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Numerical evidence for “multiscalar stars”
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We present a class of general relativistic solitonlike solutions composed of multiple minimally coupled,
massive, real scalar fields which interact only through the gravitational field. We describe a two-parameter
family of solutions we call “phase-shifted boson stai@arametrized by central densipy and phases),
which are obtained by solving the ordinary differential equations associated with boson stars and then altering
the phase between the real and imaginary parts of the field. These solutions are similar to boson stars as well
as the oscillating soliton stars found by Seidel and J&erSeidel and W. M. Suen, Phys. Rev. L&, 1659
(199))]; in particular, long-time numerical evolutions suggest that phase-shifted boson stars are stable. Our
results indicate that scalar solitonlike solutions are perhaps more generic than has been previously thought.
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[. INTRODUCTION ested in the existence of “nontopological solitons” in the
model: that is, whether the equations of motion admitted

The nature of dark matter in the universe is currently anstable, localized, non-singular distributions of matter which
open question in physics, with many models being proposedould be interpreted as “scalar stars.” A theorem due to
to fill this gap in our understanding, some of which resort toRosen[16] suggested that, should such solutions exist, they
the use of exotic matter. Of interest to us is one class o€ould not be static. Thus, Seidel and Suen lookedpfeni-
models composed of massive scalar fields coupled to thedic configurations by substituting a particular Fourier ansatz
general relativistic gravitational field, from which compact, into the equations of motion and solving the resulting hier-
star-like solutions can be formed, solutions which go by thearchy of ordinary differential equatiof®DES via a gener-
names of “oscillating soliton stars(or “oscillatons”) [1,2]  alized shooting technique. The authors found strong evidence
for real fields and “boson stars{3-8] for complex fields.  that periodic star-like solutionsid exist and, via direct nu-
These star-like solutions have received renewed attention renerical simulation, demonstrated that their “oscillating soli-
cently, and a substantial body of evidence has been advancesh stars,” if not absolutely stable, had lifetimes many orders

in an effort to show that these fields may be key players o magnitude longer than the stars’ intrinsic dynamical
both galactic[9-11] and cosmologica[12] scales. Boson tjmes?!

stars have been Suggested as alternatives to primordial black These results were Surprising to some researchersy par-

holes[13] as well as supermassive black holes in the centergcylarly since the model has no conserved Noether current,
of galaxies[14], and their gravitational lensing properties which, it had been argued, was responsible for the existence
have been exploreld 5], further developing the treatment of of solitonic solutions in other non-linear field theories in-
these solutions as objects of astrophysical interest. volving scalar field§17,18. However, at least heuristically,
Apart from the possible astrophysical relevance of thesgue can understand the existence of the oscillating stars as
star-like objects, we find them interesting to study from agarising from a balance between the attractive gravitational
mathematical standpoint as well, for their properties asnteraction and the effective repulsive self-interaction gener-
soliton-like solutions in the nonlinear dynamics of generalsted by the mass of the scalar fidce. via the dispersion
relativity. The “solution space” of general relativity is still rg|ation of the Klein-Gordon equatipn
largely unexplored, and these scalar objects comprise simple Recently it was shown by UrenLopez[2] that approxi-
systems with which to conduct investigations. It is from thismate solutions for boson stars and oscillating soliton stars, or
viewpoint that we will proceed in this paper. “oscillatons” as he calls them, can both be derived from a

In 1991, Seidel and Suefl] considered the model of a single set of equations in a sort of “stationary limit.” The
real massive scalar field, minimally coupled to the general

