(GRTENSORII

GRTensorll Release 1.50
For MapleV Releases 3 and 4

B. Specitying spacetimes

Peter Musgrave
Denis Pollney
Kayll Lake

July 1996

Contents

1 Metrics and bases

2 Using makeg()

3 Loading spacetimes from a file

4 Coordinate transformations

5 Constraint equations

6 Creating a null tetrad from a metric
7 Metrics from an array

8 Saving modified spacetimes

B2
B3
B6
B8
B10
B11
B13

B14

Queen’s University at Kingston, Ontario

B. Specifying spacetimes B2

The simplest way to specify a spacetime geometry in GRTensorII is to use the makeg() facility.
This function aids input by prompting the user for the information required to specify a coordinate
metric (a n X n dimensional 2-tensor) or basis (a set of n linearly independent vectors related by
a user-defined inner product).!

In addition to using makeg(), new spacetimes can be constructed from previously defined
spacetimes through the use of the commands:

grtransform() — performs a coordinate transformation of a metric,
nptetrad() — constructs a null tetrad corresponding to a metric,
nprotate() — performs rotations of a null tetrad, and

grnewmetric() — creates a metric from a 2 x 2 MapleV array.

These commands are described in Sections 4-7 of this booklet.

The metrics created for use in GRTensorII can be saved to an ASCII file directly using makeg ()
or the grsaveg() command. These files can be loaded into GRTensorII using either the gload ()
or grload() commands. A directory of commonly used metric/basis files is available from the
GRTensor world-wide-web pages [1].

1 Metrics and bases

The makeg () can be used to enter all of the information needed to specify a spacetime, either as a
metric or set of basis vectors. This section establishes some notation that will be used throughout
these booklets.

Metrics are n dimensional 2-tensors which are assumed to be symmetric:

gun gi2 - Ggin
Gab = 912 Gg22
Jin - Inn
The components g;; are functions of the n coordinates {z1,... ,z,}.

Bases are sets of n independent vectors,
{e(l)a:[ell7"' 76171,]7 e(n)a:[enlv"' 7enn]:}
whose inner product is defined by the symmetric matrix
M1 "2 - Tn
n(a)(b) — 77%2 722 :

Mn - TInn
via o
(e e)’) =D Veq e’ = g
(Note that here and throughout GRTensorII we use the convention that basis vectors are labeled
with bracketed indices {(a), (b),...}.)

L Although GRTensorll allows specification of spacetimes as both metrics and bases, in these booklets we will
often refer to both formats as simply metrics with the understanding that we are referring also to bases created
via makeg().

GRTensorll software and documentation is copyright 1994-1996 by the authors. GRTensorll software and documentation
is provided free of charge and without warranty. The authors retain any and all rights to the software known as GRTensorII
and its documentation. GRTensorIl development has been supported by the Natural Science and Engineering Research
Council of Canada and the Advisory Research Committee of Queen’s University. MapleV is a trademark of Waterloo
Maple Software.

B. Specifying spacetimes B3

2 Using makeg()

The syntax for the makeg() command is as follows:

makeg (metricName, [metricPath])

metricName — the name to be given to the newly created metric or basis. This name will also
be used to create the filename (with a .mpl extension) in which the metric information
will be saved.

metricPath — (optional) this argument can be used to specify a directory name in which the
metric file is to be placed. The argument is a string with directory levels separated by
forward slashes, ¢/’. If this argument is not specified the directory stored in the global
option variable grOptionMetricPath is used instead.

Example: > makeg (bondi):

Upon issuing the makeg() command, the user is prompted to enter all of the information
necessary to specify the spacetime. The first of these prompts asks for the format in which the
data is to be entered:?

Do you wish to enter a 1) metric [g(dn,dn)],
2) line element [ds],
3) non-holonomic basis [el...e4], or
4) NP tetrad [1l,n,m,mbar]

The reply should be an integer from 1 to 4. Each option is described in turn below.

2.1 The metric as a covariant 2-tensor
The user is prompted to enter the following information:

Coordinates These are entered as a MapleV list, eg. [r,theta,phi,t]. The names which are
used as coordinates must be previously unassigned. Any number of coordinates may be
entered, and their number will determine the dimension of the spacetime.

