
PHYSICAL REVIEW D 67, 024010 ~2003!
Numerical evidence for ‘‘multiscalar stars’’
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We present a class of general relativistic solitonlike solutions composed of multiple minimally coupled,
massive, real scalar fields which interact only through the gravitational field. We describe a two-parameter
family of solutions we call ‘‘phase-shifted boson stars’’~parametrized by central densityr0 and phased),
which are obtained by solving the ordinary differential equations associated with boson stars and then altering
the phase between the real and imaginary parts of the field. These solutions are similar to boson stars as well
as the oscillating soliton stars found by Seidel and Suen@E. Seidel and W. M. Suen, Phys. Rev. Lett.66, 1659
~1991!#; in particular, long-time numerical evolutions suggest that phase-shifted boson stars are stable. Our
results indicate that scalar solitonlike solutions are perhaps more generic than has been previously thought.
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I. INTRODUCTION

The nature of dark matter in the universe is currently
open question in physics, with many models being propo
to fill this gap in our understanding, some of which resort
the use of exotic matter. Of interest to us is one class
models composed of massive scalar fields coupled to
general relativistic gravitational field, from which compa
star-like solutions can be formed, solutions which go by
names of ‘‘oscillating soliton stars’’~or ‘‘oscillatons’’! @1,2#
for real fields and ‘‘boson stars’’@3–8# for complex fields.
These star-like solutions have received renewed attention
cently, and a substantial body of evidence has been adva
in an effort to show that these fields may be key players
both galactic@9–11# and cosmological@12# scales. Boson
stars have been suggested as alternatives to primordial b
holes@13# as well as supermassive black holes in the cen
of galaxies@14#, and their gravitational lensing propertie
have been explored@15#, further developing the treatment o
these solutions as objects of astrophysical interest.

Apart from the possible astrophysical relevance of th
star-like objects, we find them interesting to study from
mathematical standpoint as well, for their properties
soliton-like solutions in the nonlinear dynamics of gene
relativity. The ‘‘solution space’’ of general relativity is stil
largely unexplored, and these scalar objects comprise sim
systems with which to conduct investigations. It is from th
viewpoint that we will proceed in this paper.

In 1991, Seidel and Suen@1# considered the model of
real massive scalar field, minimally coupled to the gene
relativistic gravitational field, with the additional simplifyin
assumption of spherical symmetry. These authors were in

*Present address: Center for Relativity, Dept. of Physics, U
Texas at Austin, Austin, TX 78712. Email addres
shawley@physics.utexas.edu

†Email address: choptuik@physics.ubc.ca
0556-2821/2003/67~2!/024010~5!/$20.00 67 0240
n
d

f
e

e

e-
ed
n

ck
rs

e

s
l

le

l

r-

ested in the existence of ‘‘nontopological solitons’’ in th
model: that is, whether the equations of motion admit
stable, localized, non-singular distributions of matter wh
could be interpreted as ‘‘scalar stars.’’ A theorem due
Rosen@16# suggested that, should such solutions exist, th
could not be static. Thus, Seidel and Suen looked forperi-
odic configurations by substituting a particular Fourier ans
into the equations of motion and solving the resulting hi
archy of ordinary differential equations~ODEs! via a gener-
alized shooting technique. The authors found strong evide
that periodic star-like solutionsdid exist and, via direct nu-
merical simulation, demonstrated that their ‘‘oscillating so
ton stars,’’ if not absolutely stable, had lifetimes many ord
of magnitude longer than the stars’ intrinsic dynamic
times.1

These results were surprising to some researchers,
ticularly since the model has no conserved Noether curr
which, it had been argued, was responsible for the existe
of solitonic solutions in other non-linear field theories i
volving scalar fields@17,18#. However, at least heuristically
we can understand the existence of the oscillating star
arising from a balance between the attractive gravitatio
interaction and the effective repulsive self-interaction gen
ated by the mass of the scalar field~i.e. via the dispersion
relation of the Klein-Gordon equation!.