relativistic gravitational field, with the additional simplifying
assumption of spherical symmetry. These authors were inter-iyjore precisely, the oscillating stars constitute a one-parameter
family which may be parametrized by the me@eriod-averaged
central densitypy. As with other relativistic stellar models, a plot
*Present address: Center for Relativity, Dept. of Physics, U. obf total [Arnowitt-Deser-MisneADM)] mass versug, exhibits a
Texas at Austin, Austin, TX 78712, Email address: maximum atpj, which seems to coincide with a transition from
shawley@physics.utexas.edu stable to unstable configurations. As expected, only stars myith
TEmail address: choptuik@physics.ubc.ca <pg could be stably evolved for long times.
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similarities seen between boson stars and oscillating soliton . 1/r%q !
stars in terms of their curves relating mass, radius and central ;= 2 ?Hi - mizaa¢i ;
density can thus be related formally.
In this paper, we build on the works of Seidel and Suen . a !
and Urém-Lopez by considering a matter content consisting d= gl'li ,
of multiple scalar fields, and we find some further ways in
which boson stars and oscillating soliton stars are similar. r .
For the specific case of two scalar fields, we find evidence $i(t,1)= (M max) — ,P(t,r)dr (4)
for a new family of quasi-periodic, solitonic configuratigns. fmax

Together with previous results, this suggests that solitonigvherer=r,,, is the outer boundary of the computational
solutions are generic to models which couple massive scalafomain. The constraint equations are the “Hamiltonian con-
fields through the Einstein gravitational field. We shouldstraint”

note, however, that we make no attempt to address the ques- Y n

tion of whether these multiple scalar fields actually exist in a'=a +2mra, (I2+d2+a’m?¢?)  (5)
nature; rather we are interested in their existence as valid 2r i=1
mathematical solutions in the Einstein-Klein-Gordon systemg 4 the

We begin by consideringn real, massive Klein-Gordon

slicing condition”

fields ¢;,i=1,2,...n, without additional self-interaction, a’-1 a' ) n -
minimally coupled to the general relativistic gravitational a'=a| ——+——4mra 2’1 miep | (6)
field. Specifically, choosing units such that1 andG=1,
the Lagrangian density for the coupled system is For diagnostic purposes, we have also found it useful to
compute and monitor the quantitied,(t,r a0, defined by
! "max. ~ o~
£=V=g| R=2 (¢{"¢ia= M) |, D) Mi<t,rmax)z4wjo r 2pi(tT)dr, (7)
whereg=deg,,,, Ris the Ricci scalar, andh; is the mass of where P
theith scalar field. i+ o7+ae
We now restrict our attention to spherical symmetry and pi(t,r)=— 232 ' ®
adopt the “polar-areal” coordinate system, so that the metric
takes the form Loosely speaking, we can interprist;(t,r o0 @s the total
contribution of fieldi to the ADM mass of the spacetime. In
ds?= — a2(t,r)dt2+a2(t,r)dr2+r2dQ?2. ) part;]cular, as long as no matter out-fluxes throughr .,
we have

The complete evolution of the scalar fields and spacetime .

can then be given in terms of a Klein-Gordon equation for ;l Mi(t.F may) = const. ©
each of thep; , and two constraints derived from the Einstein

field equations and the coordinate conditions used to main- We solve Eqs(4)—(6) subject to the the boundary condi-
tain the metric in the form2). We solve these equations tions a(t,0)=1 (local flatness at the originand a(t,r may)
using the same scheme adopted for the critical phenomernal/a(t,r ma) (S0 thatt measures proper time as-x). As

study described if19], and only briefly review that scheme in[19], we use the Sommerfeld condition fonssles§eld
here. to set the value® (t,r nma), P(t,rma) andII(t,r 40 Since the

We define the following auxiliary scalar field variables: Sommerfeld condition is not ideal for a massive field, we ran
our simulations with different values of,,, testing for any
a. periodicity or other effect which might be a functiongf,,,
=g/, i=—a; (3 and usually ran with am,,, which was large compared to
@ the time for which we ran the simulation. Even with smaller
I max, W€ found our results to be essentially independent of
I max @nd attribute this to the fact that there is very little scalar
radiation emitted from the soliton-like objects considered
here. Our results are also essentially independent of the reso-
lution of the finite differencing algorithm and the Courant-
Friedrichs-Levy factorAt/Ar, and we confirm that our re-