Signature This is an integer, s = n4 — n_, where n, is the number of positive components on
the diagonal of the metric, and n_ is the number of negative components on the diagonal
of the metric in a locally orthonormal basis. If the global variable grOptionLLSC is set to
true, then this prompt does not appear.’

Form of the metric (diagonal or symmetric) This will reduce the number of coordinates which
the user is required to input. If the ‘diagonal’ option is chosen then off-diagonal components
are automatically set to zero. Components on the lower diagonal are automatically set
equivalent to those on the upper diagonal. GRTensorIl does not currently handle non-
symmetric metrics.

2Note that the first option refers to ‘g(dn,dn)’. This is the standard GRTensorII representation of the covariant
metric. See Booklet C: Calculating tensor components for more details regarding this notation.

3See the discription of the grOptionLLSC in Booklet F: Installation and setup and the ?groptions online help
page.

B. Specifying spacetimes B4

Metric components A prompt appears for each unknown component of the covariant metric.
Keep in mind that if a component involves functions of the coordinates then the coordinate
dependence must be stated explicitly, as in M(x,t) for example.

2.2 The metric as a line-element

It is often most convenient to enter a metric in the form that it is most commonly presented in
journals and texts, ie. as a line element. This helps to minimize the risk of transcription errors
between paper and the computer.

Choosing the second option from the makeg() menu, the user is first prompted to enter the
coordinate names. As above, this should take the form of a MapleV list of unassigned names, eg.
[r,theta,phi,t].

The line element is then entered using the notation d [x] to represent the coordinate differential
dz. For example, the line element

da® + (dy + dz)*

would be entered as
d[x]"2 + (d[y] + d[z])"2:

Naturally, the line element must be a quadratic form in the coordinate differentials.
Once the line element is entered, it is converted to a n x n covariant 2-tensor (g(dn,dn) in
GRTensorII’s notation) which is displayed so that they can be checked for errors in the input.

2.3 Non-holonomic bases

Choosing Options 3 or 4 from the makeg() menu allows one to enter the components of a non-
holonomic basis. The first of these options (option 3: non-holonomic basis [el...e4])allows
the user to also specify the inner product, 5{®(®) between individual basis vectors. The second
(option 4: NP tetrad [1,n,m,mbar]) assumes the inner product of a Newman-Penrose null
tetrad,

01 0 0

(@@ . |1 0 0 0

=N 0 0 -1 |- (1)
00 -1 0

In both cases, the user is first prompted to input the coordinate names as a MapleV list, eg.
[r,theta,phi,t].

The next prompt asks if covariant or contravariant components of the tetrad are to be
entered.* The user is then asked to enter the basis vectors. These should be specified in the form
of a MapleV list, eg. [1,0,0,0]. The number of vectors that are entered is determined by the
number of coordinates making up the spacetime. For general bases, the vectors are labeled by

4The option to enter both forms of tetrad also exists, since in certain cases the inversion of the tetrad introduces
complicated terms (especially radicals) which MapleV has difficulty simplifying. In such cases it is sometimes
preferable to enter both forms of the vector if they are known in a simple form. The user must be careful that the
forms are mutually consistent. (For NP-tetrads, the object testNP(bdn,bdn) can be calculated to ensure that at
least the basis vectors satisfy an NP inner product.

B. Specifying spacetimes B5

the numbers 1,... ,n. For null tetrads, the basis vectors are labeled 1, n, m, mbar respectively.

If the user has chosen to enter a general basis (Option 3 from the makeg() starting menu), the
next prompts ask for the components of the inner product between the basis vectors. This is the
contravariant two-tensor 7(*)(*) whose (a)(b) component is the value of the inner product of basis
vectors a and b. In common applications, this tensor will have constant coefficients. The curvature
tensors defined in the GRTensorlI standard object libraries permit the use of inner products with
non-constant coefficients, however it is required that the inner product be symmetric across the
diagonal.

If a null tetrad has been selected (Option 4 from the starting menu), then the inner product
between the basis vectors is assumed to be of the form specified in Eq. (1).

