate
periodicity of

ffiffiffi
r

p
ϕ0 in lnðrÞ (modulo an overall varying scale)

provides weak evidence that the coordinate system used in the
calculation adapts to the self-similarity of the critical solution.
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B. Gamma-driver shift

We now briefly report on experiments similar to those of
the previous section but where the shift was evolved with
the Gamma-driver condition (38). A principal observation
is that this gauge also facilitates near-critical evolutions
with results similar to the β ¼ 0 choice. In particular, we
are again able to observe all of the characteristics of the
black hole threshold solution.
The gauge condition (38) acts as a damping factor for the

conformal connection, ~Λi, and we would therefore expect
to observe a significant change in the profile of ~Λi at
threshold relative to the zero-shift case. This expectation is
borne out by the comparison illustrated in Figs. 7(a)–7(b).

When β ¼ 0, ~Λi diverges as 1=r close to the origin while it
appears to have finite amplitude for β ¼ βG. We find that
the shift develops very sharp oscillations near the origin;
some typical behavior can be seen in the plot of β0ðt; 0Þ
shown in Fig. 7(c). We believe that these oscillations are
genuine and our expectation is that β0ðt; 0Þ will diverge in
the precise critical limit. Further, we observe that the
oscillations can create numerical artifacts and generally

FIG. 5. Snapshots of radial mass density for a marginally
subcritical calculation (δp ≈ 10−12, Nr ¼ 2048). Plotted is
dm=dr ¼ r2ρðt; rÞ where ρ is defined by (24). In this calculation
β ¼ 0 so we also have dm=dr ¼ Tt

t. As the solution evolves,
development of echoes is clearly seen. In the final frame, which is
at an instant t ¼ 15.8 that is close to the accumulation time t⋆, we
observe four echoes. Note that we count neither the tall thin peak
at the extreme left nor the first two peaks on the right as echoes.
The skinny peak will develop into an echo as p is tuned closer to
p⋆. The two peaks on the right account for the bulk of the matter
and represent the part of the initial pulse that implodes through
the origin and then disperses “promptly,” i.e. without participat-
ing in the strongly self-gravitating dynamics. A corresponding
plot for an evolution far from criticality would contain only those
two peaks. Note that the first three plots use the computational
coordinate ~r to provide a sense of the actual numerical calcu-
lation, while the last plot uses lnðrÞ in order to best highlight the
discrete self-similarity of the threshold solution. As is the case for
the data plotted in the inset of the previous figure, the approxi-
mate periodicity of the mass density in lnðrÞ suggests that the
coordinates are adapting to the self-symmetry of the critical
spacetime.

FIG. 6. Profiles of matter and geometry variables from strongly
gravitating, near-critical evolutions where the echoing behavior
emerges. Results were computed using 1þ log slicing and zero
shift, except for the dashed curve in (c) where β ¼ βG. (a) Central
energy density, ρðT; 0Þ, as a function of proper central time, T,
and in logarithmic scale for a supercritical evolution. The density
oscillates and grows exponentially as the system approaches the
critical solution and then eventually collapses to form a black
hole. (b) Profile of the extrinsic curvature, Kðt⋆; rÞ, scaled by r1=2
in order to make the echoing behavior more visible, where t⋆
denotes a time very close to the accumulation time. The evolution
is marginally subcritical in this case. (c) Central value of the lapse
function, α, during subcritical evolutions with β ¼ 0 (solid) and
β ¼ βG (dashed). The plots use a logarithmically transformed
proper time variable, − lnðTf − TÞ, where Tf is the approximate
time at which the final dispersal of the pulse from the origin
begins. In both cases α exhibits echoing and there is no evidence
of pathological behavior, such as the lapse collapsing or becom-
ing negative. The close agreement of α for the two choices of β
indicates that the time slicing varies little between the two
coordinate systems. Note that there are three extra oscillations
for the β ¼ βG case, in the time interval − lnðTf − TÞ≳ 4.5.
These are spurious and due to a lack of finite difference
resolution; there are only six time steps in each oscillation.
(d) Radial profile αðt⋆; rÞ at a time t ¼ t⋆ which is close to the
accumulation time and when the self-similarity and echoing in
the spacetime geometry is apparent.
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require higher resolution relative to the β ¼ 0 case, as well
as dissipation, to be controlled. Indeed, when using the
Gamma-driver condition we find that Kreiss/Oliger dis-
sipation is crucial to suppress unresolved high frequency
oscillations close to the origin. Figure 7(d) shows the
growth in the norm of the extrinsic curvature during a
subcritical evolution. The norm of K does not exhibit any
significant difference for the two choices of the shift.
As was the case for the β ¼ 0 calculations, the results

shown in Figs. 6–7 strongly suggest that the combination of
1þ log slicing and Gamma-driver shift provides a coor-
dinate system which is adequate for computing the near-
critical solution. In addition, the approximate periodicity
seen in Figs. 6(b)–6(c) and 7(a)–7(b) suggests that this
gauge may also be adapting to the self-symmetry.