Recently it was shown by Uren˜a-López @2# that approxi-
mate solutions for boson stars and oscillating soliton stars
‘‘oscillatons’’ as he calls them, can both be derived from
single set of equations in a sort of ‘‘stationary limit.’’ Th

f

1More precisely, the oscillating stars constitute a one-param
family which may be parametrized by the mean~period-averaged!
central density,r0. As with other relativistic stellar models, a plo
of total @Arnowitt-Deser-Misner~ADM !# mass versusr0 exhibits a
maximum atr0

!, which seems to coincide with a transition from
stable to unstable configurations. As expected, only stars withr0

,r0
! could be stably evolved for long times.
©2003 The American Physical Society10-1
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similarities seen between boson stars and oscillating so
stars in terms of their curves relating mass, radius and ce
density can thus be related formally.

In this paper, we build on the works of Seidel and Su
and Ureña-López by considering a matter content consist
of multiple scalar fields, and we find some further ways
which boson stars and oscillating soliton stars are sim
For the specific case of two scalar fields, we find evide
for a new family of quasi-periodic, solitonic configurations2

Together with previous results, this suggests that solito
solutions are generic to models which couple massive sc
fields through the Einstein gravitational field. We shou
note, however, that we make no attempt to address the q
tion of whether these multiple scalar fields actually exist
nature; rather we are interested in their existence as v
mathematical solutions in the Einstein-Klein-Gordon syste

We begin by consideringn real, massive Klein-Gordon
fields f i ,i 51,2, . . . ,n, without additional self-interaction
minimally coupled to the general relativistic gravitation
field. Specifically, choosing units such thatc51 andG51,
the Lagrangian density for the coupled system is

L5A2gS R2(
i 51

n

~f i
;af i ;a2mi

2f i
2!D , ~1!

whereg[detgmn , R is the Ricci scalar, andmi is the mass of
the i th scalar field.

We now restrict our attention to spherical symmetry a
adopt the ‘‘polar-areal’’ coordinate system, so that the me
takes the form

ds252a2~ t,r !dt21a2~ t,r !dr21r 2dV2. ~2!

The complete evolution of the scalar fields and spacet
can then be given in terms of a Klein-Gordon equation
each of thef i , and two constraints derived from the Einste
field equations and the coordinate conditions used to m
tain the metric in the form~2!. We solve these equation
using the same scheme adopted for the critical phenom
study described in@19#, and only briefly review that schem
here.

We define the following auxiliary scalar field variables

F i[f i8 , P i[
a

a
ḟ i ~3!

where all variables are functions oft and r, ˙[]/]t and 8
[]/]r . The Klein-Gordon equation is written as the follow
ing system:

2Although the oscillations appear to be periodic, we do not hav
proof of their periodicity and so we use the term ‘‘quasi-period
to describe their temporal behavior. Small departures from s
periodicity over long times scales are visible in the simulation
sults; however, these departures become smaller as we decrea
radial mesh spacingDr , and thus it is plausible that in the limi
Dr→0, the solutions are truly periodic.
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Ṗ i5
1

r 2S r 2a

a
P i D 8

2mi
2aaf i ,

Ḟ i5S a

a
P i D 8

,

f i~ t,r !5f i~ t,r max!2E
r max

r

,F~ t, r̃ !dr̃ ~4!

where r 5r max is the outer boundary of the computation
domain. The constraint equations are the ‘‘Hamiltonian co
straint’’

a85a
12a2

2r
12pra(

i 51

n

~P i
21F i

21a2mi
2f i

2! ~5!

and the ‘‘slicing condition’’

a85aS a221

r
1

a8

a
24pra2(

i 51

n

mi
2f i

2D . ~6!

For diagnostic purposes, we have also found it usefu
compute and monitor the quantities,Mi(t,r max), defined by

Mi~ t,r max![4pE
0

r max
r̃ 2r i~ t, r̃ !dr̃, ~7!

where

r i~ t,r !5
P i

21F i
21a2f i

2

2a2
. ~8!

Loosely speaking, we can interpretMi(t,r max) as the total
contribution of fieldi to the ADM mass of the spacetime. I
particular, as long as no matter out-fluxes throughr 5r max,
we have

(
i 51

n

Mi~ t,r max!5const. ~9!