Once the inner product is selected (or chosen by default in the case of null tetrads) the basis
vectors and inner product are both displayed so that they can be checked for errors in the input.

2.4 Other options

Once the data needed to specify the spacetime has been entered, a menu presents a number of
additional options for correcting, saving, and supplementing the data. Typically the menu for
metric entry looks like:

You may choose to 0) Use the metric without saving it,
1) Save the metric as it is,
2) Correct an element of the metric,
3) Re-enter the metric,
4) Add/change constraint equations,
5) Add a text description, or
6) Abandon this metric and return to Maple.

The options in this menu have obvious analogues for the cases of basis or null-tetrad input. Each
option is described briefly below:

Use the metric without saving it: The metric is initialized in the current session as
g(dn,dn), and can thus be displayed via the command grdisplay(g(dn,dn)). The com-
ponents are not saved to a file, and so will be lost when the MapleV session is ended. The
components of the metric can be saved at a later time using the grsaveg() command.

Save the metric as it is: Any information that has been entered in this invocation of makeg()
is saved to the file ‘metricName .mpl’ (where metricName is the name specified in the argu-
ment to makeg()) and in the directory given by the global variable grOptionMetricPath or
by the optional metricPath argument to makeg().5 The metric is initialized for the current
session as in the previous option.

Correct an element of the metric: The user is prompted to enter the index values of the
metric component to be corrected. This should take the form of a two-component MapleV
list which contains coordinate names, eg. [r,thetal.

5For a description of the grOptionMetricPath variable, see Booklet F: Installation and setup or the online help
page 7groptions.

B. Specifying spacetimes B6

Re-enter the metric: The user is prompted to re-enter each component of the metric in suc-
cession as described in Section 2.1 above.

Add/change constraint equations: The user has the opportunity to add information taking
the form of constraint equations to the metric. For example, consider a metric containing
the function m(r,t) which is required to satisfy the partial differential equations

—m(r,t) = r’m(r,t), and %m(r, t) = t>m(r,t)°.

or

Choosing this option, the user is prompted to enter these constraint equations as a list:
[diff (m(r,t), r) = r~2xm(r,t), diff (m(r,t), t) = t"2*«m(r,t)"2]

These constraints could then be applied to objects calculated from this metric via grcalc()
by using the appropriate options from gralter(). (See Section 5 and Booklet C: Calcu-
lating tensor components.)

Add a text description: A line of text describing the metric can be saved along with its com-
ponents so that it may be more easily identified later. Such a note might include its full
name, a journal reference, or some descriptive adjectives.®

The new metric created by makeg() automatically becomes the default metric to be used for
subsequent calculations (see Section 3.1).

3 Loading spacetimes from a file

Metrics and bases created by makeg() are saved automatically to metric files in the default
directory specified by the grOptionMetricPath variable. These metric files can be loaded in
future sessions using qload() or grload(). Each of these is described below.

A directory of commonly used metric files is distributed with GRTensorIl. A collection is also
kept online [1]. The format of metric files is outlined in Section 8.1.

qload (metricName)
metricName — the name of the metric to be loaded.

Example: > qload (schw):

The qload () command searches the directories specified by the grOptionqloadPath global
variable for the file metricName.mpl. If grOptionqloadPath is not assigned, or if the specified
file is not found by one of the directories specified by grOptiongloadPath, then the directory
specified by the global variable grOptionMetricPath is searched.

8Inclusion of such descriptions is strongly recommended as it can make large directories of metrics much more
manageable. For instance, in Unix systems, some idea of the contents of each file in a metrics directory can be
obtained using the command ‘grep Info *.mpl’. This command will list the text descriptions of each metric file
(see Section 8.1).

B. Specifying spacetimes B7

grload (metricName, metricFile)

metricName — the name by which the new metric is to be referenced in the current session.

metricFile —the complete file name (including directory path and ‘. mpl’ extension) of the metric
file to be loaded.

Example: > grload (schwarzschild, ‘c:/mydir/metrics/schw.mpl®):

The grload() command loads the file specified by the metricFile command. For the
remainder of the current session, the metric is referenced by the metricName parameter, which
(unlike qload ()’s) need not be related to the name of the metric file.