V. CONCLUSION

We have described a numerical code that implements a
generalized BSSN formulation adapted to spherical sym-
metry. Using standard dynamical coordinate choices,

including 1þ log slicing and a shift which either vanished
or satisfied a Gamma-driver condition, we focused specifi-
cally on the applicability of the formulation and the gauge
choices to studies of type II critical phenomena. As a test of
the approach we revisited the model of massless scalar
collapse, where the properties of the critical solution are very
well known from previous work. For both choices of the
shift, we found that our code was able to generate evolutions
that were very close to criticality so that, in particular, we
could observe the expected discrete self-similarity of the
critical solution. To our knowledge, this is the first fully
evolutionary implementation of a hyperbolic formulation of
Einstein’s equations that has been able to unequivocally
resolve discrete self-similarity in type II collapse.
Furthermore, measured properties from near-critical solu-
tions, including the mass-scaling and echoing exponents, are
in agreement with previous work. Our results strongly
suggest that the G-BSSN formulation, in conjunction with
standard dynamical coordinate conditions, is capable of
evolving the spacetime near criticality without the develop-
ment of coordinate pathologies. There is also some evidence
that both gauges adapt to the self-similarity, but we have not
yet studied this issue in any detail.
We found that certain primary G-BSSN variables diverge

as the critical solution is approached: this is only to be
expected since the precisely critical solution contains a
naked singularity. Dealing with such solution features in a
stable and accurate manner presents a challenge for any
code and in our case we found that a combination of a
nonuniform grid and Kreiss/Oliger dissipation was crucial.
Our use of a time-implicit evolution scheme may have also
been important although we did not experiment with that
aspect of our implementation. However, we suspect that the
implicit time-stepping helped maintain regularity of the
solutions near r ¼ 0, as other researchers have found.
Given the success of the G-BSSN approach, it is natural

to consider its generalization and application to settings
with less symmetry, but where curvilinear coordinates are
still adopted. In particular, one axisymmetric problem that
has yet to be resolved is the collapse of pure gravity waves.
This scenario arguably provides the most fundamental
critical phenomena in gravity as the behavior must be
intrinsic to the Einstein equations, rather than being
dependent on some matter source. Critical collapse of
gravitational waves—-with mass scaling and echoing—
was observed by Abrahams and Evans over 20 years ago
[27]. However, their original results have proven very
difficult to reproduce (or refute) [28–31,34]. We refer
the reader to the recent paper by Hilditch et al. [34] for
detailed discussions concerning some apparent inconsis-
tencies among the follow-up studies, as well as the
challenges and complications involved in evolving various
types of nonlinear gravitational waves. We are currently
extending the methodology described above to the axisym-
metric case with plans to use the resulting code to study
vacuum collapse. Results from this undertaking will be
reported in a future paper.

FIG. 7. Profiles of various G-BSSN variables from marginally
subcritical evolutions. (a) Profile of the conformal connection ~Λ as
computed with β ¼ 0 and at a time t⋆ close to the accumulation
time.Note that the function has been scaledby r and in fact diverges
like 1=r. (b) Profile of ~Λ as computed with β ¼ βG, again at a
moment close to the accumulation time. Here the 1=r growth seen
when the condition β ¼ 0 is adopted is absent. (c) Profile of the
central spatial derivative of the shift vector, β0ðt; 0Þ, as computed
with β ¼ βG. As the echoes develop closer to the origin, β0
increases and presumably will diverge in the continuum, precisely
critical limit. (d) Time development of the l2-norm of the extrinsic
curvature during subcritical evolutions for both the β ¼ 0 and β ¼
βG calculations. In both cases the extrinsic curvature develops a
divergent profile near r ¼ 0 in the critical regime.
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APPENDIX A: BSSN IN SPHERICAL SYMMETRY