We solve Eqs.~4!–~6! subject to the the boundary cond
tions a(t,0)51 ~local flatness at the origin! and a(t,r max)
51/a(t,r max) ~so thatt measures proper time asr→`). As
in @19#, we use the Sommerfeld condition for amasslessfield
to set the valuesf(t,r max),F(t,rmax) andP(t,r max). Since the
Sommerfeld condition is not ideal for a massive field, we r
our simulations with different values ofr max, testing for any
periodicity or other effect which might be a function ofr max,
and usually ran with anr max which was large compared t
the time for which we ran the simulation. Even with small
r max, we found our results to be essentially independent
r max and attribute this to the fact that there is very little sca
radiation emitted from the soliton-like objects consider
here. Our results are also essentially independent of the r
lution of the finite differencing algorithm and the Couran
Friedrichs-Levy factor,Dt/Dr , and we confirm that our re
sults converge in a second-order-accurate manner u
independent residual evaluations.

II. ‘‘PHASE-SHIFTED BOSON STARS’’

We start by considering the casen51, so that our matter
content is asingle scalar field,f(t,r ). We note that the
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NUMERICAL EVIDENCE FOR ‘‘MULTISCALAR STARS’’ PHYSICAL REVIEW D 67, 024010 ~2003!
Hamiltonian constraint~5! and the slicing condition~6! are
unchanged if we trivially decomposef into two identical
fields ~i.e. now choosingn52), namely f1(t,r ) and
f2(t,r )5f1(t,r ) ~with m25m151), such that

f5
1

A2
~f11f2!. ~10!

Further, we note that for fixeda(t,r ) anda(t,r ), if f(t,r ) is
a solution of the Klein-Gordon equation~4!, then so is
kf(t,r ) wherek is an arbitrary real constant. Since a solit
solution of the system~4!–~6! is the oscillating soliton star
we see that a trivial multi-scalar soliton solution can be o
tained by constructing an oscillating soliton star with a sin
field f ~as described in@1#! and then reinterpreting it as
two-field solution in whichf1[f2[f/A2.

Moreover, if we wish to model a boson star@3–7# with no
self-interaction potential~often called a ‘‘mini-boson star’’ as
in @8#!, then we have one massive complex scalar fi
f̃(t,r ), for which the real and imaginary parts behave li
two real-valued scalar fields:f̃(t,r )5f1(t,r )1 if2(t,r ).
The boson star ansatz isf̃(t,r )5f̂(r )exp(6ivt), where
f̂(r ) is real. This implies

f1~ t,r !5f̂~r !cos~vt !,

f2~ t,r !5f̂~r !cos~vt1d!, ~11!

whered57p/2.
Thus we see that soliton stars and boson stars can bo

obtained using two real scalar fields with a constant temp
phase difference. For soliton stars, the fields are identica
all r and t, whereas for boson stars, the fields have ident
r dependence, and thet dependence is the same to within
phase.@In each case, the central densityr0 is uniquely fixed
by the value of the field at the origin, e.g.f̂(0).#

The work described in the remainder of this paper be
in the midst of our numerical evolutions of boson stars@19#.
The question arose, ‘‘What happens if we solve for the bo
star initial data, then ‘manually’ change the phase betw
the two fields, and then re-solve the constraints to obtain
metric variables?’’ For future reference, we term such
modified-boson-star configuration a ‘‘phase-shifted bos
star.’’ This modification to the boson star data was motiva
more by ‘‘practical’’ reasons than ‘‘physical’’ ones — w
were interested in studying oscillating soliton stars but fou
them difficult to construct.

Taking the boson star initial data and settingf2(0,r )
[f1(0,r ) resulted in what might be termed a ‘‘poor man
soliton star’’ ~PMSS!. In Figs. 1, 2 and 3, we show that th
resulting solution is very similar to the true soliton star s
lution, and can perhaps best be regarded as a soliton star
a small perturbation added.