A spacetime loaded by qload() or grload() becomes the default metric to be used for
subsequent calculations (see Section 3.1).

The following objects are initialized by the loading commands (as well as by makeg()), de-
pending on the form of spacetime specified by the input file (ie. metric or basis):”

metric: ds, g(dn,dn)
general covariant basis: eta(up,up), e(bdn,dn), basis(dn)
general contravariant basis: eta(up,up), e(bdn,up), basis(up)
covariant null tetrad: eta(up,up), e(bdn,dn), nullt(dn)
contravariant null tetrad: eta(up,up), e(bdn,up), nullt (up)

Additionally, for all of the above types of spacetime the objects
x(up), dimension,
are also initialized, as well as
Info, constraint, sig,

if applicable.

See Booklet C: Calculating tensor components or the online help pages 7grt_objects and
7grt_basis for a description of these objects. The global variables grOptionqloadPath and
grOptionMetricPath are described in Booklet F: Installation and setup and the ?groptions
online help page.

Once a metric name has been used in a session, it can not be re-used. For instance, if the schw
spacetime has already been loaded, attempts to use the commands makeg(schw) or qload (schw)
will fail. Metrics can be cleared from a session using the grclear() command, described in
Booklet C: Calculating tensor components.

"In addition to the initialization of these objects, the following assumptions regarding the signature are made
when loading a four-dimensional spacetime when the global grOptionLLSC variable is set true. If the spacetime is
specified in the form of a metric, g,5, or as a basis with a general inner product, then the signature is by default
set to +2. If the spacetime is specified as a null tetrad satisfying an NP inner product, Eq. (1), then the signature
is set to -2. The assumed signature of the spacetime is stored in the sig object and can be viewed by using the
command grdisplay(sig). In this version of GRTensorll, the value of the signature is only used in generating an
NP tetrad via the nptetrad() command (see Section 6, below). If the grOptionLLSC variable is set to false, then
sig is not initialized unless the signature is explicitly given in the metric file.

B. Specifying spacetimes B8

3.1 The default spacetime

A number of commands described in this booklet (makeg(), qload(), grtransform(), etc.)
create new metrics or bases which describe a background geometry for which tensors can be
calculated. Generally, once these commands are issued, the spacetime which they specify becomes
the default spacetime (or background geometry) for future calculations. For instance, once the
qload(schw) command is issued (the command to load the Schwarzschild metric), all subsequent
calculations will assume this background metric until the default is changed.

If a number of different metrics have been created or loaded in single GRTensorII section, one
can switch between them by using the grmetric() command, which has the form:

grmetric (metricName)

metricName — the name of a metric (or basis) which has been created or previously loaded in
the current session.

Example: > grmetric (schw):

This command makes the metric named in its argument the default metric for subsequent
calculations.

Alternatively, one can perform calculations using metrics other than the default metric by
specifying the metric name as a parameter to the objects being calculated. The metric name is
placed in square brackets following the name of the object. For instance,

> grcalc (R[schw](dn,dn)):
calculates the covariant Ricci tensor for the schw spacetime, even if that spacetime is not the

current default. See the Booklet C: Calculating tensor components for details on the use of the
grcalc() command.

4 Coordinate transformations

The command grtransform() can be used to perform coordinate transformations of the metric
tensor. It takes the following form:

B. Specifying spacetimes B9

grtransform (oldmetric, newmetric, xform, [newsig])

oldmetric — the name of the metric to be transformed.
newmetric — the name of by which the transformed metric is to be referenced in the future.
xform — a list specifying the transformation.

newsig — (optional) an integer indicating the signature of the transformed metric, if different
from the original signature.