2Although the oscillations appear to be periodic, we do not have Zults converge in a second-order-accurate manner using
proof of their periodicity and so we use the term “quasi-periodic” independent residual evaluations.

to describe their temporal behavior. Small departures from strict

periodicity over long times scales are visible in the simulation re- II. “PHASE-SHIFTED BOSON STARS”

sults; however, these departures become smaller as we decrease the

radial mesh spacing.r, and thus it is plausible that in the limit We start by considering the case=1, so that our matter
Ar—0, the solutions are truly periodic. content is asingle scalar field, ¢(t,r). We note that the

where all variables are functions ofandr, =4/t and ’
=4/dr. The Klein-Gordon equation is written as the follow-
ing system:
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Hamiltonian constrain{5) and the slicing conditiori6) are 0.04 T
unchanged if we trivially decomposg into two identical 0.002
fields (i.e. now choosingn=2), namely ¢4(t,r) and —_ 0
bo(t,r)=bs(t,r) (with my=m,;=1), such that 003 | ) ]
PR g -0.002
1 S B
b= (bt o). (10 E % ~0.004
é 0.02 | nl‘ -0.006 4
Further, we note that for fixed(t,r) anda(t,r), if ¢(t,r) is Q g 0008
a solution of the Klein-Gordon equatio#), then so is % ~0.01 . . .
k(t,r) wherex is an arbitrary real constant. Since a soliton € 01 ¢ 10 20 30 40 |
solution of the systeni)—(6) is the oscillating soliton star, & r
we see that a trivial multi-scalar soliton solution can be ob- - SS
tained by constructing an oscillating soliton star with a single - PMSS

field qS (as de;criped irﬁl]) and then reinterpreting it as a 00 1'0 20 30 40
two-field solution in whichg,= ¢,= /2.

Moreover, if we wish to model a boson s{&-7] with no
self-interaction potentigloften called a “mini-boson star” as FIG. 1. A comparison between initial data for a true soliton star
in [8]), then we have one massive complex scalar fieldSS, solid ling with the “poor man’s soliton star{PMSS, circley
?;S(t,r), for which the real and imaginary parts behave like Which is a phase-shifted boson star where the two fields are in phase

. ~ _ . (i.e. 8=0), for a particular choice of the central value of the field
two real-valued scalar fieldsp(t,r)= ¢, (t,r) +id,(t,r). #(0,0). In this figure, we compare the scalar field of the soliton star

The boson star ansatz i(t,r)=¢(r)exp(iet), where  with one of the two(identica) fields comprising the PMSS, where

T

<Az>(r) is real. This implies we have divided the soliton star field by2 in keeping with the
~ relation (10). The relative difference between the two solutions is
$1(t,r)=p(r)cog wt), plotted in the inset. Given that these two solutions are obtained by

solving two rather different sets of ODE#ree simple ODEs for
~ the PMSS and a complicated system of ten ODEs for the 88
$o(t,1) = ¢(r)codwt+9), (11) find it remarkable thatpthey areyso simil@We note that although
we focus on the scalar fields in this figure, the metric variables for
where 6= m/2. the PMSS are also close to those of the)SS.
Thus we see that soliton stars and boson stars can both be
obtained using two real scalar fields with a constant temporal
phase difference. For soliton stars, the fields are identical for
all r andt, whereas for boson stars, the fields have identical 0.06
r dependence, and thedependence is the same to within a
phase[ln each case, the central densityis uniquely fixed

by the value of the field at the origin, e.é(O).] =
The work described in the remainder of this paper began® _g.02 |

in the midst of our numerical evolutions of boson stdrg].