We then took the boson star initial dataf̂(r ) and distrib-
uted it tof1 andf2 via Eq. ~11! using some different value
of d, such asd52p/6. @Note that we only apply Eq.~11!
for the initial data, i.e. att50; one cannot expect Eq.~11! to
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FIG. 1. A comparison between initial data for a true soliton s
~SS, solid line! with the ‘‘poor man’s soliton star’’~PMSS, circles!,
which is a phase-shifted boson star where the two fields are in p
~i.e. d50), for a particular choice of the central value of the fie
f(0,0). In this figure, we compare the scalar field of the soliton s
with one of the two~identical! fields comprising the PMSS, wher
we have divided the soliton star field byA2 in keeping with the
relation ~10!. The relative difference between the two solutions
plotted in the inset. Given that these two solutions are obtained
solving two rather different sets of ODEs~three simple ODEs for
the PMSS and a complicated system of ten ODEs for the SS!, we
find it remarkable that they are so similar.~We note that although
we focus on the scalar fields in this figure, the metric variables
the PMSS are also close to those of the SS.!

FIG. 2. Central value of the fieldsf1(t,0)5f2(t,0) vs timet,
for the ‘‘poor man’s soliton star’’~PMSS!. In the top panel we show
both the evolution of the PMSS field~solid line! and, for compari-
son, a similar evolution for a soliton star field~dashed line!. In the
lower panel we show only the ‘‘envelope’’ of the oscillations in th
PMSS scalar field; the period of variations in the envelope
roughly 32 times the intrinsic period of field. Stable evolutions
this system fort.20000 have been obtained.
0-3
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S. H. HAWLEY AND M. W. CHOPTUIK PHYSICAL REVIEW D67, 024010 ~2003!
describe the fields for allt if dÞ6p/2, as thed50 case
demonstrates.# One aspect of the evolution for such a syste
can be seen in Fig. 4.

For each of the many values ofd we tried, we found an
apparently stable solution which oscillated in some ess
tially periodic manner for very long times.~The phase was
preserved throughout the evolution; i.e., it is not the case
the system reverted to a simple ‘‘perturbed boson star’’ o
time.! These results led us to conjecture that there may e
a continuous familyof periodic soliton-like solutions~param-
etrized by the phased) of which our ‘‘phase-shifted boson
stars’’ are perturbations. We hope in the future to constr
such a familydirectly via a periodic ansatz of the form use
by Seidel and Suen for their oscillating soliton stars~with
additional terms incorporated to account for the nonlin
coupling between the two scalar fields!.

We would like to mention that, for a givenf̂(0), varying
d has very little effect on the metric variablea(0,r ). Conse-
quently the so-called ‘‘stability curves’’ relating total mas
radius and central density are essentially the same as
curves for boson stars (d56p/2); consequently, we do no
consider it relevant to plot them here.

III. CONCLUSIONS

We have strong numerical evidence for the existence
two-parameter family of soliton-like solutions to th
Einstein-Klein-Gordon system~parametrized by central den

FIG. 3. Fourier transform of the PMSS evolution shown in F
2. The spikes in the spectrum correspond closely to the harmo
$v,3v,5v, . . . % of the oscillating soliton star. The value ofv is an
eigenvalue of the soliton star ODE problem; for this simulatio
v.0.143.
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sity r0 and phased) for the case of two scalar fields. W
speculate that extending the system to more scalar fields
yield similar results@especially if one uses a trivial extensio
such as Eq.~10!#. The solutions we refer to as ‘‘phase-shifte
boson stars’’ consist of boson star initial data for which t
phase differenced between the real and imaginary comp
nents of the field has been altered. These solutions osci
in a seemingly periodic manner for very long times; th
they appear to be stable. For the case ofd50, we obtain
close approximations to the oscillating soliton stars of Sei
and Suen. For other values ofd, we find solutions which also
appear to be stable and periodic; furthermore we can
mass-energy being exchanged between the two fields.
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FIG. 4. Time development of the quantitiesM1(t,r max) ~solid
line! andM2(t,r max) ~dashed line!, defined by Eq.~7!, for a phase-
shifted boson star withd52p/6. We interpret the behavior seen i
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tum Grav.17, 1707 ~2000!; T. Matos and L.A. Uren˜a-López,
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