Example: > grtransform (schw, kruskal, xform := [
u(r,t) = sqrt(r/(2*m)-1)*exp(r/(4*m))*cosh(t/(4*m)),
v(r,t) = sqrt(r/(2*m)-1)*exp(r/(4*m))*sinh(t/(4*m)),
Theta(theta) = theta, Phi(phi) = phi]):

The third argument, xform, is specified by a list of functions giving the old coordinates in
terms of the new coordinates or vice versa. For instance if we are performing the transformation
from coordinates (t,z,y, 2) to new coordinates (7,u,v,w), then we could specify xform as a set
of functions of old in terms of new,

xform := [t(tau,u,v,w)= ..., x(tau,u,v,w)= ..., y(tau,u,v,w)= ..., z(tau,u,v,w)

=... 1]:
or new in terms of old,
xform := [tau(t,x,y,2)= ..., u(t,x,y,2)= ..., v(t,x,y,2)= ..., w(t,x,y,z2)= ...]:

Note that for an n-dimensional spacetime, n functions must be specified. Also, none of the new
set of coordinates can be the same as any of the old coordinates. For instance, if both spacetimes
are spherically symmetric, new coordinate names for the angles (6, ¢) must be given for the new
spacetime, such as (0, ®).

The following set of commands performs the transformation of the Schwarzschild spacetime
from spherical to Kruskal coordinates:®

> qload (schw):

> xform := [u(r,t) = sqrt(r/(2*m)-1)*exp(r/(4*m))*cosh(t/(4*m)),
v(r,t) = sqrt(r/(2*m)-1)*exp(r/(4*m))*sinh(t/(4*m)),
Theta(theta) = theta,
Phi(phi) = phi]:

> grtransform (schw, kruskal, xform):

It is not necessary that each of the transformation functions be specified as a function of all n
variables, but each of the variables must be represented in at least one of the functions of the set.
For instance, in the example above, at least one of the components of xform must be a function
of t, at least one must be a function of r, etc.

8For a more complete presentation of this example see the demonstration file kruskalo.ms, which can be
downloaded from the GRTensorII world-wide-web pages [1].

B. Specifying spacetimes B10

The transformed coordinates can be saved to a file using the grsaveg() command (see Sec-
tion 8). The new metric created by the grtransform() command becomes the new default metric
for subsequent calculations (see Section 3.1).

5 Constraint equations

The makeg() command provides the ability to save constraint equations with metric files. These
are auxiliary equations which must be satisfied by functions contained in the metric and can later
be applied to objects calculated from the metric or basis.

For example, in Kruskal’s coordinates for the Schwarzschild spacetime,

m2(r — 2m)

2
=16—————-
ds 6r(u2—v2)

(du® — dv?) + r2dQ?,

the function r(u,v) is required to satisfy the differential relations

or _ mu(r—2m) or mu(r — 2m)

ou r(u?—v?)’ v rwr—v?)

Constraint equations can be included when the metric is created using makeg(). Alternatively,
the command grconstraint () allows you to add or modify the constraints equations associated
with a given metric. It takes the following form:

grconstraint (metricName)
metricName — the name of a previously loaded metric.

Example: > grconstraint (schw):

Constraint equations may be added to a metric, removed or re-arranged using this command.
grconstraint () is menu driven and prompts for addition/modification/deletion of constraint
equations.

The constraints are not invoked automatically during calculation of tensors, but must
be applied explicitly using gralter() or grcalcalter() (see Booklet C: Calculating tensor
components). A command sequence which would calculate the Ricci tensor for a metric and then
apply the metric constraint equations to the result is:

> grcalc (R(dn,dn)):
> gralter (R(dn,dn), consr):

Note that constraint equations modified using grconstraint () are not saved automatically
in the metric file. The command grsaveg() (see Section 8) should be used if the modified
constraints are to be associated with the metric in future GRTensorII sessions. They will then be
loaded automatically when the metric is loaded using qload() or grload().

B. Specifying spacetimes B11

6 Creating a null tetrad from a metric

The command nptetrad() can be used to create a null tetrad (whose basis vectors satisfy the
inner product given by the 7, of Eq. (1)) from a 4-dimensional metric, gq5. The format of
the command is:

nptetrad ([InSpace])

InSpace — (optional) a pair of coordinates which describe a preferred timelike 2-space in which
the [and n vectors are to reside.

Example: > nptetrad ([t,r]):

The command finds a set of null 1-forms satisfying the NP inner product, Eq. (1), for a given
metric, gqb- The forms are saved as the object e (bdn,dn).