In this appendix, we provide the explicit expressions of
the G-BSSN evolution equations in spherical symmetry.
The evolution equations (14)–(15) for ϕ and the com-

ponents of the conformal metric ~γij simplify to

∂tϕ ¼ 1

6
αK þ β∂rϕþ σ

1

6
B; ðA1Þ

∂t ~γrr ¼ −2α ~Arr þ β∂r ~γrr þ 2~γrr∂rβ − σ
2

3
~γrrB; ðA2Þ

∂t ~γθθ ¼ −2α ~Aθθ þ β∂r ~γθθ þ 2
β

r
~γθθ − σ

2

3
~γθθB; ðA3Þ

where B is the divergence of the shift vector,

Bðt; rÞ ¼ Diβ
i ¼ ∂rβ þ

2β

r
þ β

�∂r ~γrr
2~γrr

þ ∂r ~γθθ
~γθθ

�
: ðA4Þ

To display the equation of motion for the trace of the
extrinsic curvature K and ~Aij we first define

Dij ≡DiDjα; ðA5Þ

which has two independent components,

Drr ¼ ∂2
rα − ∂rα

�∂r ~γrr
~γrr

þ 4∂rϕ

�
; ðA6Þ

Dθθ ¼ r∂rα
~γθθ
~γrr

þ r2

2
∂rα

�∂r ~γθθ
~γrr

þ 4∂rϕ
~γθθ
~γrr

�
: ðA7Þ

The trace of Dij is

D≡ γijDij ¼ e−4ϕ
�
Drr

~γrr
þ 2

Dθθ

r2 ~γθθ

�
: ðA8Þ

Then the evolution of K is given by

∂tK ¼ −Dþ α

�
1

3
K2 þ

~A2
rr

~γ2rr
þ 2

~A2
θθ

~γ2θθ

�

þ β∂rK þ 4παðρþ SÞ ðA9Þ

and the evolution equations for the traceless part of the
extrinsic curvature are

∂t
~Arr ¼ e−4ϕ½−DTF

rr þ αðRTF
rr þ 8πSTFrr Þ�

þ α

�
~ArrK −

2 ~A2
rr

~γrr

�

þ 2 ~Arr∂rβ þ β∂r
~Arr − σ

2

3
B ~Arr; ðA10Þ

∂t
~Aθθ ¼

e−4ϕ

r2
½−DTF

θθ þ αðRTF
θθ þ 8πSTFθθ Þ�

þ α

�
~AθθK − 2

~A2
θθ

~γθθ

�

þ 2
β

r
~Aθθ þ β∂r

~Aθθ − σ
2

3
~AθθB; ðA11Þ

where R denotes the 3-Ricci tensor with nonvanishing
components

Rrr ¼
3ð∂r ~γrrÞ2

4~γ2rr
−
ð∂r ~γθθÞ2
2~γ2θθ

þ ~γrr∂r
~Λþ 1

2
∂r ~γrr ~Λ

þ 1

r

�
4∂rϕ −

∂r ~γrr − 2∂r ~γθθ
~γθθ

−
2~γrr∂r ~γθθ

~γ2θθ

�

− 4∂2
rϕþ 2∂rϕ

�∂r ~γrr
~γrr

−
∂r ~γθθ
~γθθ

�

−
∂2
r ~γrr
2~γrr

þ 2ð~γrr − ~γθθÞ
r2 ~γθθ

; ðA12Þ

Rθθ ¼
r2 ~γθθ
~γrr

�
∂rϕ

∂r ~γrr
~γrr

− 2∂2
rϕ − 4ð∂rϕÞ2

�

þ r2

~γrr

�ð∂r ~γθθÞ2
2~γθθ

− 3∂rϕ∂r ~γθθ −
1

2
∂2
r ~γθθ

�

þ r

�
Λ~γθθ −

∂r ~γθθ
~γθθ

−
6∂rϕ~γθθ

~γrr

�

þ ~γθθ
~γrr

− 1: ðA13Þ

In the above expressionsthe superscript TF denotes appli-
cation of the trace-free-part operator, whose action can be
written explicitly as

XTF
rr ¼ Xrr −

1

3
γrrX ¼ 2

3

�
Xrr −

γrrXθθ

γθθr2

�
; ðA14Þ

XTF
θθ ¼ Xθθ −

1

3
γθθX ¼ 1

3

�
Xθθ −

γθθXrr

γrr

�
: ðA15Þ

Here X represents any of the tensors D, R or S.
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Finally, the evolution of ~Λi reduces to

