
OVERVIEW OF MATLAB

PROGRAMMMING

PHYSICS 210

PRELIMINARIES

• Principal unit of Matlab usage: statement

>> a = 2

>> vr = [1 2 3 sqrt(17)]

>> vc = [5; 6; cos(pi/12); exp(2.3)]

>> M = [cos(pi) sin(pi); -sin(pi) cos(pi)]

>> linspace(0.0, 100.0, 101)

>> diag(M)

PRELIMINARIES

• Principal modes of Matlab programming

– Matlab scripts (programs)

• Arbitrary sequence of Matlab statements, including assignments,

control structures, input/output statements, etc.

– Matlab functions

• Completely analogous to Maple procedures

• Programming in Matlab ↔ Writing Matlab scripts and functions

• Whereas in Maple we focused on procedures (functions), in Matlab we will

also use scripts extensively, especially for term projects

• As we saw in the lab, Matlab source code (scripts/functions) must always be

prepared in a text files with a .m extension

DEFINING MATLAB FUNCTIONS

• Recall meta-syntax

– Meta-values: to be replaced by specific instance of <thing>, e.g.

• <Bexpr> Boolean expression a > b

• <ss> statement sequence x = 3,

y = exp(2.3)

– Reserved words & operators: parts of language syntax, must be typed

verbatim, e.g.

• function

• if

• then

• else

• for

• end

• [

• :

FUNCTION DEFINITION: SYNTAX & GENERAL FORMS

• Note: A Matlab function can return 0, 1, 2, … values (as many as you wish),

and each value can be a scalar, vector, array …

• Meta notation:

– <ss> arbitrary sequence of Matlab statements (commands)

• In function definitions (as well as in scripts) will generally want to end

each statement with a semi-colon to suppress output, but can omit

semi-colons for an easy and useful way to “trace” execution of

statements when developing/debugging

– <fcnname> valid Matlab name

– <inarg> input argument (formal argument)

– <outarg> output argument” (a.k.a. “return value”)

FUNCTION RETURNING 0 VALUES

• General:

function <fcnname>(<inarg1>, <inarg2>, … <inargm>)

<ss>

end

– end is optional, but I will always use it, recommend that you do as well

– Will refer to function line as “header”, <ss> as “body”

• Example: 1 inargs, 0 outarg

function zero_outarg(x)

fprintf(‘The input argument is %g’, x);
end

>> zero_outarg(2013)

The input argument is 2013

NOTE: Mapping of formal input arg → actual arg: x → 2013

FUNCTION RETURNING 0 VALUES

function zero_outarg(x)

fprintf(‘The input argument is %g’, x);
end

>> zero_outarg(2013)

The input argument is 2013

• Definition of function must be made in a file with name

<fcnname>.m

• For specific case considered above, this is (literally)

zero_outarg.m

• Define only one function per text file, and name that text file <fcnname>.m

FUNCTION RETURNING 1 VALUE

• General:

function <outarg> = <fcnname>(<inarg1>, <inarg2>, … <inargm>)

<ss>

end

• Example: 2 inargs, 1 outarg (defined in text file one_outarg.m)

function out1 = one_outarg(in1, in2)

% CRUCIAL! A value MUST be assigned to ‘out1’ within the

% body of the function

out1 = in1 + in2;

end

>> val = one_outarg(3, 4)

va1 = 7

• NOTE: Mapping between formal and actual args: in1 → 3, in2 → 4

FUNCTION RETURNING 2 VALUES

• General: Output is a length-2 vector whose elements are the 2 outargs

function [<outarg1>, <outarg2>] = <fcnname>(<inarg1>, <inarg2> …)

<ss>

end

• Note the syntax: square brackets enclose the <outargs>

• Example: 4 inargs, 2 outargs (defined in text file two_outarg.m)

function [out1, out2] = two_outarg(in1, in2, in3, in4)

% CRUCIAL! A value MUST be assigned to BOTH ‘out1’ and ‘out2’

% within the body of the function.

out1 = in1 + in2;

out2 = in3 – in4;

end

• More syntax: Commas between the <outargs> not needed (optional,

recommended style to include them) but are absolutely required between the
<inargs>

FUNCTION RETURNING 2 VALUES

function [out1, out2] = two_outarg(in1, in2, in3, in4)

% CRUCIAL! A value MUST be assigned to BOTH ‘out1’ and ‘out2’

% within the body of the function.

out1 = in1 + in2;

out2 = in3 – in4;

end

>> [val1 val2] = two_outarg(7, 8, 9, 10)

va11 = 15

val2 = -1

• Note the syntax for the assignment of the return values, vector of variables must

appear on the left hand side to “capture” both values that are returned

FUNCTION RETURNING 3 VALUES

• General: Output is a length-3 vector whose elements are the 3 outargs

function [<outarg1>, <outarg2>, <outarg3>] = <fcnname>(<inarg1>…)

<ss>

end

• Again note the syntax: square brackets enclose the <outargs>

• Example: 3 inargs, 3 outargs (defined in text file three_outarg.m)

function [out1, out2, out3] = three_outarg(in1, in2, in3)

% Values MUST be assigned to all three of ‘out1’,

% ‘out2’ and ‘out3’ in the body of the function.