The algorithm for constructing the tetrad proceeds as follows. As a first step, a set of vectors
corresponding to the columns of the covariant metric are used as a basis,

€(1) *= Yta) €(2) *= 92a; €(3) = Y3a, €(4) *= G4a-

If a pair of coordinates are listed as the optional InSpace argument, then the corresponding vectors
are used to construct the I and n vectors. For instance, if the coordinates of the spacetime are
given as (t,r, 0, ¢) and the argument is given as [t,r], then the [and n vectors will be constructed
as linear combinations of the vectors

e) = [9i1, ge2, 913, eal,
€2) = [gr17g7‘27.g7‘3agr4]-

The remaining pair are used to construct m and m.

If the argument is omitted, a valid null tetrad will still be created, though the construction
might be somewhat less efficient if the computer is left to find appropriate vectors on its own.’
It will first attempt to locate null vectors among the columns of the metric. If none exist, then
it picks a pairs of non-null column vectors and attempts to carry out an orthonormalization
procedure to construct a tetrad satifying the NP inner product. If the first attempt fails (usually
because it has chosen two spacelike vectors to construct ! and n), it cycles through pairs of
vectors until it is successful, or all unique combinations of columns of the metric have been
exhausted, in which case a warning is issued.

A problem arises because of the need to take square roots in the normalization process.
Because of the unpredictable usage of the imaginary number ¢ = v/—1 by the MapleV sqrt ()
command acting on symbolic expressions, it is not always possible for the algorithm to determine
when a null tetrad is of the NP form or not. Occasionally a tetrad can be constructed which

91n previous versions of GRTensorll, the nptetrad() command required the specification of a timelike vector
as input. The new algorithm makes better use of the coordinates of the spacetime (especially null coordinates) in
constructing the tetrad. Note that in versions of GRTensorll previous to 1.50, the output of nptetrad() was in
the form of the contravariant vectors e(bdn,up)= e(a)b. The natural form of output for the new algorithm is the
covariant 1-forms, and thus the revised nptetrad() has as its output the components of e(bdn,dn) = e(4)p-

B. Specifying spacetimes B12

satisfies the NP inner product, but for which / and n contain imaginary components, or for which
the vector m is not actually the complex conjugate of m. Since the algorithm can not reliably
test these criteria, it is the user’s responsibility to check that the objects e(bdn,dn) conform to
these properties of a true NP tetrad.!®

The appearance of large terms in the components of the basis, especially terms containing
radicals, is a common difficulty with tetrads produced by the nptetrad() command. To ensure
that future calculations are optimized, it is important to express the basis in as simple a form as
possible. To do this, apply the relevant gralter() commands, especially radical and radsimp
to the basis vectors, e(bdn,up) until they seem to be fully simplified. (Simplification using
gralter () is described more fully in Booklet C: Calculating tensor components).

Note that the implementation of the Newman-Penrose formalism in GRTensorII follows that
of the original specification of [2]. As such, it requires that the spacetime has a -2 signature.
This conflicts with the Landau-Lifshitz spacelike convention for which GRTensorIl metrics are
generally defined. If neccessary, the nptetrad() command will prompt the user, asking if
the signature of the spacetime is to be reversed when constructing the tetrad. An affirmative
response will cause the sign of the components of g,; and g% to be reversed.!! If the spacetime
signature is anything other than +2 or -2, the nptetrad () command can not be used.

Tetrads created using nptetrad () can be saved using grsaveg() For more information regard-
ing GRTensorlII calculations in a null tetrad, see Booklet E: Bases and tetrads. The components
of the basis created by nptetrad() can be saved using the grsaveg() command (Section 8).

6.1 Tetrad rotations
An alternative method of simplifying null tetrads is to perform a rotation of the basis vectors.
Such rotations can be divided into three classes [2]:
Class I: — leaves basis vector I unchanged. This rotation is specified by a single complex-valued
parameter, a. The basis vectors transform according to:
I —1,
n — n+a*m+ am + aa*l,
m — m+ al,
m — m+ a*l.
Class II: — leaves basis vector n unchanged. This rotation is specified by a single complex-valued
parameter, b. The basis vectors transform according to:
I — 14+ b*m + b + bb*n,
n—mn,
m — m + bn,
m — m+ b*n.