∂t
~Λ ¼ β∂r

~Λ − ∂rβ ~Λþ 2α

~γrr

�
6 ~Aθθ∂rϕ

~γrr
− 8πSr −

2

3
∂rK

�

þ α

~γrr

�∂r ~γrr ~Arr

~γ2rr
−
2∂r ~γθθ ~Aθθ

~γ2θθ
þ 4 ~Aθθ

~γrr − ~γθθ
r~γ2θθ

�

þ σ

�
2

3
~ΛB þ ∂rB

3~γrr

�
þ 2

r~γθθ

�
∂rβ −

β

r

�

− 2
∂rα ~Arr

~γ2rr
: ðA16Þ

APPENDIX B: SCALAR FIELD DYNAMICS AND
ENERGY-MOMENTUM TENSOR IN SPHERICAL

SYMMETRY

Here we present the evolution equations of a complex
scalar field, with an arbitrary potential V, minimally
coupled to gravity. The governing equations for a massless
real scalar field follow as a special case where the
imaginary part of the field and the potential are both set
to zero.
The geometry of spacetime is given by a generic metric

in spherical symmetry:

ds2 ¼ ð−α2 þ β2a2Þdt2 þ 2a2βdtdrþ a2dr2 þ r2b2dΩ2;

ðB1Þ

where a, b, α and β are all functions of t and r and where a
and b are related to the primary BSSN variables via a ¼
~γrr expð4ϕÞ and b ¼ ~γθθ expð4ϕÞ.
The complex scalar field is given in terms of real and

imaginary parts, ΨR and ΨI , respectively,

Ψ ¼ ΨRðt; rÞ þ iΨIðt; rÞ; ðB2Þ
and has an associated energy-momentum tensor

Tμν ¼ ∇μ∇νΨR −
1

2
gμν∇ηΨR∇ηΨR

þ∇μ∇νΨI −
1

2
gμν∇ηΨI∇ηΨI

−
1

2
gμνVðjΨjÞ: ðB3Þ

The evolution of the real part of the scalar field can be
reduced to a pair of first-order-in-time equations via the
definition

ΞR ≡ b2a
α

ð∂tΨR − β∂rΨRÞ: ðB4Þ
Wethen find the followingevolutionequations forΨR andΞR:

∂tΨR ¼ α

b2a
ΞR þ β∂rΨR; ðB5Þ

∂tΞR¼
αb2

a

�
∂2
rΨRþ2

∂rΨR

r

�
þ∂rΨR∂r

�
αb2

a

�

þβ∂rΞRþΞR∂rβþΞR
2β

r
−aαb2∂2

jΨjVðjΨjÞ: ðB6Þ

The evolution equations forΨI and ΞI follow from the index
substitutions R↔I in the right-hand sides of (B5)–(B6),
respectively.
The matter source terms in the G-BSSN equations,

namely ρ, S, Si, Sij, can be simplified by defining Π
and Φ as

Π≡ a
α
ð∂tΨ − β∂rΨÞ≡ ΠRðt; rÞ þ iΠIðt; rÞ; ðB7Þ

ΠR ¼ a
α
ð∂tΨR − β∂rΨRÞ ¼

ΞR

b2
; ðB8Þ

ΠI ¼
a
α
ð∂tΨI − β∂rΨIÞ ¼

ΞI

b2
; ðB9Þ

Φ≡ ∂rΨ≡ ΦRðt; rÞ þ iΦIðt; rÞ; ðB10Þ

ΦR ¼ ∂rΨR; ðB11Þ

ΦI ¼ ∂rΨI: ðB12Þ

Using these definitions, the variables ρ and S are given by

ρðt; rÞ ¼ jΠj2 þ jΦj2
2a2

þ VðjΨjÞ
2

; ðB13Þ

Sðt; rÞ ¼ 3jΠj2 − jΦj2
2a2

−
3

2
VðjΨjÞ: ðB14Þ

In spherical symmetry, Si has only a radial component,

Si ¼ ½Srðt; rÞ; 0; 0�; ðB15Þ
with

Sr ¼ −
ΠRΦR þ ΠIΦI

a
: ðB16Þ

Similarly, the spatial stress tensor, Sij, has only two
independent components,

Sij ¼

0
B@

Srrðt; rÞ 0 0

0 r2Sθθ 0

0 0 r2sin2θSθθ

1
CA; ðB17Þ

with

Srr ¼
jΠj2 þ jΦj2

2
− a2

VðjΨjÞ
2

; ðB18Þ

Sθθ ¼ b2
�jΠj2 − jΦj2

2a2
−
VðjΨjÞ

2

�
: ðB19Þ
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