The question arose, “What happens if we solve for the boson -0.06

star initial data, then ‘manually’ change the phase between

the two fields, and then re-solve the constraints to obtain the 0.06

metric variables?” For future reference, we term such a'’= )

modified-boson-star configuration a “phase-shifted bosong;

star.” This modification to the boson star data was motivated &

more by “practical” reasons than “physical” ones — we

were interested in studying oscillating soliton stars but found T'>> —0.02 ¢ 1

them difficult to construct. K 006 VaVaVavaVvaVvaVvaVvaV
Taking the boson star initial data and settidg(0,r) . : : : :

=¢4,(0,r) resulted in what might be termed a “poor man'’s 0 400 800 t 1200 1600 2000

soliton star” (PMSS. In Figs. 1, 2 and 3, we show that the . .
(PMSS. In Fig FIG. 2. Central value of the fields,(t,0)= ¢,(t,0) Vs timet,

resulting solution is very similar to the true soliton star so- " , )

lution, and can perhaps best be regarded as a soliton star wilfy the “poor man's soliton star(PMSS. In the top panel we show

a small perturbation added. both the. eyolutlon of the PMSS fle(dolld I|.ne) and, fo.r compatri-

o - o son, a similar evolution for a soliton star fieldashed ling In the

We then took the boson star initial datgr) and distrib-  jower panel we show only the “envelope” of the oscillations in the

uted it to ¢, and ¢, via Eq.(11) using some different value pMSS scalar field; the period of variations in the envelope is

of 8, such ass=— /6. [Note that we only apply Eq11)  roughly 32 times the intrinsic period of field. Stable evolutions of

for theinitial data, i.e. att=0; one cannot expect E(L1) to this system fott>>20000 have been obtained.

0.02 ¢

ope
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FIG. 4. Time development of the quantitid, (t,r .0 (solid

e) andM,(t,r ha (dashed ling defined by Eq(7), for a phase-
ifted boson star witld= — 7/6. We interpret the behavior seen in
this figure as the periodic transfer of significant amounts of energy
from one scalar field to the other via the intermediary of the gravi-
tational field. This is reminiscent of “beats” in weakly coupled

. ) ) harmonic oscillators; in this case, the coupling between the two
describe the fields for all if 6# = 7/2, as the6=0 case «ygcillators” is gravitational.

demonstrate$} One aspect of the evolution for such a system
can be seen in Fig. 4. sity pg and phased) for the case of two scalar fields. We

For each of the many values éfwe tried, we found an Speculate that extending the system to more scalar fields will
apparently stable solution which oscillated in some esseryield similar result§especially if one uses a trivial extension
tially periodic manner for very long time$The phase was such as E¢(10)]. The solutions we refer to as “phase-shifted
preserved throughout the evolution; i.e., it is not the case thdoson stars” consist of boson star initial data for which the
the system reverted to a simple “perturbed boson star” ovephase difference between the real and imaginary compo-
time) These results led us to conjecture that there may exigtents of the field has been altered. These solutions oscillate
acontinuous familyf periodic soliton-like solutiongparam-  in a seemingly periodic manner for very long times; thus
etrized by the phasé) of which our “phase-shifted boson they appear to be stable. For the casesefO, we obtain
stars” are perturbations. We hope in the future to construcelose approximations to the oscillating soliton stars of Seidel
such a familydirectly via a periodic ansatz of the form used and Suen. For other values &f we find solutions which also
by Seidel and Suen for their oscillating soliton stéansth ~ appear to be stable and periodic; furthermore we can see
additional terms incorporated to account for the nonlineaimass-energy being exchanged between the two fields.
coupling between the two scalar fields

We would like to mention that, for a give&ﬁ(O), varying
6 has very little effect on the metric variabég0,r). Conse- We wish to thank Wai-Mo Suen and Edward Seidel for
quently the so-called “stability curves” relating total mass, their valuable input and for sharing the computer code they
radius and central density are essentially the same as thged to generate initial data for oscillating soliton stars.
curves for boson stars’¢ = «/2); consequently, we do not S.H.H. would also like to thank Alan Rendall, Piotr Bizon

FIG. 3. Fourier transform of the PMSS evolution shown in Fig. .
: . in
2. The spikes in the spectrum correspond closely to the harmomc&n
{w,3w,5w, ...} of the oscillating soliton star. The value efis an
eigenvalue of the soliton star ODE problem; for this simulation,
®0=0.143.
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