107t is the authors’ experience that a true NP tetrad is always produced when the InSpace argument is specified,
or when the spacetime contains at least one null coordinate.

110nly the signatures of these objects are reversed. Objects previously calculated from the metric will not be
updated to the new spacetime signature. For this reason, it is safest to run nptetrad() near the beginning of a
session before further calculations with the metric are carried out in order to avoid sign conflicts.

B. Specifying spacetimes B13

Class III: — This rotation is specified by two real-valued parameters: 6 determines a rotation in
the (m,m) plane, and A determines a boost in the n direction. The basis vectors transform
according to:

I — A4,

n — An,
m — exp(if)m,
m — exp(—i0)m.

The nprotate() command takes the rotation class and its corresponding parameters as
arguments, and performs the specified rotation on the basis vectors e(bdn,up). The command
has the form:

nprotate (class, parml, parm?2)

class — the rotation class, as defined above. This argument takes the value I, II, or III,
depending on the desired rotation.

parml — the first rotation parameter, Re(a) for Class I rotations, Re(b) for Class II rotations,
or A for Class III rotations.

parm?2 — the second rotation parameter, Im(a) for Class I rotations, Im(b) for Class II rotations,
or 8 for Class III rotations.

Example: > nprotate (III, sqrt(2)*sqrt(1-2*m/r), 0):

Note, in the current versions of GRTensorIl, only rotations of the basis can be performed.
The action of basis rotations on other curvature tensors has not yet been implemented. Thus,
curvature tensors must be recalculated from the rotated basis.

The newly created tetrad is initialized as the default for subsequent calculations (see Section
3.1). The components of the rotated basis are not saved automatically, but can be saved for future
used with the grsaveg() command (Section 8).

7 DMetrics from an array

The grnewmetric() command defines a new metric by copying the components of a covariant
two-index tensor to a new metric tensor. The format of the command is:

B. Specifying spacetimes B14

grnewmetric (newMetric, objectName, [coords])
newMetric — the name to be assigned to the newly created metric.

oldObject — the name of a two-index covariant GRTensor object.

coords — (optional) a list of coordinate names for the new metric, if they are different from those
of the object from which it is created.

Example: > grnewmetric (confRW, confg(dn,dn)):

The newly created metric becomes the default metric for the current session. It is not saved
automatically to a metric file, but can be saved using the grsaveg() command.

8 Saving modified spacetimes

The grsaveg() command is used to save the information associated with a given metric or basis.
The format of the command is:

grsaveg (saveName, [metricPath])

saveName — the name (without the ‘.mpl’ extension) of the file in which the metric (or basis)
information is to be stored.

metricPath — (optional) the directory in which the the metric file is to be placed. If this argument
is not specified the directory stored in the global option variable grOptionMetricPath is
used instead.

Example: > grsaveg (newSchw):

The current default spacetime is saved to the file specified by saveName.mpl in the directory
specified by the global grOptionMetricPath variable or the metricPath argument, if it is specified.
The information saved includes:

coordinates, x(up),

metric components, g(dn,dn) (if they are assigned for the default spacetime),
basis components, e(bdn,dn) and/or e(bdn,up) (if assigned),

signature, sig (if assigned),

constraint equations, constraint (if assigned),

text description, Info (if assigned).

(See Booklet C: Calculating tensor components or the 7grt_objects and ?grt_basis online help
pages for descriptions of these objects.)