%

% Also note that the 2nd and 3rd output arguments are

% assigned a vector and a matrix respectively.

out1 = in1;

out2 = zeros(1, in2);

out3 = eye(in3);

end

FUNCTION RETURNING 3 VALUES

function [out1, out2, out3] = three_outarg(in1, in2, in3)

% Values MUST be assigned to all three of ‘out1’,

% ‘out2’ and ‘out3’ in the body of the function.

%

% Also note that the 2nd and 3rd output arguments are

% assigned a vector and a matrix respectively.

out1 = in1;

out2 = zeros(1, in2);

out3 = eye(in3);

end

>> [val1 val2 val3] = three_outarg(100, 3, 2)

val1 = 100

val2 = 0 0 0

val3 =

1 0

0 1

• Once more, note the vector of variables on the left hand side that is needed to
ensure that all three output arguments are “captured”

BOOLEAN OPERATIONS

• No distinct Boolean type in Matlab (as there was in Maple)

– Numerical value 1 is defined to be “true”

– Numerical value 0 is defined to be “false”

– (In actuality any non-zero value is true)

Relational Operators

== Equal

~= Not equal

> Greater than

< Less than

>= Greater than or

equal

<= Less than or

equal

Logical Operators

& Logical AND

| Logical OR

~ Logical NOT

Note: There are two other operators, && and

||, which also perform the logical “and” and

“or” operations, but which “short-circuit” the

logical expression: i.e. evaluation of the

expression stops as soon as its truth value is

known. I will try to avoid using these in my

coding examples.

CONTROL STRUCTURES (SELECTION): if-else-end STATEMENT

• General: if-else-end

if <Bexpr>

<ss 1>

else

<ss 2>

end

• Note: no then; use end rather than end if

• Example

if a > b

c = a + b;

else

c = a – b;

end

CONTROL STRUCTURES: if-end STATEMENT

• Special case: no else clause

if <Bexpr>

<ss>

end

• Example:

if a > b

c = a + b;

end

CONTROL STRUCTURES: if-elseif-else-end STATEMENT

• General: if-elseif-else-end

if <Bexpr 1>

<ss 1>

elseif <Bexpr 2>

<ss 2 >

elseif <Bexpr 3>

<ss 3>

.

.

.

else

<ss n>

end

• Note: elseif not elif as in Maple

• Example

if x == 0

y = 1;

elseif x == 1

y = 2;

elseif x == 2

y = 4;

else

y = 0;

end

CONTROL STRUCTURES (ITERATION): for-end STATEMENT

• General:

for <loopvar> = <vector-expression>

<ss>

end

<vector-expression> MUST define row vector

• General type 1: <vector-expression> created using colon operator

for <loopvar> = <first> : <last>

<ss>

end

for <loopvar> = <first> : <step> : <last>

<ss>

end

• <first>, <last>, <step> don’t need to have integer values, but often

will in our work

CONTROL STRUCTURES: for-end STATEMENT

• Type 1 examples

for k = 3 : 6

k

end

k = 3

k = 4

k = 5

k = 6

for jj = 2 : 3 : 14

2 * jj

end

ans = 4

ans = 10

ans = 16

ans = 22

ans = 28

for value = 5 : -6 : -25

value

end

value = 5

value = -1

value = -7

value = -13

value = -19

value = -25

CONTROL STRUCTURES: for-end STATEMENT

• General:

for <loopvar> = <vector-expression>

<ss>

end

• General type 2: <vector-expression> created using any other command or

expression that returns/defines a row vector

• Example:

for val = [1, 3, 9, sqrt(2)]

val

do

val = 1

val = 3

val = 9

val = 1.414

CONTROL STRUCTURES (ITERATION): while STATEMENT

• General:

while <Bexpr>

<ss>

end

• Statement sequence executed repeatedly until <Bexpr> evaluates to 0

(false)

• This form of a loop is also found in most programming languages, and

requires more care to use in general, since it is less “deterministic” than a for

loop or equivalent

• Will generally require some initialization code before the while so that the
<Bexpr> will evaluate properly

• If <Bexpr> never evaluates to 0, will have an “infinite loop”

CONTROL STRUCTURES: while STATEMENT

• Example: Use a while loop to compute an approximation of machine

epsilon

meps = 1;

while (1 + meps) ~= 1

meps = meps / 2

end

myeps = 0.5000

myeps = 0.2500

myeps = 0.1250

.

.

.

myeps = 2.2204e-16

myeps = 1.1102e-16

• Note: The value of myeps upon exit from the loop is such that the loop

condition fails, so to get last value for which loop condition succeeds, need to
multiply myeps by 2 (see demowhile for full implementation)