If both metric components (g(dn,dn)) and basis components (e (bdn,dn) and/or e (bdn,up))
have been assigned for the current default spacetime, then the user is prompted as to which types

B. Specifying spacetimes B15

Ndim_ := 4:

x1_ :=r

x2_ := theta:

x3_ := phi:

x4_ = t:

sig_ := 2:

gll := diff (R(r,t),r)"2/(1+£(x)):

g22_ := R(r,t)"2:
g33_ := R(r,t) "2*sin(theta) "2:
g4d_ = -1:

constraint_ :=[diff(diff(R(r,t),r),t) = (2*diff (m(r),r)/R(r,t)
- 2xm(r)*diff (R(r,t) ,r)/R(r,t) "2
+ diff(£(r),r))/(2*sqrt (2*m(r) /R(r,t)+f(r))),
diff (R(r,t),t) = sqrt(2*m(r) /R(r,t)+f(r)),
diff(diff(R(r,t),t),t) = -m(r)/R(r,t) "2,
diff(diff(diff(R(r,t),t),r),t) = -diff(m(r),r)/R(r,t)"2 +
2*xm(r) *diff (R(r,t) ,r) /R(r,t)"3

1:
Info_:= ‘The Tolman dust solution (Proc. Nat. Acad. Sci. 20, 169,1934)°:

Figure 1: The metric file dust1.mpl from the standard metric library.

of information are to be saved.

Note that MapleV can not check for the existence of files before it performs the write oper-
ation. Thus if a metric file with the specified name already exists in the grOptionMetricPath
directory, then it will be overwritten.

8.1 Metric files

Metric files are simply ASCII files containing the coordinate components of the metric or basis.
They can be modified (or created) with a text editor. By default, files are saved in the direc-
tory specified by the grOptionMetricPath variable with a file name of the form metricName .mpl.

?

Every metric or basis description file must contain a line ‘Ndim_ := n:’ where n is a number

giving the dimension of the spacetime.

Every metric or basis file must contain a set of assignments to the variables x1_, x2_, ..., xn
giving the names of the coordinates of the spacetime.

-

If the file describes a covariant metric, gq;, it must contain a set of assignments to the
variables g11_, g12_, ..., gnn_, giving the components of the metric. Only the upper diagonal
of the metric needs to be specified. Any element of the upper diagonal that is not assigned is
assumed to have the value zero.

If the file describes a set of basis vectors, it must contain assignments to the variables b11_,

B. Specifying spacetimes B16

bl2_, ..., bnn_, giving the components of contravariant basis vectors, or assignments to bd11_,
bd12_, ..., bdnn_, in the case of covariant basis vectors. The inner product must also be specified
by assignments to the variables etall_, etal2_, ..., etann_. Variables which are not assigned

are assumed to have value zero when the basis is loaded.

If the signature of the spacetime has been assigned, it is assigned to the variable sig_in the
metric file. This variable is of the form of an integer |s| < n.

If the metric or basis possesses constraint equations (see above), these are represented as a
MapleV list assigned to the variable constraint_. Text descriptions can be included by assigning
a string to the name Info_.

An example of a metric file which specifies a spacetime using a covariant metric is given
in Fig. (1). Many examples can be found in the metrics directory which is provided with the
GRTensorll installation, as well as from the GRTensorIl world-wide-web pages [1].

References

[1] GRTensorIl software and documentation can be obtained free of charge from the ftp site
at astro.queensu.ca in the /pub/grtensor directory, or from the world-wide-web page
http://astro.queensu.ca/"grtensor/.

[2] E. T. Newman and R. Penrose. An approach to gravitational radiation by a method of spin
coefficients. J. Math. Phys., 3:896-902, 1962. (Errata 4:998, 1963).

B. Specifying spacetimes B17

Commands described in this booklet:

makeg (metricName, [metricPath]) B3
qload (metricName) B6
grload (metricName, metricFile) B7
grmetric (metricNaIe) ... B8
grtransform (oldmetric, newmetric, xform) B9
greconstraint (metricName)iiiiiiiiiiiiiiiiiiiiiiiiiiil. B10
nptetrad (INSPAace)ooiiiiiii B11
nprotate (class, parml, parm2)ccoiiiiiiiiiiiiiiii B13
grnewmetric (newMetric, objectName, [coords]) B14
grsaveg (saveName, [metricPath]) B14

The information contained in this booklet is also available from the following
online help pages:

7grt_metrics, 7grt_objects, 7grt_basis, 7“groptions, 7makeg, 7qload,
?grload, 7grmetric, 7grtransform, 7grconstraint, 7nptetrad, 7nprotate,
7grnewmetric, 7grsaveg.

